
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SST Tutorial – “Juno” Example Processor
SST Development Team

Sandia National Laboratories, NM

sst@sandia.gov

SAND2017-7486PE

Welcome to the SST Juno Tutorial!

 Tutorial Goal: become familiar with API, structures and
design patterns for building components and subcomponents
in SST

 Juno is a (very simple) example cycle-approximate execution-
driven processor core
 Operates on 64-bit signed integers only

 Very limited number of built-in instructions

 But extensible with custom instructions (we will show how)

 Interfaces with SST memory sub-system models

 Utilizes many of the basic structures offered by SST to make
developing architectural simulation models much easier

https://github.com/sstsimulator/juno

Basic Juno Model/Workflow

Program
(Juno

Assembly)

Binary
(Juno

Binary)

Assembler SST Model
(Python)

SST

Output
(STDOUT)

Statistics
(CSV, JSON,
HDF5, Text,

etc)

Offline Process to create an executable/
application/kernel to analyze using Juno/SST

Startup phase of SST – creates all
the components and links them together

Users can customize the output types of
most data from SST including locations etc

Juno Model

Cache

MemController

SimpleMem

Juno CPU

RegisterFile

LoadStoreUnit

InstructionMgr

ALU

SST Components

SST Link

L
o

a
d

e
d

 f
ro

m
 t
h

e
 M

e
m

H
ie

ra
rc

h
y

E
le

m
e

n
t

Tutorial Outline

 There are five exercises to introduce you to the parts of SST

 Exercise 1 – get a basic Juno model running using SST’s Python model
scripts

 Exercise 2 – add a configuration parameter to Juno to change the
execution behavior

 Exercise 3 – add statistics support to Juno to track metrics of interest
during simulation execution

 Exercise 4 – add a new instruction to Juno using SST’s SubComponent
interface

 Exercise 5 – add an external “accelerator” to Juno to demonstrate inter-
component connectivity

EXERCISE 1 – USE SST TO RUN A JUNO

PROGRAM

Exercise 1 – Running a Juno App

 Goal: The first exercise is to use SST to run a Juno program

 Hint: sst ./juno-exercise-001.py

 Extra: Change the Program Being Run:
 Second Juno program (isqrt.juno) needs to be assembled

 Edit juno-exercise-001.py

 Change the application being run and repeat

 Extra: Change the verbosity of the CPU model
 Change the verbose parameter to 1, 2, 4, 8, .. 32 and re-run

EXERCISE 2 – ADDING A PARAMETER TO

THE JUNO MODEL

Exercise 2 – Adding Parameters

 Goal: Add a parameter to Juno to control its behavior

 Description: (1) parameters require definition in the
“manifest” so that SST can check we are loading the right
values; (2) we can use the parameter

 Activity: add the “clock” parameter to control the simulated
clock rate of Juno

 Hint: look at the SST_ELI_DOCUMENT_PARAMSmacro in
junocpu.h

 Check: add the “clock” parameter in juno-exercise-002.py, try
different values and re-run

EXERCISE 3 – ADD METRICS

(“STATISTICS”) TO JUNO MODEL

Exercise 3 - Statistics

 Goal – add statistics capture into the Juno model to allow
users to see behavior

 Description: (1) Statistics must also be registered in the
manifest for the model; (2) Statistics must then be created in
the component; (3) Statistics can have data added to them
during execution

 Hint (1): Look at the SST_ELI_DOCUMENT_STATISTICS
in junocpu.h (this registered statistics values)

Exercise 3 - Statistics

 To use statistics from the SST core you need to use the following:

 In your model class add a member:

 Statistic<uint64_t>* statCycles;

 (Creates a unsigned 64-bit integer statistic value for use as a metric)

 In your model constructor:
 statCycles = registerStatistic<uint64_t>("cycles");

 Registers the statistic with the core so it can be incorporated into the unified output

 In the code which runs your model:
 statCycles->addData(1);

Exercise 3 –Statistics and Python

 Once your model has statistics enabled, we must tell SST
which ones to turn on during execution (so we are not
overwhelmed)

 At the end of juno-exercise-003.py (create a CSV dump)

Set the statistics to output

sst.setStatisticOutput("sst.statOutputCSV")

sst.enableAllStatisticsForAllComponents()

sst.setStatisticOutputOptions({

"filepath" : "output.csv"

})

EXERCISE 4 – ADDING A NEW

INSTRUCTION USING SUBCOMPONENTS

Exercise 4 – Add a SubComponent

 SubComponents are sub-parts of a full component which can be
dynamically loaded into a model. In this case Juno has several built-in
instructions but can also load in additional user-defined extensions

 Goal: load a new instruction subcomponent into the Juno model so we
can add RAND and RSEED instruction support (assembler has already been
modified to generate RAND and RSEED output)

 Description: a random instruction sub-component has already been
developed (see src/custominst/junorandinst.h)

 Activity: (1) add a subcomponent “slot” into Juno; (2) modify juno-
exercise-004.py so we can load the subcomponent into the Juno CPU and
then run a simple GUPS program

Exercise 4 – SubComponent Slot

 SubComponent “slots” tell SST that it should expect to load a
new additional piece of code into this space

 In junocpu.h we need to add the following:

SST_ELI_DOCUMENT_SUBCOMPONENT_SLOTS(

{"customhandler", "Holds customer instruction handlers",

"SST::Juno::CustomInstructionHandler" }

)

 This defines a slot called “customhandler” (customhandlers in
Juno handle instructions not matched by the processors
default ISA)

Exercise 4 – Random SubComponent

 In juno-exercise-004.py add the following:
Define RAND support

randsc = comp_cpu.setSubComponent("customhandler",
"juno.JunoRandomHandler")

randsc.addParam("seed", 131313)

 This tells SST you want to load an instance of
juno.JunoRandomHandler into the “customhandler”
slot we just defined

 Activity: compile GUPS and use SST to run juno-exercise-
004.py

EXERCISE 5 – USE EXTERNAL

COMPONENTS TO PROVIDE RANDOM

SUPPORT

Exercise 5 – Connect Components

 Imagine that our architecture department has developed an
external “random number” accelerator we want to attach to
the Juno CPU

 Goal: attach an external “random accelerator” component to
Juno to create random numbers for our applications

 Activity: (1) we need to create a new component; (2) we need
to create a subcomponent (“customhandler” for Juno) which
can connect externally; (3) we need to create a link between
them

Exercise 5- External Connectivity

Cache

MemController

SimpleMem

Juno CPU

RegisterFile

LoadStoreUnit

InstructionMgr

ALU

SST Components

SST Link

L
o

a
d

e
d

 f
ro

m
 t
h

e
 M

e
m

H
ie

ra
rc

h
y

E
le

m
e

n
t

RandAccel

RandHandler

Exercise 5 – External Connectivity

 Step 1 – create a new component in juno-exercise-005.py:

Define external RAND accelerator

rand_accel = sst.Component("randacc",
"juno.JunoRandAccelerator")

rand_accel.addParams({

"verbose" : 1

})

 Creates a new component called “randacc” which is already
written and supplied by Juno’s element library

Exercise 5 – External Connectivity

 Step 2 – we need to create a new ExternalRandomHandler for
Juno (routes RAND instructions off the CPU and manages the
connection)

Define RAND support

randsc = comp_cpu.setSubComponent("customhandler",
"juno.JunoExternalRandomHandler")

 This is a subcomponent of the Juno CPU because this provides
the connection from Juno to the new component

Exercise 5 – External Connectivity

 Step 3 – connect the new random accelerator component to
the Juno random handler

cpu_rand_link = sst.Link("cpu_rand_accel_link")

cpu_rand_link.connect((randsc, "genlink",
"2ns"), (rand_accel, "cpulink", "2ns"))

 “genlink” and “cpulink” are named ports in the element
manifest (so SST knows how to connect everything together)

Exercise 5 – Run!

 Step 4 – run juno-exercise-005.py

 Extra – you can turn up the verbose settings on the
components to see more information get printed about the
messages between them

 Extra – change the parameters in the Python script and see
what happens to the projected performance

