SAND2017- 7486PE

SST Tutorial = “Juno” Example Processor

SST Development Team

Sandia National Laboratories, NM

sst@sandia.gov

LA FEFRETERNT OV
m Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
= owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Welcome to the SST Juno Tutorial! @&

= Tutorial Goal: become familiar with API, structures and

design patterns for building components and subcomponents
in SST

= Juno is a (very simple) example cycle-approximate execution-
driven processor core
= QOperates on 64-bit signed integers only
= Very limited number of built-in instructions
= But extensible with custom instructions (we will show how)

= |nterfaces with SST memory sub-system models

= Utilizes many of the basic structures offered by SST to make
developing architectural simulation models much easier

https://github.com/sstsimulator/juno

Basic Juno Model/Workflow D=

Offline Process to create an executable/ Startup phase of SST — creates all
application/kernel to analyze using Juno/SST the components and links them together
A A
|] | |
Program Assembler Binary SST Model

(Juno (Juno (Python)
Assembly) Binary)

Output Statistics
(STDOUT) (CSV, JSON,
HDF5, Text,
etc)

\ J
1

Users can customize the output types of
most data from SST including locations etc

Juno Model

Juno CPU

RegisterFile

LoadStoreUnit

InstructionMgr

SST Link

SimpleMem

SST Components

MemController

RE==1
i

[
Loaded from the MemHierarchy Element

Tutorial Outline O

= There are five exercises to introduce you to the parts of SST
= Exercise 1— get a basic Juno model running using SST’s Python model
scripts

= Exercise 2 — add a configuration parameter to Juno to change the
execution behavior

= Exercise 3 — add statistics support to Juno to track metrics of interest
during simulation execution

= Exercise 4 — add a new instruction to Juno using SST’s SubComponent
interface

= Exercise 5 — add an external “accelerator” to Juno to demonstrate inter-
component connectivity

EXERCISE 1 — USE SST TO RUN A JUNO
PROGRAM

Exercise 1 — Running aJuno App BE.

= Goal: The first exercise is to use SST to run a Juno program
= Hint: sst./juno-exercise-001.py

= Extra: Change the Program Being Run:
= Second Juno program (isqrt.juno) needs to be assembled
= Edit juno-exercise-001.py
= Change the application being run and repeat

= Extra: Change the verbosity of the CPU model

= Change the verbose parameterto 1, 2, 4, 8, .. 32 and re-run

EXERCISE 2 — ADDING A PARAMETER TO
THE JUNO MODEL

Exercise 2 — Adding Parameters W

= @Goal: Add a parameter to Juno to control its behavior

= Description: (1) parameters require definition in the
“manifest” so that SST can check we are loading the right
values; (2) we can use the parameter

= Activity: add the “clock” parameter to control the simulated
clock rate of Juno

= Hint: look atthe SST ELI DOCUMENT PARAMS macro in
junocpu.h

= Check: add the “clock” parameter in juno-exercise-002.py, try
different values and re-run

EXERCISE 3 — ADD METRICS
(“STtATISTICS”) TO JUNO MODEL

Exercise 3 - Statistics O

= @Goal — add statistics capture into the Juno model to allow
users to see behavior

= Description: (1) Statistics must also be registered in the
manifest for the model; (2) Statistics must then be created in
the component; (3) Statistics can have data added to them
during execution

= Hint (1): Look at the SST ELI DOCUMENT STATISTICS
in junocpu.h (this registered statistics values)

Exercise 3 - Statistics O

= To use statistics from the SST core you need to use the following:

= |n your model class add a member:
" Statistic<uint64 t>* statCycles;
= (Creates a unsigned 64-bit integer statistic value for use as a metric)

= |n your model constructor:
" statCycles = registerStatistic<uinteé4 t>("cycles");
= Registers the statistic with the core so it can be incorporated into the unified output

= |n the code which runs your model:
= statCycles->addData(l) ;

Exercise 3 —Statistics and Python @&

= Once your model has statistics enabled, we must tell SST
which ones to turn on during execution (so we are not
overwhelmed)

= At the end of juno-exercise-003.py (create a CSV dump)

Set the statistics to output
sst.setStatisticOutput ("sst.statOutputCsSv")
sst.enableAllStatisticsForAllComponents ()

sst.setStatisticOutputOptions ({

"filepath" : "output.csv"
o)

EXERCISE 4 — ADDING A NEW
INSTRUCTION USING SUBCOMPONENTS

Exercise 4 — Add a SubComponent @&

= SubComponents are sub-parts of a full component which can be
dynamically loaded into a model. In this case Juno has several built-in
instructions but can also load in additional user-defined extensions

= @Goal: load a new instruction subcomponent into the Juno model so we
can add RAND and RSEED instruction support (assembler has already been
modified to generate RAND and RSEED output)

= Description: a random instruction sub-component has already been
developed (see src/custominst/junorandinst.h)

= Activity: (1) add a subcomponent “slot” into Juno; (2) modify juno-
exercise-004.py so we can load the subcomponent into the Juno CPU and
then run a simple GUPS program

Exercise 4 — SubComponent Slot ~ @&

= SubComponent “slots” tell SST that it should expect to load a
new additional piece of code into this space

" |njunocpu.h we need to add the following:

SST ELI DOCUMENT SUBCOMPONENT SLOTS (
{"customhandler", "Holds customer instruction handlers",
"SST::Juno: :CustomInstructionHandler™ }

)

= This defines a slot called “customhandler” (customhandlers in
Juno handle instructions not matched by the processors
default ISA)

Exercise 4 — Random SubComponenf&&.

" |njuno-exercise-004.py add the following:
Define RAND support

randsc = comp cpu.setSubComponent ("customhandler",
"Juno.JunoRandomHandler")

randsc.addParam("seed", 131313)

= This tells SST you want to load an instance of
juno.JunoRandomHandler intothe “customhandler”

slot we just defined

= Activity: compile GUPS and use SST to run juno-exercise-
004.py

EXERCISE 5 — USE EXTERNAL
COMPONENTS TO PROVIDE RANDOM
SUPPORT

Exercise 5 — Connect Components @&

= |magine that our architecture department has developed an
external “random number” accelerator we want to attach to
the Juno CPU

Ill

= Goal: attach an external “random accelerator” component to
Juno to create random numbers for our applications

= Activity: (1) we need to create a new component; (2) we need
to create a subcomponent (“customhandler” for Juno) which
can connect externally; (3) we need to create a link between
them

Exercise 5- External Connectivity @

Juno CPU

RegisterFile

LoadStoreUnit

InstructionMgr

RandHandler

SST Link

SimpleMem

RandAccel

SST Components

MemController

= o

[
Loaded from the MemHierarchy Element

Exercise 5 — External Connectivity ®&.

= Step 1-—create a new component in juno-exercise-005.py:

Define external RAND accelerator

rand accel = sst.Component ("randacc",
"juno.JunoRandAccelerator")

rand accel.addParams ({

"verbose" : 1

})

= Creates a new component called “randacc” which is already
written and supplied by Juno’s element library

Exercise 5 — External Connectivity ®&.

= Step 2 — we need to create a new ExternalRandomHandler for
Juno (routes RAND instructions off the CPU and manages the
connection)

Define RAND support

randsc = comp cpu.setSubComponent ("customhandler",
"Juno.JunokExternalRandomHandler")

= This is a subcomponent of the Juno CPU because this provides
the connection from Juno to the new component

Exercise 5 — External Connectivity ®&.

= Step 3 - connect the new random accelerator component to
the Juno random handler

cpu rand link = sst.Link("cpu rand accel 1link")

cpu rand link.connect ((randsc, "genlink",
"2ns"), (rand accel, "cpulink", "2ns"))

= “genlink” and “cpulink” are named ports in the element
manifest (so SST knows how to connect everything together)

Exercise 5 — Run! -

= Step 4 —run juno-exercise-005.py

= Extra—you can turn up the verbose settings on the
components to see more information get printed about the
messages between them

= Extra — change the parameters in the Python script and see
what happens to the projected performance

