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Welcome to the SST Juno Tutorial!

 Tutorial Goal: become familiar with API, structures and 
design patterns for building components and subcomponents 
in SST

 Juno is a (very simple) example cycle-approximate execution-
driven processor core
 Operates on 64-bit signed integers only

 Very limited number of built-in instructions

 But extensible with custom instructions (we will show how)

 Interfaces with SST memory sub-system models

 Utilizes many of the basic structures offered by SST to make 
developing architectural simulation models much easier

https://github.com/sstsimulator/juno
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Tutorial Outline

 There are five exercises to introduce you to the parts of SST

 Exercise 1 – get a basic Juno model running using SST’s Python model 
scripts

 Exercise 2 – add a configuration parameter to Juno to change the 
execution behavior

 Exercise 3 – add statistics support to Juno to track metrics of interest 
during simulation execution

 Exercise 4 – add a new instruction to Juno using SST’s SubComponent
interface

 Exercise 5 – add an external “accelerator” to Juno to demonstrate inter-
component connectivity



EXERCISE 1 – USE SST TO RUN A JUNO

PROGRAM



Exercise 1 – Running a Juno App

 Goal: The first exercise is to use SST to run a Juno program

 Hint: sst ./juno-exercise-001.py

 Extra: Change the Program Being Run: 
 Second Juno program (isqrt.juno) needs to be assembled

 Edit juno-exercise-001.py

 Change the application being run and repeat

 Extra: Change the verbosity of the CPU model
 Change the verbose parameter to 1, 2, 4, 8, .. 32 and re-run



EXERCISE 2 – ADDING A PARAMETER TO

THE JUNO MODEL



Exercise 2 – Adding Parameters

 Goal: Add a parameter to Juno to control its behavior

 Description: (1) parameters require definition in the 
“manifest” so that SST can check we are loading the right 
values; (2) we can use the parameter

 Activity: add the “clock” parameter to control the simulated 
clock rate of Juno

 Hint: look at the SST_ELI_DOCUMENT_PARAMSmacro in 
junocpu.h

 Check: add the “clock” parameter in juno-exercise-002.py, try 
different values and re-run



EXERCISE 3 – ADD METRICS

(“STATISTICS”) TO JUNO MODEL



Exercise 3 - Statistics

 Goal – add statistics capture into the Juno model to allow 
users to see behavior

 Description: (1) Statistics must also be registered in the 
manifest for the model; (2) Statistics must then be created in 
the component; (3) Statistics can have data added to them 
during execution

 Hint (1): Look at the SST_ELI_DOCUMENT_STATISTICS
in junocpu.h (this registered statistics values)



Exercise 3 - Statistics

 To use statistics from the SST core you need to use the following:

 In your model class add a member:

 Statistic<uint64_t>* statCycles;

 (Creates a unsigned 64-bit integer statistic value for use as a metric)

 In your model constructor:
 statCycles = registerStatistic<uint64_t>( "cycles" );

 Registers the statistic with the core so it can be incorporated into the unified output

 In the code which runs your model:
 statCycles->addData(1);



Exercise 3 –Statistics and Python

 Once your model has statistics enabled, we must tell SST 
which ones to turn on during execution (so we are not 
overwhelmed)

 At the end of juno-exercise-003.py (create a CSV dump)

# Set the statistics to output

sst.setStatisticOutput("sst.statOutputCSV")

sst.enableAllStatisticsForAllComponents()

sst.setStatisticOutputOptions( {

"filepath"  : "output.csv"

} )



EXERCISE 4 – ADDING A NEW

INSTRUCTION USING SUBCOMPONENTS



Exercise 4 – Add a SubComponent

 SubComponents are sub-parts of a full component which can be 
dynamically loaded into a model. In this case Juno has several built-in 
instructions but can also load in additional user-defined extensions

 Goal: load a new instruction subcomponent into the Juno model so we 
can add RAND and RSEED instruction support (assembler has already been 
modified to generate RAND and RSEED output)

 Description: a random instruction sub-component has already been 
developed (see src/custominst/junorandinst.h)

 Activity: (1) add a subcomponent “slot” into Juno; (2) modify juno-
exercise-004.py so we can load the subcomponent into the Juno CPU and 
then run a simple GUPS program



Exercise 4 – SubComponent Slot

 SubComponent “slots” tell SST that it should expect to load a 
new additional piece of code into this space

 In junocpu.h we need to add the following:

SST_ELI_DOCUMENT_SUBCOMPONENT_SLOTS(

{"customhandler", "Holds customer instruction handlers",

"SST::Juno::CustomInstructionHandler" }

)

 This defines a slot called “customhandler” (customhandlers in 
Juno handle instructions not matched by the processors 
default ISA) 



Exercise 4 – Random SubComponent

 In juno-exercise-004.py add the following:
# Define RAND support

randsc = comp_cpu.setSubComponent("customhandler", 
"juno.JunoRandomHandler")

randsc.addParam("seed", 131313)

 This tells SST you want to load an instance of 
juno.JunoRandomHandler into the “customhandler” 
slot we just defined

 Activity: compile GUPS and use SST to run juno-exercise-
004.py 



EXERCISE 5 – USE EXTERNAL

COMPONENTS TO PROVIDE RANDOM

SUPPORT



Exercise 5 – Connect Components

 Imagine that our architecture department has developed an 
external “random number” accelerator we want to attach to 
the Juno CPU

 Goal: attach an external “random accelerator” component to 
Juno to create random numbers for our applications

 Activity: (1) we need to create a new component; (2) we need 
to create a subcomponent (“customhandler” for Juno) which 
can connect externally; (3) we need to create a link between 
them



Exercise 5- External Connectivity
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Exercise 5 – External Connectivity

 Step 1 – create a new component in juno-exercise-005.py:

# Define external RAND accelerator

rand_accel = sst.Component("randacc", 
"juno.JunoRandAccelerator")

rand_accel.addParams({

"verbose" : 1

})

 Creates a new component called “randacc” which is already 
written and supplied by Juno’s element library



Exercise 5 – External Connectivity

 Step 2 – we need to create a new ExternalRandomHandler for 
Juno (routes RAND instructions off the CPU and manages the 
connection)

# Define RAND support

randsc = comp_cpu.setSubComponent("customhandler", 
"juno.JunoExternalRandomHandler")

 This is a subcomponent of the Juno CPU because this provides 
the connection from Juno to the new component



Exercise 5 – External Connectivity

 Step 3 – connect the new random accelerator component to 
the Juno random handler

cpu_rand_link = sst.Link("cpu_rand_accel_link")

cpu_rand_link.connect(  (randsc, "genlink", 
"2ns"), (rand_accel, "cpulink", "2ns") )

 “genlink” and “cpulink” are named ports in the element 
manifest (so SST knows how to connect everything together)



Exercise 5 – Run!

 Step 4 – run juno-exercise-005.py

 Extra – you can turn up the verbose settings on the 
components to see more information get printed about the 
messages between them

 Extra – change the parameters in the Python script and see 
what happens to the projected performance




