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Summary

 Measurements of sound velocities at extreme pressures are 
difficult to perform
 Require uniform shocks over large areas and precise measurement of 

sample and/or flyer thicknesses

 Dual-layered Cu/Al flyer plates enable overtaking wave 
measurements on Z
 Copper sound velocity was constrained from 300 to 1100 GPa
 Beryllium was measured from 130-300 GPa identifying shock-melt 

transition

 Experiments at OMEGA have used reverberating waves to 
measure sound velocity
 Similar technique under development for Z
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Z overtaking wave experiments impacted 
stepped targets with multilayered flyer plates

 Flyer velocities ranged from 
7-17 km/s

 Experiments used 
asymmetric loads to launch 
2 flyers with ~10% different 
velocities per shot
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Target fabrication requires machining to
tight tolerance and precise measurement

 Flyer plates were developed 
by plating Cu onto Al 
substrates and diamond-
turning to desired thickness

 Copper samples machined to 
have steps from 500-1100 µm

 Thickness measured to <2 µm
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Flyer velocity, shock transit time, and quartz
shock velocity measured with VISAR
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Longitudinal and bulk sound velocities 
determined from overtake of release wave

 Longitudinal and bulk 
overtake times measured 
for each step

 Overtake times interpolated 
for thickness at which 
overtake occurs

 Copper sound velocity given 
by:

 Beryllium sound velocity 
relative to copper layer
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Copper sound velocity constrained from
300-1100 GPa
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*C. A. McCoy, M. D. Knudson, and S. Root, Submitted to Phys. Rev. B
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Beryllium sound velocity results consistent 
with melt occurring at ~200 GPa 

 Sound velocity agrees with Mie-
Grüneisen EOS below melt

 Data above melt in good 
agreement with QMD results
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*L. C. Chabildas, J. L. Wise, and J. R. Asay, AIP Conf. Proc. 78, 422 (1982);



Comparison with QMD suggests that Be
melts from HCP phase rather than BCC
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Reverberating wave sound velocity 
measurements demonstrated on OMEGA

 Thin ablator generated 
reverberating shock between 
higher impedance baseplate 
and laser drive

 Shock velocity in both quartz 
reference and sample tracked 
using line-imaging VISAR

 Reverberations produce 
perturbations to shock 
velocity which can be related 
between sample and quartz 
reference
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*C. A. McCoy, et al, J. Appl. Phys 120, 235901 (2016).



Acoustic disturbances interact with multiple 
features in a typical target
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The interaction of the acoustic 
disturbances with target features 
is dependent on the Mach 
number

For example, a backward 
propagating shock is given by:

D. E. Fratanduono, et al., J. Appl. Phys. 116, 033517 (2014)



Matching perturbation profiles provides 
measurement of sound velocity
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Reverberating wave technique for Z being 
developed using multilayered flyers

 Technique can study 4 
samples simultaneously
 Maintains quartz reference 

adjacent to each sample

 Flyer fabricated by plating 
and machining each layer to 
specified thickness then 
machining Al to final size
 Drive uniformity concern due 

to stress on flyer and 
plating/machining each layer
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Simulations of Z experiment demonstrate 
uniform controlled perturbations
 Alternating Cu/Ag layers 

produce perturbations to 
shock velocity of ~2%

 Sample thicknesses 
determined to maximize 
perturbations for copper 
sample
 Experiment valid until 

overtake of reflected wave
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Summary
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 Measurements of sound velocities at extreme pressures are 
difficult to perform
 Require uniform shocks over large areas and precise measurement of 

sample and/or flyer thicknesses

 Dual-layered Cu/Al flyer plates enable overtaking wave 
measurements on Z
 Copper sound velocity was constrained from 300 to 1100 GPa
 Beryllium was measured from 130-300 GPa identifying shock-melt 

transition

 Experiments at OMEGA have used reverberating waves to 
measure sound velocity
 Similar technique under development for Z
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