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Summary e

= Measurements of sound velocities at extreme pressures are
difficult to perform

= Require uniform shocks over large areas and precise measurement of
sample and/or flyer thicknesses
= Dual-layered Cu/Al flyer plates enable overtaking wave
measurements on Z
= Copper sound velocity was constrained from 300 to 1100 GPa
= Beryllium was measured from 130-300 GPa identifying shock-melt
transition
= Experiments at OMEGA have used reverberating waves to
measure sound velocity

= Similar technique under development for Z




Z overtaking wave experiments impacted o,
stepped targets with multilayered flyer plates

Laboratories

Be Step |:

Plate cu " Flyer velocities ranged from

impact
g / /surface 7-17 km/S
— - Flight :

AN
AN

o asymmetric loads to launch
\[ /‘fﬂiﬁ' 2 flyers with ~10% different
|
O velocities per shot

Cu/Al flyer (fast)

1 mm

cathode
\ 1.4 mm

Cu/Al flyer (slow)

AK- |
gap




Target fabrication requires machining to ) e
tight tolerance and precise measurement

= Flyer plates were developed = Copper samples machined to

by plating Cu onto Al have steps from 500-1100 um
substrates and diamond- = Thickness measured to <2 um
turning to desired thickness
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Flyer velocity, shock transit time, and quartzg, ..
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shock velocity measured with VISAR
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Longitudinal and bulk sound velocities ) i
determined from overtake of release wave
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= Copper sound velocity given
Copper flyer

by: — thickness
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Copper sound velocity constrained from ) e
300-1100 GPa
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Beryllium sound velocity results consistent ()
with melt occurring at ~200 GPa
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Comparison with QMD suggests that Be
melts from HCP phase rather than BCC
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Reverberating wave sound velocity )
measurements demonstrated on OMEGA

Quartz
= Thin ablator generated OMEGA reference
reverberating shock between yo¥
higher impedance baseplate - ng
and laser drive Ug
= Shock velocity in both quartz ’
reference and sample tracked Sample Prone

using line-imaging VISAR

. 300
= Reverberations produce

perturbations to shock
velocity which can be related
between sample and quartz
reference
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"C. A. McCoy, et al, J. Appl. Phys 120, 235901 (2016).



Acoustic disturbances interact with multiple .

features in a typical target

Forward propagating shock
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The interaction of the acoustic
disturbances with target features
IS dependent on the Mach
number

For example, a backward
propagating shock is given by:
Aty 14 Mg,
Aty 1+ Mg,

D. E. Fratanduono, et al., J. Appl. Phys. 116, 033517 (2014)



Matching perturbation profiles provides A i,
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measurement of sound velocity

L]
NN

[
(=

Eulerian Sound Speed (km/s)
= o

== == SESAME 7381
== + SESAME 7385
— SESAME 7386

¢  This Work -

®  McQueen 1991 -

200 400 600 800
Pressure (GPa)

1000

1200

Us (km/s)

dUs (km/s)

&

o
[#s]

B

0.5¢

-0.5

LA




Reverberating wave technique for Z being

developed using multilayered flyers

= Technique can study 4
samples simultaneously
= Maintains quartz reference
adjacent to each sample
= Flyer fabricated by plating
and machining each layer to
specified thickness then
machining Al to final size

= Drive uniformity concern due
to stress on flyer and
plating/machining each layer
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Simulations of Z experiment demonstrate
uniform controlled perturbations

= Alternating Cu/Ag layers
produce perturbations to
shock velocity of ~2%

= Sample thicknesses
determined to maximize
perturbations for copper
sample

= Experiment valid until

overtake of reflected wave
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Measurements of sound velocities at extreme pressures are
difficult to perform

= Require uniform shocks over large areas and precise measurement of
sample and/or flyer thicknesses

Dual-layered Cu/Al flyer plates enable overtaking wave
measurements on Z

= Copper sound velocity was constrained from 300 to 1100 GPa

= Beryllium was measured from 130-300 GPa identifying shock-melt
transition

Experiments at OMEGA have used reverberating waves to
measure sound velocity

= Similar technique under development for Z
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