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Mesoscale Materials Modelling
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» Generally challenging problems involving
physics at many length/time scales

« Shock to detonation transition in energetics
fits the bill of being truly “mesoscale” i
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But Why Molecular Dynamics?

* Want a predictive power that
spans from atoms to devices

th

* Results inform and train continuum
models for mesoscale applications

* MD simulations need to span the
hydrodynamic to viscoplastic range
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Validation of the Interatomic Potential

* Need to define a test geometry for both
codes (LAMMPS, CTH)

« Small adjustments made to ReaxFF-Ig
potential for HNS
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Shock to Initiation, Deflagration

Temperature: Time = 0 ps
* Detailed chemistry is = 120 1400
incorporated in these MD £ 100 1200
potentials, hot spot evolution & 80 1000 &
is captured naturally. g Zg 800 ~
s 600
« Current computing a 22 400
capabilities for ReaxFF within 0 c0 100 150 200
LAMMPS is ~10% atoms, Distance [010](nm)
which is 1um by 0.5um of
HNS Strain Rate: Time = .100 ps
0.03
o
- KOKKOS-Reax/c package 0.025 @
circumvents memory 002 &
overflow errors and makes i
the code portable to hybrid aaael
architectures 0.01 &
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Hydrodynamic vs. Viscoplastic Pore Collapse
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Connection to the Continuum Scale

* Pore size has a weak effect on pore collapse behavior, at least in the MD accessible
range which for us was up to 0.25um (1.3-108 atoms).

e CTH strength model is fitted based on the MD prediction of pore collapse rate
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Strain Rate Dependent Model — Steinberg and Lund (1989) T

* We believe that only a strain rate-dependent model can match MD results for
viscoplastic pore collapse; EPPVM and Johnson-Cook are not up to the task.
e Assume a constant shear modulus of G, = 5686 MPa
* Neglect work hardening but assume Y, = 140 MPa
* Assume linear variation of the Grlineisen parameter, y, = 1.625
* Melt temperature T, = 588 K

SGL 4 DOF Best Fit

. = 11 g1

Yield Strength: v ={Yr(&,T) + Yaf ()} Cg = Su025 % T8
C, = 11.25 dyne-s/cm?

Shear Modulus: G(P,T) = Go Yp = 1114 MPa
Work Hardening: Yaf(ep) = Ya < Yrax Ug = 0.1358 eV
Thermal Activation: . {i 2Uk(, Y72 2}_1 Y. <Y
(Implicit Equation) % = o7 0vs) | o rer
Melting Curve: T = Toexp{2a(l — 1/n)}n2(y0—a—1/3)

(Y=0whenT >T,)

Grlneisen parameter: Y =vo/(1+ 1)
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Strain Rate Dependent Model — Results
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Conclusions and Path Forward

e By training a strain-rate dependent CTH strength model for HNS to reproduce MD
predicted viscoplastic shock response, we have been able to obtain consistent pore
collapse behavior.

* |nitiation behavior as a function of this viscoplastic character is an avenue for future
work on both the MD and CTH codes.
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