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Mesoscale Materials Modelling
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Microstructure
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Atomistic

• Generally challenging problems involving
physics at many length/time scales

• Shock to detonation transition in energetics
fits the bill of being truly "mesoscale"
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But Why Molecular Dynamics?

• Want a predictive power that • Results inform and train continuum
spans from atoms to devices models for mesoscale applications

• HNS - Real Microstructure
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• MD simulations need to span the
hydrodynamic to viscoplastic range
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Validation of the Interatomic Potential

• Need to define a test geometry for both
codes (LAMMPS, CTH)

• Small adjustments made to ReaxFF-Ig
potential for HNS
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Shock to Initiation, Deflagration

Temperature:

• Detailed chemistry is _ 120
E

incorporated in these MD E 100

1-1'

potentials, hot spot evolution o 80
o

is captured naturally. w 60
u
E 40
(0

20
• Current computing .E

0
capabilities for ReaxFF within
LAMMPS is -108 atoms,
which is 1 pm by 0.5pm of
HNS

• KOKKOS-Reax/c package
circumvents memory
overflow errors and makes
the code portable to hybrid
architectures
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Hydrodynamic vs. Viscoplastic Pore Collapse
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Connection to the Continuum Scale
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• Pore size has a weak effect on pore collapse behavior, at least in the MD accessible
range which for us was up to 0.25µm (1.1108 atoms).

• CTH strength model is fitted based on the MD prediction of pore collapse rate
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Strain Rate Dependent Model — Steinberg and Lund (1989)

• We believe that only a strain rate-dependent model can match MD results for

viscoplastic pore collapse; EPPVM and Johnson-Cook are not up to the task.

• Assume a constant shear modulus of Go = 5686 MPa

• Neglect work hardening but assume YA = 140 MPa

• Assume linear variation of the Grüneisen parameter, yo = 1.625

• Melt temperature Tmo = 588 K

Yield Strength: Y = f177-(EP, T) + YAf (EP))

Shear Modulus: G , T) = Go

Work Hardening: YAf (EP) = YA 177;tax

Thermal Activation:
(Implicit Equation)

1 1 [2 UK  (1 YT)21 c2 1
Lp exp

kT Y p YT
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SGL 4 DOF Best Fit

= 2. 025 X 1011 S-1

C2 = 11.25 dyne-s/cm2
Yp = 1114 MPa

UK = O. 1358 eV

YT < yp

Melting Curve:
(Y = 0 when T Tm)

Tm = Tmoexp{2a(1 — 1/r072(Y0—a-1/3)

Grüneisen parameter: Y = Yo/(1 +11)
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Strain Rate Dependent Model — Results
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Conclusions and Path Forward
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• By training a strain-rate dependent CTH strength model for HNS to reproduce MD

predicted viscoplastic shock response, we have been able to obtain consistent pore

collapse behavior.

• Initiation behavior as a function of this viscoplastic character is an avenue for future

work on both the MD and CTH codes.
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