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« Continuum models require underlying
models of the materials behavior

« Quantum methods can provide very
complete description for 100s of atoms

* Molecular Dynamics acts as the “missing
link”
» Bridges between quantum and continuum
models

* Moreover, extends quantum accuracy to
continuum length scales; retaining atomistic
information
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SNAP: Spectral Neighbor Analysis Potentials
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 GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., Phys. Rev. Lett, 2010. Uses

3D neighbor density bispectrum and Gaussian process regression.

* SNAP (Spectral Neighbor Analysis Potential): Our SNAP approach uses GAP’s neighbor
bispectrum, but replaces Gaussian process with linear regression.
- More robust
- Lower computational cost
Decouples MD speed from training set size
Enables large training data sets, more bispectrum coefficients
Straightforward sensitivity analysis
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 GAP (Gaussian Approximation Potential): Bartok, Csanyi et al., Phys. Rev. Lett, 2010. Uses
3D neighbor density bispectrum

 SNAP (Spectral Neighbor Analysis Potential): Our SNAP approach (Thompson et al.,
J.Comp.Phys, 2015) combines the neighbor bispectrum with weighted linear regression
- Robust
Decouples MD speed from training set size
Enables large training data sets, more bispectrum coefficients
Straightforward sensitivity analysis
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*Neighbors of each atom are mapped onto unit sphere in 4D

*Expand density around each atom in a basis of 4D hyperspherical harmonics,
*Bispectrum components of the 4D hyperspherical harmonic expansion are used
as the geometric descriptors of the local environment

*Preserves universal physical symmetries

*Rotation, translation, permutation

*Size-consistent
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Min N/P Atom/node 100 1 1/100

Max Speed Step/Sec 10,000 1,000 1/10




SNAP potentials predict correct Peierls (i)
barrier for Ta screw dislocations

Screw Dislocation Dipole in Tantalum

*Peierls barrier is the activation

energy to move a screw

dislocation
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Transferrable, User Generated Training

2911 Pure W Training Data +

250 x Elastic Deformation w/ 1 octahedral He
250 x Elastic Deformation w/ 1 tetrahedral He
50 x EoS w/ 1 octahedral He

50 x EoS w/ 1 tetrahedral He

227 x Random displacements w/ 1,2 or 4 He

Objective Functions in Dakota:

- Energy Error w.r.t. DFT

- Force Error w.r.t. DFT

- Tungsten Structure Properties (a,, elastic const.)

- Tungsten Defects (same as before)

- Helium substitution, Tetra, Octa and Tetra-Tetra binding

*Reference values taken from Brian’s paper
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He-Substitution

He atoms in white, W colored by PE/atom
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DFT* EAM® MEAM°® GAPY SNAP®
Ew —Tetra 1.1 104 11.3 128  11.1
Ew —0cta 1.7 104 13.6 13.1 11.5
Ew _n10)d 9.8 10.3 9.1 11.8 9.8
Ew_111]4 9.6 9.8 10.4 11.1 9.7
EW —vacancy 3.3 37 4.0 3.3 3.2
Ew _divacancy' 0.1  -04 -0.2 0.4 0.1
Efe—Tetra 6.2 6.2 6.4 6.3 6.4
EHe—oeta 6.4 6.2 6.4 6.3 6.3 o
EHe—Subs 4.7 4.8 53 4.3 4.3 » Percent error is with
EoHeTetra® 1.0 0.9 0.6 0.8 1.0 respect to DFT values
reported from Becquatrt,
30 A T i (20 13] Domain, Nucl. Instrum.
- Juslin, Wir
MEAM - Scheiber (2016) Methods Phys. Res. B
| GAP - Szlachta(2014) == .
I_T_ ] SNAP - Current Work 255 (1) (2007) 23— 26.
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Accomplishment: Ensemble of Uranium Potentials mh Sandia

Comparison of elastic constants predictions

* Generating interatomic potentials is for a-U and y-U phases: representative
essentially a black box, this is true for all SNAP potential against previous published
potential types. We aim to improve the potentia —— e

T . COMB - Li(2016)
transparency and transferability of this MEAM - Fernandez(2014) s
t: EAM - Smirnova(2013) s

process. 5 50r

* SNAP fitting process generates ensemble of potentials = J

» Evaluation against multiple objectives identifies g or
Pareto-optimal potentials, subject to further = r
screening g >°r ¥ q-U

+ Sub-set of SNAP potential ensemble out-
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Conclusions

Highly complex potentials becoming more prevalent

High Flops/atom allows excellent strong scaling
Many-core and GPU platforms require exploiting low-level
parallelism

Extensive code modification required for each new platform
Algorithmic improvements also important
SNAP code and potentials available at http://lammps.sandia.gov




