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Overview

• Where are we now

– Small signal return: Nearly shot-noise limited

– Large signal return: effective-bits limitation

– Role of EDFA’s

• Deep-time Multiplexed PDV

• Modulated launch-light

• Dynamically refocusing probe optics

– Resonantly-driven GRIN lens

– Optically-actuated lens

• Conclusions and next-steps
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Why “Dynamic Range?”

• Some experiments have low and/or widely-varying signal returns

• Some experiments have “clouds” of material obscuring the surface

• Limited launch power and probe efficiency
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Some back-end schemes have been tried

• Modulate the LO to increase RF amplitude

• Optical auto-gain control on signal return, using SOA

• RF gain control on back-end

• … none of these provide convincing performance improvements 

when peak light-returns are <-20 dBm
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Low signal returns & the shot-noise limit

• At shot-noise limited signal-to-noise of 1:1:

– B is bandwidth (Hz), η is quantum efficiency

• For 1550 nm light, we get:

• For η=0.7 (0.9 A/W), the shot-noise limit is -81 dBm in a 50 MHz BW

– e.g. 2000-point FFT on a 50 GS/s record

• A modern, 6-bit (effective) scope will have ~ 68 dB from its noise floor to 

full-scale

• So, you should be able to see from the shot-noise limit up to -13 dBm!
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𝑆𝑁𝑅 ≡
𝑖𝑠
2

𝑖𝑛
2 = 1 =

𝜂𝑃𝑠
ℎν ∗ B

𝑃𝑠ℎ𝑜𝑡−𝑛𝑜𝑖𝑠𝑒−𝑙𝑖𝑚𝑖𝑡 = 10 log
𝐵

1 𝑀𝐻𝑧
∗
1

𝜂
− 99 𝑑𝐵𝑚
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EDFA effect on Small Signals

• Noise from LO-ASE:

• Add that to the LO Shot-noise to get total noise:
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𝑖𝑛_𝑇𝑂𝑇𝐴𝐿
2 = 𝑖𝐿𝑂_𝑆𝐻𝑂𝑇

2 1 +
𝜂 ∗ 𝑃𝐴𝑆𝐸/𝐻𝑧

2 ∗ ℎν

𝑖𝐴𝑆𝐸
2 = 2𝜂2𝑒2

𝑃𝐿𝑂 𝑃𝐴𝑆𝐸/𝐻𝑧

(ℎν)2
∗ 0.5 ∗ 𝐵

High-gain, fully 

inverted EDFA

𝑖𝑛_𝑇𝑂𝑇𝐴𝐿
2 ≈ 𝑖𝐿𝑂𝑆𝐻𝑂𝑇

2 ∗ 𝜂𝑃𝐷 ∗ 𝐺𝐸𝐷𝐹𝐴
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Lab Data: Discovery 402 Receiver
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Lab Data: Miteq 12G Receiver
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Top-end of the range: Heterodyne Signal Amplitude

𝑖𝑠
2 = 2

𝑒𝜂

ℎν

2

𝑃𝐿𝑂𝑃𝑆PD current, from the textbook:

𝑃 𝑚𝑊 =
𝑇𝑟𝑎𝑛𝑠𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒2 ∗ 𝜂2

16000 Ω ∗ 𝑉2
∗ 𝐺𝐴𝐼𝑁𝑂𝑃𝑇+𝑅𝐹 ∗ 𝑃𝐿𝑂(𝑚𝑊) ∗ 𝑃𝑆 𝑚𝑊

𝑃𝑅𝐹 𝑑𝐵𝑚 = 𝑃𝐿𝑂 𝑑𝐵𝑚 +𝑃𝑆 𝑑𝐵𝑚 + 10𝑙𝑜𝑔10
𝑇𝑟𝑎𝑛𝑠𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒2 ∗ 𝜂2

16000 𝑉2 Ω
∗ 𝐺𝐴𝐼𝑁𝑂𝑃𝑇+𝑅𝐹

Power gain of O-E conversion

(~23 dBm for MITEQ 12 GHz receiver)

Power into 50 Ohms:

So, if you have your scope set to 2 V full-scale (+10 dBm), and you are using 

the Miteq 12G receiver (23 dBm OE gain) with 0 dBm LO, you would expect to 

fill your scope with -13 dBm of signal light on the receiver.
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Back-end configurations that get us NEAR Shot-Noise 

limit

• InGaAs photodiodes at 1550 nm:

– 75% quantum efficiency, or 0.9 A/W

• Commercial receivers (Miteq, Discovery, NewFocus) with nominal 

LO power of 0.5 – 2 mW

– This gets us to regime where LO shot-noise dominates over other 

noise sources

– Higher LO can bring signal (and noise) up into scope’s range

• Bare photodiode(s) with low-noise amplifier and LO up to 30 mW

– No advantage for (MPDV) over amplified receivers

• Add a commercial, low-noise EDFA preamp to any of the above

– Raises both signal and noise without changing SNR

– Good way to compensate downstream (e.g. multiplexing) losses

– Can help bring signals into scope range

• Modern, high-bandwidth digitizers
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Deep-time Multiplexing

• Shot-noise-limited reality: LO shot-noise dominates

• Frequency-multiplexed (and early deep-time multiplexed) MPDV’s 

have multiple LO’s on receiver simultaneously

• The NOISE comes from all LO’s, but each channel’s SIGNAL comes 

only from its own LO

• We needed to switch the LO light with the signal light

– Noise dropped  by 4x (6 dB)

• Added benefits:

– Easier to field

– Data is easier to analyze

– Less recording bandwidth required
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Deep Time  MPDV Spectrogram
• Data from deep-time multiplexed experiment

• 16 data channels multiplexed

12
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For weak returns, we just need more signal photons!

• Ground-rules:

– CW light is limited to ~ 20 mW per channel

– Total power through probe

– Total power to surface

• Two approaches:

– Increase the launch power without “breaking the rules”

– Improve light collection for cases of ejecta obscuring surface
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One solution: Modulated launch light

• AO modulator:

– BW is good enough (50 MHz)

• don’t need Mach-Zehnder

– High power handling

– Polarization-insensitive

– SOA broadens line when modulated

• FPGA-based control

– 40 MHz master clock

– 10 MHz ADC & DAC

– Digital modulation line (up to 50 MHz square-wave)

– Dual, programmable trigger inputs

• Modulation schemes

– Free-running,  e.g. 50% and 10% duty cycles

– Triggered waveform

– Feedback (~ 500 ns)

14

Frequency (GHz)



Vision – Service – Partnership

PDV Workshop 2016

National Security

Technologies

Free-running modulation, -60 dBm time-average signal
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Lab simulation of dynamic signal loss
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Dynamic signal loss, -40 dBm to -60 dBm
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Dynamic light levels and SNR
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Launch-modulation: next steps

• Build up real-time modulation system:

– FPGA

– 50 MHz AO Switch

• Implement modulation schemes:

– Free-running, variable duty cycle

– Triggered, programmable output

– Feedback on return light level (< 1 µs)

• Field this system on small-scale shots at NSTec / STL

– Summer 2016
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Electrically-actuated lens: TAG Optics

• Resonantly-driven, cylindrical liquid cell

• Density modulation creates gradation of index:

– Compression: converging focus

– Rarefaction: diverging focus

• For IR operation, standard resonant frequencies are 140 – 340 kHz

• Higher resonant frequencies have smaller effective apertures

• Need to figure out relationship between focal length (or effective 

focal length), S2’’, and collection efficiency
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Original concept: Track the Surface

But… resonant frequencies are too high for 10 µs experiments!
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Next Approach: Free-running
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Each object passes through focus twice every 5 µs
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Optical relay for TAG Lens

Relay Lens: f2

“d” s2’’

Focal Plane of 

Combined lens system

TAG Lens 

(-500 mm→ ∞→ +500 mm)

From Fiber 

collimator

For this configuration:

• Focal point slews 

between 75 mm and 

120 mm from relay 

lens.

• Demonstration shots 

will use right-angle 

pellicle to protect 

fixed optical system
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Expected optical performance

• Predictions are for 5-

10 dB  rejection of 

objects 20 mm from 

nominal focus

• Should improve 

tracking of surface 

behind ejecta
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Optically Actuated Lens

• Objective: actuate dynamic lensing through the fiber

25

100 µm polymer fiber in steel tube Next steps:

• Test simulation predictions:

• Measure optical 

focusing

• Measure physical 

deflection

• Custom fiber-draw with 

doped polymer

• Assemble dynamically 

actuated probe

• Test on dynamic shots

Polymer expansion (+30°C) 

causes deformation and end.

Focal length ~40 mm
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First lab data: Static Heating
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Physical feasibility

• Volume ~ 1 mm3

• Mass ~ 1 µg

• Energy to heat by 10°C ~ 10 µJ

• Power in 10 µs ~ 1 W

• Use current-pulsed, high-power laser diodes

• Use cladding-pumped fiber to deliver pump + signal
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Dynamic-refocus: Next steps

• TAG lens

– Assemble optical test bench in lab to quantify dynamic-range 

improvement during resonant operation

– Begin designing dynamic experiments

• Optically actuated lens scheme

– Mechanical modeling of larger polymer fibers

– Verification of mechanical modeling: optical and physical

– Begin considering pump and absorber system that could create the 

lensing desired
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Summary: Places to gain dynamic range

• We are within a few dB of the shot-noise limit with back-end hardware

• Where can we squeeze more dynamic range?

– Modulate launch power

• More launch photons → more DR

• May still run up against backscatter and probe power-handling limitations

– Dynamically refocusing probe optics could improve collection over a wider 

range of probe-surface distances

• Potentially useful in discrete-probe configurations

– Balanced detection

• Need better selection of lab-friendly receivers

• 3 dB more signal (using 50/50 combiner)

• More efficient use of LO power

• Rejection of common-mode power swings
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Backup slides
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Shot-noise limit (Optical power)
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𝑆𝑁𝑅 ≡
𝑖𝑠
2

𝑖𝑛
2 = 1 =

𝜂𝑃𝑠
ℎν ∗ B

𝑃𝑠ℎ𝑜𝑡−𝑛𝑜𝑖𝑠𝑒−𝑙𝑖𝑚𝑖𝑡 =
𝐵 ∗ ℎ𝜈

𝜂
=
𝐵 ∗ 1.28 × 10−19𝐽

𝜂
=

𝐵

1 𝑀𝐻𝑧

1.28 × 10−10𝑚𝑊

𝜂

𝑃𝑠ℎ𝑜𝑡−𝑛𝑜𝑖𝑠𝑒−𝑙𝑖𝑚𝑖𝑡 = 10 log
𝐵

1 𝑀𝐻𝑧
∗
1

𝜂
− 99 𝑑𝐵𝑚
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𝑺𝑵𝑹𝒇,𝒅𝑩=(6.02 × ENOB) + 𝟏. 𝟕𝟔 + 𝟐𝟎𝒍𝒐𝒈
𝟐𝑨

𝑽𝑭𝑺
+ 𝟏𝟎𝒍𝒐𝒈

𝑵𝑭𝑭𝑻

𝟐
ENOB = effective bits for digitizer, VFS = full scale voltage, A = RMS amplitude of applied signal

(See Wiley Encyclopedia of Electrical and Electronics Engineering, Vol. 18, J. Blair)

SNR relationship to Effective-Number-of-Bits (ENOB)

-32-

Normalize for fraction of full-scale used SNR increase by using 

frequency-domain analysis

Number of bits as function of 

SNR, fraction of full-scale, 

FFT Points

𝐹𝑁𝑂𝐵 =
1

6.02
∗ 10 log

𝑉𝐹𝑆
2

50Ω
∗ 1000 − 𝑛𝑜𝑖𝑠𝑒𝑑𝑏𝑚 − 7.78 − 10log

𝑁𝐹𝐹𝑇
2

FNOB =
1

6.02
𝑆𝑁𝑅𝑓,𝑑𝐵 − 1.76 − 20 𝑙𝑜𝑔

2𝐴

𝑉𝐹𝑆
− 10 𝑙𝑜𝑔

𝑁𝐹𝐹𝑇
2

“Frequency-domain 

Number of Bits”

“signal” cancels out…

… Just a noise measurement!  Measure with receiver on, LO power at nominal.
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Full-time (5 µs) spectrograms of free-running modulation
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Advantages to balanced receiver

• For deep-time MPDV, no problems when LO switches

• Don’t throw away LO or signal photons

– 3 dB signal gain for 50/50 combiner

– Not a problem if you are already using 90/10 combiners

• ASE-ASE is common-mode

– Not commonly a problem

– In balanced receiver, suppressed by 20-30 dB
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