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Multiple Model Forms in UQ & Opt ) =,

Discrete model choices for simulation of same physics

Potential Flow

A clear hierarchy of fidelity (from low to high)

« Exploit less expensive models to render HF practical
» Muiltifidelity Opt, UQ, inference

» Support general case of discrete model forms
» Discrepancy does not go to 0 under refinement

Potential
Flow
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=> Regions
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uniform

An ensemble of peer models lacking clear preference

structure / cost separation: e.g., SGS models

« With data: model selection, inadequacy characterizatior
 Criteria: predictivity, discrepancy complexity

» Without (adequate) data: epistemic model

Hybrid RANS/LES

form uncertainty propagation =  Potential Flow Vo e
« Intrusive, nonintrusive 2
»  Within MF context: CV correlation - Ll
7 Averaged Navier- equ
= Stokes (RANS) RANS
: L : 3
Discretization levels / resolution controls & Hiybrid
» Exploit special structure: discrepancy - 0 = RANS/LES
at order of spatial/temporal convergence %
Large Eddy
* Simulation (LES)

Combinations for multiphysics, multiscale




Multilevel and Multifidelity Sampling Methods

Monte Carlo estimator:

—> analytic variance
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Var[Q]=W

Geometrical MLMC - targeting discretization levels

Multilevel Monte Carlo estimator
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Control variate MC — targeting hierarchical model forms
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Multilevel-Multifidelity UQ: Multilevel-control variate MC ) ot

MLCV MC - both model forms & discretization levels

* Apply control variate to discrepancy at each level:

Lur Lur Lur

B [Qf] = B[] = YV = 3 v,
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« Optimal CV parameter and LF sampling increment remain the same as before
« Multilevel sampling allocation becomes

Lup HF HF 1/2 HF
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G. Geraci, E., G. laccarino, “A multifidelity control variate approach for the multilevel Monte
Carlo technique,” Center for Turbulence Research, Ann Res Briefs 2015, pp. 169—181.




Multilevel Control Variate MC: 1D transient diffusion
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G. Geraci, E., G. laccarino, “A multifidelity multilevel Monte Carlo method for uncertainty propagation in
aerospace applications,” 19th AIAA Non-Deterministic Approaches Conf., Jan 9 — 13, 2017, Grapevine, TX.

MLCV MC (blue) is effective; LF/HF correlation at level 0 dominates
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Stochastic Expansions: Polynomial Chaos & Stochastic Collocation il National

Polynomlal chaos: spectral prOJectlon using orthogonal polynomial basis fns

\I}U(E) = Ibo(&) d’U(é?) = 1 Distribution ~ Density function Polynomial ‘Weight function  Support range
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* Estimate ¢; using regression or numerical integration: (R,W;) 1 f R, o(€) dt
. . oy = = i 0
sampling, tensor quadrature, sparse grids, or cubature | ’ (v2) (%) Jo 7
Stochastic collocation: instead of estimating coefficients for N,
known basis functions, form mterpolan.ts for known cc?effllments R(&) = § :Tj L;(¢)
» Global: Lagrange (values) or Hermite (values+derivatives) =1

* Local: linear (values) or cubic (values+gradients) splines
* Nodal or Hierarchical interpolants

‘- f My M -
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* Tailor expansion form:
— p-refinement: anisotropic tensor/sparse, generalized sparse
— h-refinement: local bases with dimension & local refinement

Sparse interpolants formed using 2 of tensor interpolants

* Method selection: requirements for fault tolerance, decay, sparsity, error estimation




MF UQ with Spectral Stochastic Discrepancy Models (i) o

High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ
Low fidelity “design” codes often exist that are predictive of basic trends
Can we leverage LF codes w/i HF UQ in a rigorous manner? - global approxs. of model discrepancy
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Elliptic PDE with FEM ) s

Iaboratories
d du(x. w Qol is u(0.5, w).
e {“{L‘“)%} =1, x € (0,1), u(0,w) =u(l,w) =0 LF =coarse spatial

grid with 50 states.

10 2 . .
, o , v — ! HF = fine spatial
(i, w) = 014 0.033 "V Apop()Yi(w), Yy ~ Uniform[—1,1]|[Crn(ar. #") = exp |~ =
wle,w) =01+ El ku(eViulw), i~ Unitorml =1, 1]} Con(. 1) exP[ ( 02 )] grid with 500 states.

r-NI‘iINh-A . " . r-NI‘iINh-ﬂ . rwork = 40.

This particular case is multilevel, rather than
general multifidelity. LF model is accurate
predictor of HF results.

Ralative Ermrin Sud Dev
=] =]
Ralative Ermrin Sud Dev
B B

Good LF models result in discrepancy with
one or more of the following properties:

(b) Ppoinis = 6 * lower complexity than HF model (sparse grid)
—> faster conv rate (affects exponent)

* lower variance than HF model
—> reduction in initial error (affects leading const)

* more sparse than HF model (CS)
- fewer samples to recover coefficients

' 10* w0
Equivalert Number of High-Fideliy Model Evaluations

r= NhiNio = 10

Relative Eror in S Dev
8 8
Relative Eror in S Dev
= =1

Existing multifidelity machinery provides a
foundation for multilevel PCE approaches
- augment with optimal sample allocation.




Improve ML estimator: replace MC avg w/ sparse PCE recovery () i
= Multilevel sampling with parameterized estimator variance

Assume parameterized form for estimator variance V[ (J]and derive optimal N,

2 L
A O k| 2 b1 e+1 |[Var(Y]
|4 —__ 90 _ \/ X l
0] N M= E Var[Y,] Ck / c
\1 k=0

for positive xand .

E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity
Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.

Note: ydoes not affect relative sample allocation
« Given etarget and omitting > 1, N, may overshoot (MSE < target level)

Estimation/update of x (and yif is important)
« Initial approximation (for CS) from Gauss-Markov theorem (OLS is BLUE)

Var[@] = o5 (PTP)~?

* Optionally update with cross validation results:
estimate Vqr[Q] from k-fold results

* 0,2 known from recovered PCE

« Fit k, yacross level profile

x=1lo Q /log N
for each ML iteration germ g

ﬁ |dentical process as for MF PCE with CS, but now W|th optlmal N, i
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Multilevel PCE Regression: SS diffusion )
Single and multi-fidelity CS compared to multilevel CS (assumed x values)
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Current focus: improve recovery for large systems at coarse level using low rank
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MLMF Deployment for DOE/DOD

DARPA (EQUIPS)
SEQUOIA ScramjetUQ
High perf UCAV nozzle HiFIRE hypersonic test facility
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Initial Deployment of MLCV MC for Scramjet UQ h) e

Context: 3D LES simulation of scramjets is extremely expensive and a significant
challenge for UQ; even more so for OUU.

Goal: Demonstrate UQ in moderately high D using only a “handful” of HF simulations,
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

1

‘MC —+— ]
MLMC ——— | 2D 3D
MLMF —— | d/8 | 5E-4 011
| d/16 | 0014 1

TABLE: Computational cost.

& 04 f
w
2D 3D
d/8 4,191 263
d/16 68 9
Optimal sample allocations based on relative
cost, observed correlation between models,
0.01 observed variance distribution across levels,

10 100 1000 10000 100000 1e+06 and MSE target (.045 of pilot MSE)
Equivalent HF runs

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)
- ______________________________________________________________________"_"—"—"—"—OOOOO__________________________"_"_.__._._._._._"._._...."-"  __-~—




Updated Deployment of MLCV MC for Scramjet UQ

0L

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and,

in turn, a more non-linear response of the system

Sandia
National
Laboratories

Observations from pilot sample: decay in variance across discretizations (LF d/8 and

Table 2: Variance for the five Qols of the P1 unit problem.

discrepancy d/16 — d/8) no longer observed for all Qol

P 0,mean P 0,rms,mean Mmean TKEmearz Xmean
P1
d/8 || 4.02554e-03 | 1.90524e-06 | 1.99236e-02 | 3.34905e-07 | 4.24520e-03
d/16 || 4.03350e-07 | 7.77838e-08 | 6.68974e-05 | 1.74847e-08 | 4.40048e-05
P1 updated
d/8 || 4.05795e-03 | 1.90612e-06 | 1.60029¢-02
d/16 || 2.85017¢-04 | 7.36978e-07 | 2.07638¢-03 _

Implications: pursuing a more focused analysis of deterministic convergence properties.

Anticipated outcome is the need to engage additional refinement levels (i.e., d/32, d/64)
in order to converge Qol statistics that are closely tied to resolution of turbulence.



Initial Deployment of MLCV MC to UCAV Nozzle U rih) ot

I3boratories

Context: Analysis of performance of UCAV
nozzles subject to environmental, material,
and manufacturing uncertainties.

(a) Coarse Triangles

Coarse 6,119

Medium 29,025
Fine 142,124

Goal: Explore utility of low fidelity model
(potential flow, hoop stress) alongside
discretizations for medium fidelity (Euler, FEM)

TABLE: Number of triangles.

(¢) Fine

MG —— Coarse 0.016 0.053
MLMC —— Medium | N/A  0.253
= MLMF —=— Fine N/A 1.0
[0}
% TABLE: Computational cost.
£ 0.1 F i
(o]
ﬁ Optimal sample allocations based on relative
2 cost, observed correlation between models,
e 001 L | and observed variance distribution across levels
=S .
% Target accuracy LF MF
< Coarse || Coarse | Medium | Fine
0.01 21143 1757 20 20
0.001 - - L 0.003 69580 5775 36 20
10 100 1000 10000 100000 0.001 2198928 17715 109 RYI

Equivalent HF runs

MLMC is effective across MF discretizations, CV is hampered by LF corr

Results leading to improvements in LF structural models + algorithm
refinements to adaptively manage (discard) models with low correlation




Sandia
Updated Deployment of MLCV MC to UCAV Nozzle UQ | paima
LF LF (updated)
correlation | Variance reduction [%] correlation | Variance reduction [%)]
Thrust 0.997 91.42 0.996 94.2
Mechanical Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 93.4
1 T 3 T
MC (LF updated) —+—
' MLMC (LF updated) —»—
MLMF (LF updated) —#—
MC -+
MLMC ---3¢--
MLMF
go 0 J [ S —— _
Sy
0.01 i 5 ‘
10 100 1000 10000 100000
Equivalent HF runs
LF Medium Fidelity LF (updated) Medium Fidelity
2.2 \ \
Accuracy (£7/&9) Coarse | Coarse | Medium | Fine Coarse Coarse | Medium | Fine
0.1 N/A N/A N/A N/A 404 20 20 20
0.01 21,143 | 1,757 20 20 3,091 177 31 20
—— 0.003 69,580 | 5,775 36 20 N/A N/A N/A N/A | ———
0.001 212,828 | 17,715 109 34 32,433 1,773 314 20




Current Focus: Deployment of ML PCE to UCAV Nozzle UQ h) e

10 .
MC ——
MLMC ——— | ) .

Py 1 F MLMF —s—y Optimal sample allocations based on
§ ML PCE —=— relative cost, variance distribution
-c—é 0.1 | 5 ] across levels and k=2

g 001 -\ ____________________________________ ] Target accuracy MF

cL}J'J 1 1E-1 11 10 | 10
= 0.001 F N\ T T ] 1E-3 118 | 10 | 10
% 1 1E-4 374 | 10 | 10
g 00001 F N S I 1E-5 1182 | 35 | 11
3 f ' 1E-6 4048 | 132 | 70
<C

1e-05

1e-06 T
10 100 1000 10000 100000
Equivalent HF runs

ML PCE shows more rapid convergence using coarse/medium/fine discretizations:
- Exploits smoothness in moderate dimension
- MC approaches expected to be competitive at higher dimension

Next steps: k estimation, alternate PCE recovery methods, MLMF PCE




Latest ML PCE and ML FT =
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Multilevel-Multifidelity OUU: MG/Opt + recursive TRMM () dsim

Trust-region model management
« targets hierarchy of model forms (now an arbitrary number)
« each opt cycle performed on corrected LF model

Multigrid optimization (MG/Opt)
« targets hierarchy of discretization levels

%

-2 -1 0 1 2

. . . . ] . Algorithm 1 Multigrid Optimization
« multigrid V cycle to hierarchy of optimization solves 1 procedure MGOP (4 7. 110, 1)
. . . . . : X = argmin,  F0)(x) - [v‘:“}Tx
- coarse optim. generates search direction for fine optim. Z Y
- corrections + line search globalization - provable convergence i T
8: vkl = Tl (A1) - R [V (x(9)
L. o; xf=n = MGOPT(k — 1, KDl () k1))
MLMF combining MG/Opt and TRMM 100 o= Pl x)]
11: P x;:: +ae
* both model forms and discretization levels 12 reumg
. I . 14: end procedure
* Flexible hybridization of
MG/Opt + recursive TRMM | (B
e Prototype COde now Model (2, 1)' |Mode1(2, 2)|
. . s .
implemented in Dakota . | S
I’l """"" ?’4’ cee—— 1 """ Tiocomoon | < hoooooom——— R
i [ Moder 2 o[ Mo m 2| Model (F, L) |}




Emulator-Based Bayesian Inference 1) s _

Objectives Impact
= Avoid direct interfacing of Markov Chain Monte = Provides a scalable approach for inference
Carlo (MCMC) with expensive high fidelity models * Interface of MCMC with scalable emulators for UQ
= Exploit analytic gradients/Hessians from emulators * Laplace approximation of posterior distribution provides

= DRAM: Pre-solve for posterior mode and form accurate accurate proposal, eliminating high rejection rates for high-
proposal density for efficient MCMC dimensional MCMC

* MALA/HMC: efficient SDE solves from emulator grads " Integration of latest inference algorithms into

production tools for broad SAP deployment

=  PISCEES, multi-scale climate, EFRC (CHWM)

= Parallel MCMC to identify multimodal posteriors

Accomplishments
Preconditioned MCMC .« Rejection Average: | Pre-solve for maximum a posteriorl
: , probability (MAP) = mode of posterior
of Rosenbrock fn & _ rates 22.2 .
(samples in Hessian & 18.9 1 *  Full Newton minimization of —log(posterior)
updates in ) ,f" 371 using analytic Hessians of priors & emulators

S Aﬂ /\ l, » 1 Accurate MCMC proposal distribution
| v] N | reduces sample rejection in high dimensions

= 10D: 98% rejection reduced to 30%

« Posterior Hessian-based proposal (green)
balances likelihood (blue) and prior (red)

«  Emulator refinement: pivoted LU on chain




Summary Remarks ) e,

The case for multilevel — multifidelity methods
» Push towards higher simulation fidelity can make opt, UQ, OUU untenable

» Multiple model fidelities and discretizations are often available that trade accuracy for
reduced computational cost

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

* Multilevel sampling fmwk for cost-optimized variance reduction is quite general
« ML-MF MC accounts for LF control variate at each HF discretization level within multilevel MC

« ML PCE with CS: Adds optimal sample allocation to previous MF PCE approach. Initial prototype
appears promising, but multiple refinements (estimator var, ML FT, MLMF) in progress.

Directions
 OUU: move beyond common bi-fidelity approaches; push evals down hierarchy
» Inference: Exploit efficient ML-MF forward emulators for inference




Extra Slides




UQ & Optimization: DOE Mission Deployment (i) i

Stewardship (NNSAASC) Enerqy (ASCR, EERE,NE) Climate (SciDAC, CSSEF, ACME)

Safety in abnormal environments Wind turbines, nuclear reactors Ice sheets, CISM, CESM, ISSM, CSDM
. " . " accumulation, temperature surface topography . .

—

shelf geometry sliding law [l S

B s water ot
. » roughness
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gl e d i Ao i
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Reference helght temperatre
Figure
=

geotharmal fluy

= " chrg_Mg 00_C 6% 1.0
Computational Materials e _
(SCIDAC+EFRC: CHWM, WastePD) ~ #:x \ / o i
GSA, inference, forward UQ for n" BN 20,
waste forms / hazardous matls L N g, Pareto-
00_tho B informed
62% . é“\ B 0.0
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:;} yﬁ‘@ﬁ u}": Activation Energy (eV)

Common theme across these applications:
« High-fidelity simulation models: push forward SOA in computational M&S w/ HPC

- Severe simulation budget constraints (e.g., a handful of runs)
- Significant dimensionality, driven by model complexity (multi-physics, multiscale)




Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:

* Mixed aleatory-epistemic uncertainties (segregation - nested iteration)

* Requirement to evaluate probability of rare events (resolve PDF tails for Qol)
* Nonsmooth Qol (exp conv in spectral methods exploits smoothness)

DAKOTA
Optimization

e e
E
NOE o om

0.0 05 -
O'E.ﬂ 0.2 0.4 0.6 0.8 1.0

Steward Scalable Algorithms within )}:)
DAKOTA

Explore and predict with confidence

Uncertainty Quant. |
Parameter Est.
Sensitivity Analysis

Black box:
Sandia simulation codes

Core (Forward) UQ Capabilities:
« Sampling methods: MC, LHS, QMC, et al.

* Reliability methods: local (MV, AMV+, FORM, ...),
global (EGRA, GPAIS, POFDarts)

Commercial simulation codes
Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),

Model
Parameters

SIERRA (multiphysics)

Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,

» Stochastic expansion methods: PCE, SC, fn train
« Epistemic methods: interval est., Dempster-Shafer evidence
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Research Thrusts for UQ 7| Netora

Focus: Compute dominant uncertainty effects despite key challenges

Emphasize scalability and exploitation of structure

« Adaptivity: p- and h- refinement of stochastic expansions

» Adjoints: gradient enhancement for PCE / SC / GP

m0(&)  m&) - 7ei(&) ,7(77.L-1)
Omoy 7N Omiy (7

o or o1
F &) F&) o &) ii(m+1.4) 7
d_l
B

» Sparsity: compressed sensing

 [ow Rank: tensor / function train

» Dimension reduction: active subspaces, adapted basis PCE

Compound efficiencies
« Multilevel-Multifidelity, Active subspaces + optimal quadrature

« Address complexity w/ component-based approach — L —
+ Bayesian inference, Mixed aleatory-epistemic, OUU g o s snoe
+ Position UQ for next generation architectures f bl
« Current (imperative): multilevel parallelism A | |
*  Future (declarative): exploit DAG + AMT for ensemble workflows ol Nmber of Hoppiely el Evatios




1D transient diffusion (parabolic PDE) N =/
a Y s /
au(aj, £, t) o u(m, §, t) . ‘g% Cente?ed /
—57 )55 —=0, a>0,z€[0,[]=0QCR %ﬁ“xfag?rréeterﬁ %
u(ma‘sao) = UU(.’B, &)} t e [0? tF] and E c=C Rd 1 Q‘% u y/f*i/
%
u(z,§,t)|gq = 0. a N ff
Model forms: 2 (Nm =3 21) e i ————
Discretization levels: 4 per form (N,) il o
DlmenSIonallty: 7 QOI: 1 G(Es, &6, €1) = 5O |4€51—+2‘|11+ a; I4£61—+2li+85 |4€?1_+2;‘_+ a;

Cost model: linear in N, cubic in N,
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CVMC DLev tol 107" CVMC DLev tol 107"7° |1
10° ]
10°

Mean Error
o>
Il
Std Deviation Error
)

10°
10° ]
107
10_1 L L L L L PR L Ll L L L 10_2 L L PR L Ll L Ll L L L
10’ 10° 10° 10* 10° 10° 107 10’ 10° 10° 10* 10° 10° 107

Equivalent HF Simulations Equivalent HF Simulations



Latest ML PCE and ML FT )t

» All the results obtained in this numerical investigation suggest that we should use

ve and kg
Var (Yy)

VelN g™ ¢

» The optimal samples allocation in this case is

Var (f’g) =

L he
kp+1 Eq:{] f{_Nqu
N, = 1 “e X/ Var (Y,) Cp
vee?/2

» The optimization problem is now more complex and requires non-linear iterations




Optimization Foundational Components for ML and MF:
« Trust Region Model Management (TRMM)
« Multigrid Optimization (MG/Opt)




Trust-Region Model Management — Multifidelity Case i) N

Algorithm 2 Compute correction
TRMM solves a series of pm:.mi%.:frﬁ_%?gmnom, R, ful®). fisC)
approximate subproblems: if (comection order > 0) then e

+  Data fit (global, local, multipoint) endi 0TI BT e

) I\R/Igllti/:‘idelity = RV Al - VAo, Bi = RV ]~ B9 f(Rex)
b end if

if (correction order = 2) then

2 Algorithm 3 Appl cti
Ay = R[V2 f(xo) | RT — 92 fio(Rx,) Igorithm 3 Apply correction

procedure APPLY CORRECTION(X, R, fi(x). fio(x))

- _ 1 2 T X ]
Sequence of trust regions B = ek [V~ FEST T o) = g + A7 (1 Reo) + 4 (- R Ay (- R
= kg [VAoRE) RVAG | p(x)= By + B} (& — Rug) + 1 (2~ Ruo)” By (1~ Rx)
end if if additive correction then
end procedure ry=1
else if multiplicative correction then
y=0

else if combined correction then
Xp is from a previous iterate

Algorithm 4 Compute trust region updates
procedure TR(x{, X;, f(x), feouu (X))

= 2= yhere D(x') = MeritFn(f(x)) and (x') = MeritFn(fen(x) )+ (1 =7 fiol VD)

if of < 0 then
Reject step: x5! = x*
N
else
Accept step: xF1 = xf
if o* < eomrae then
al+] - ak Veontraa
else if Nerpmd < p* £ 2 — Negpang then
ﬂl+] = ﬂk Vexpand
else
ﬁl+] - ﬁl
end if
end if
Apply A*! factor to global bounds to compute new TR bounds
If nested trust regions, truncate new TR bounds to parent bounds
end procedure

Note: bi-fidelity approaches dominate




SIAM J. Sc1. COMPUT. () 2005 Socciety for Industrial and Applied Mathematics
Vol. 26, No. 6, pp. 1811-1837

[ ] [ ] [ ] [ ] [ ]
Multigrid optimization
MODEL PROBLEMS FOR THE MULTIGRID OPTIMIZATION OF
(M G / O pt) SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS*

ROBERT MICHAEL LEWIS! AND STEPHEN G. NASH?#

SIAM Review. © 2009 Soclety for Industrial and Applied Mathematics|
Vol. 51, No. 2, pp. 361-395

As in multilevel Monte Carlo, exploit
Multigrid Methods for PDE

discretization hierarchy within optimization/OUU: Optimization®
* Apply multigrid V cycle to hierarchy of optimal solns At Bora!
- Distinct from applying multigrid to KKT system o e
» Distinct from successive refinement of optimal solns
(employs bi-directional prolongation / restriction)

Recursively uses coarse resolution Algorithm 1 Multigrid Optimization
problems to generate search directions 1 procedure MGOPT(k, x*', £(5)(x), v(¥)
: : 2: if k=0 th
for f!ner-resolutlon solves | | 3 a0 argming ()~ [v9] x
* Line search used to compute fine-resolution 4; return x'¥
iterate lfror.n coarse-resolution search direction o """Epama“y sove: x¥) — argmin,  FM(x) — [v(M]" x
» Globalization enables provable convergence Di x{k=0 = R [x(¥]
1ve VLR 1) — v flk—1) (X‘ k—“) R [vf(k)(x‘ak))]
Special case of / component within o LT = MOOPT(l - 1" TR0, v
. 10: = ‘ Ve
generalized model management framework . g MP[)?H . <] Return
. . . X5 = X e
« Requires effective subproblem solver to 12 S NC
generate a new iterate at a particular level 3 endif
. . x . Len rocedure
« Leverages 15t and (quasi, finite diff.) 2nd- 2

order additive & combined corrections




TRMM + MG/Opt for Multilevel-Multifidelity Hierarchies
* Nested Multigrid

* Trust Region-Managed Multigrid

 Nested TRMM




MLMF 1: Nested Multigrid ) M

Algorithm 5 Nested Multigrid

procedure MLMFOPT1
. . . Initialize optimization at a lower fidelity and/or level:
* Outer iteration until convergence Partially solve: 42 = arg min, /7))
1
*  MFOPT: V cycle over model forms Ttz [ | Poa [ ] Pawax?
m=M-1 d=D-1
. . . t

* MLOPT: V cycle over discretizations for each form )

Xue1 = MFOPT(L, x,,, f""(x))
until convergence
return x,,
end procedure

s S - - I
1
Model (1, 2) Model (1, D) | 1l
- ]
.................. _F. R Algorithm 6 Recursive Multifidelity Optimization
procedure MFOPT(m, xg"‘”, FmDeyy
___________ R — if m = M then
- ' x™D = MLOPT(k, 1, x™", fimD(x))
Model (2, 2) Model (2, D) | o) corr
o - 1 neturn x

_____________________ R else
;E' Partially solve: 1™ = MLOPT(m, 1, ™V, fi5t"(x))
ﬁ (m+l l} [x(m 1)]
- c””l 1’(x) CORRECTION(J("" D, R, fo00), fo 1))

;m#—l )y N]FOP’I‘(f+ 1 x(m-il 1) f(m+l l)(x))
e— P ) [xg_m+l Ny (1m+l 1
return result of linesearch along direction e
OO "CoCobme | N oo e k end if
Model (M, 1) Model (M, 2) - Model (M, Dy)| | end procedure
> > > )
T e e e e Algorithm 7 Recursive Multilevel Optimization
Discretization procedure MLOPT(m, 1, xf]"'d], )y
if d = D,, then
- o= (m,d) _
: 1 : 1 : = arg min, féorr (x)
- Algorithm 1 L | Algonrhm 6 L I Algorithm 7 return ez
1
~# == Direction of information propagation ¢ SePartia]ly solve: x™) = argmin, £ (x)
(mxﬂ n_ [xim d’)] *
md+l) (m.d) m.d) m,d+1
o o e . o (x)= CORRECT ION(x R, (x), foad+(x))
* Partial optimization applied to every XD MLOPT(n,d + 1, 207470, £ ()
. . . (Nnd+l) (rmd+l)
discretization for every model form €= P[5 ] o
return result of linesearch along direction e

end if



MLMF 2: Trust Region Managed Multigrid

* Outer iteration until convergence
*  MLOPT: V cycle over discretizations for LF model

* RECTR: Update TR model form hierarchy for each d

Model (1, 1) Model (1, 2) Model (1, Dy) 1
4!
2 u 4
Model (2, 1) Model (2, 2) .- Model (2, D;)
4!
. | :

Algorithm 8 Trust Region Managed Multigrid
procedure MLMFOPT?2
repeat
Xn = Xny1
Xps1 = MLOPT(M, 1, x,, f™V(x))
for d = 1to Dy do
RECTR(m = 1: M, x0", x4 £0uD(x))
end for
until convergence
retfurn x|
end procedure

Fidelity

i - - - = \l
i | Model (M, 1) Model (M, 2) = Model (M, Dy) |
! > > > J
) Discretization
I==7
! | Algorithm 7 =p Trust region managed discrepancy correction

- == Direction of information propagation

* Partial optimization applied to every
discretization for LF model

Algorithm 9 Recursive Trust Region Updating
procedure RECTR(r = 1 :LEN, X7, X7, fl ..(X))
for r =len to 1 (bottom up: low to high || coarse to fine) do
if State, = new candidate x|, then
Test for new center: TR(x., x7, f+(x), f7(x))
end if
if State, = new center x/. then
Compute f~!(x7)
Compute CORRECTION(x”, R, £ (%), f7(x%))
if Converged(x’, fiot(x7), L', U™ ") then
x7~! = X (new candidate)
end if
end if

end for
for r = 1 to len (top down: high to low || fine to coarse) do

if State, = new center x’. then
Recompute CORRECTION(x”, R, f!(x%), f(x))
end if
if parent corrected then
Recur updated corrections for f7(x7)
end if
Reset State,
end for
end procedure




MLMF 3: Nested TRMM )

Algorithm 10 Nested Trust Region Model Management

* Outer iteration until convergence

* RECTR: Recur over discretizations for LF model pro:z::: MLMFOPTS
* RECTR: Update TR model form hierarchy for each d o atemin, £

RECTR(d = 1 : Dyy, x(M0w0 xM:Dw0) | plmad 1)

for d = 1to Dy do

Model (1, 1) Model (1, 2) Model (1. Dp)| 1 RECTR(m = 1 : M, x4, 30 pmad )
end for
4! until convergence
Y : Yy \d return X, |
Model (2, 1) Model (2. 2) Model (2, Dy) end procedure

-
Ve f—
Fidelity

'¢ » S JFtaatatate ittt -

Model (M, 1) Model (M, 2)

=
2
2
5

-l
-

Discretization

i | Numerical optimization =p Trust region managed discrepancy correction

L

~= =« Direction of information propagation

* Optimization applied exclusively to LF model at coarse discretization

* Ordering of sweeps is not prescribed



Computational Experiments

« Model Problem: Target solution profile for SS diffusion
* Model Problem: Minimize C for transonic airfoil
 Initial deployments for OUU in DARPA EQUIPS




Inner Optimization -— Quasi-Newton w/ BFGS

L ] L} 1
n 10 E T T T T T T
e a a e I u S I O n 3 1 Level —— Actual fine—grid evaluations
= [ 2 Level —— Actual fine—grid evaluations 1
10° Er 2 Level —— Equivalent fine—grid evaluations (linear) ies
. Ll — — — 2 Level — Equivalent fine—grid evaluations (quadratic)|]
M G O pt O r M u t I eve [ “ — - — 2 Level —— Equivalent fine—grid evaluations (cubic)
107 E| E
QLI ; 1D diffusion
- —2 '
i il . o . 107} ]
— lu— | —=1f wi ] s f
i v T o0l ]
« MATLAB Opt L
wil) —wil) — |
o e Solvers (2) <ol ]
z 5 1 — E
i — 2 oot : :
LR *  Grid scalings (1D :
. . 10°L 4
Optimizolion 'rollein and 2D diffusion) ‘
L L ot ol 1 . L 1076 E E
i bt U — ot el Solver cost ‘ ]
! T - A A s
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sulijoct o el fowl S — 0 : . 10°F 3
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Fine—grid function evaluations
, Inner Optimization —— Quasi-Newton w/ BFGS . Inner Optimization —— Trust-Region Interior-Reflective Newton Method
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Fine—grid function evaluations Fine—grid function evaluations



d| d
enilf, u(f)) = a(a.ﬁd_:)u: 0, xe(0,1),

Steady State Diffusion:
Recursive MG/Opt and TRMM u(0) = u(1) = 0,
ayi = 2 + cos(2nx) HF

Initial formulation: nested multigrid

MATLAB Prototypes

a) 1 fidelity and 1 level
Fine

Fidelity

High-Fidelity 229

¢) 2 fidelities and 2 levels

b) 1 fidelity and 2 levels
Fine Coarse Fine Coarse
High-Fidelity 112 146 High-Fidelity 65 82
Low-Fidelity 26 29

Dakota: NPSOL & TRMM

LFevals HFevals Objective
Single-fidelity SQP — 244 1.07e-07
Bi-Fidelity 1*-order TRMM 7565 101 1.64e-07




Transonic Airfoil Design: Minimize Drag, Preserve Lift @E“?‘;ﬁ

2

Algorithm 9 Recursive Trust Region Updating
procedure RECTR(r = 1 :LeN, x[, ], f7 .. (x))
for r = len to 1 (bottom up: low to high || coarse to fine) do

if State, = new candidate x’, then
Test for new center: TR(x", X7, flil(x), f7.(x)

end if

if State, = new center x, then
Compute /7~ (x7)
Compute CORRECTION(xZ. R, f~'(x0). f(x])
if Converged(x’, flot(x7), L', U™') then

x- = x,. (new candidate)

minimize Cp(u(x))

subjectto Cr(u(x)) = Cp.
crans(x, u(x)) =0
- 001 <x<0.01

0

%

- -2 -1 0 1 2 end if
end if
end for )
3-level Recursive TRMM for Euler O e 1op down igh o low [ fine 0 coars) do
Recompute CORRECTIONGY, R, £\ (x7), 7 (x7)
end if
Coarse evals Medium evals Fine evals Cp Cr, it P;‘z;‘z:szg e P
Reference NACA 0012 — - — 0.10345 0.80118 end if
Single-fidelity SQP - - 806] 0.064004 0.80118 Rt at
Single-fidelity SLP — — 1190| 0.065024 0.80199 end procedure
Three-level 15-order TRMM 43630 4882 L 187) 0.064968 0.80153

Single-fidelity (NPSOL) E' Multifidelity TRMM




From optimization to DUU: DARPA Deployments () i

Laboratories

UCAV minimize V[ T ] LF statistics: L1 sparse grid w/ Euler COARSE

x - HF statistics: L1 sparse grid w/ Euler MEDIUM
Nozzle subject to  E[ W] E_W « 1st-order consistent TRMM w/ numerical grads
E[T|>T « 7 rand vars, 29 des vars (21 B-spline, 8 thick)

g[ T ]{E_Tw Trust region cycles
[ “J” ] =0 « Siterations accepted by filter method
+bounds, linear cons. » Tuning of FDSS & solver conv. in progress

Pressure
2.208e+05

£ 1.5843¢+5
E1.05629+5

Eso811

Pressure
2.208e+05

£ 1.58436+5
E1.05629+5

a8

Baseline Robust

%9.5200+03 79.5200+03

Scramjet (p]_: Jet in cross f|0W) Vary UQ approach & s.imulatipn discretization:
» LF stats: L2 sparse grid combined exp, 2D d/8

1 . . . :
I'Ilzil‘l]Eg V,[0(z,0.9)]] + - V2 [Vy[0(z.0,y)]], aeR HF stats: L2 sparse grid uncertain exp, 2D d/16
s.t. Eg[Ey[x(z.0,y)]] <X, X €R Iteration E[¢] vz (0] E[x] Trust region ratio
0 1.142e-01 5.800e-03 9.848e-02 N/A
1 1.074e-01 5.646e-03 8.832e-02 1.443

2 1.003¢-01  5.390e-03  7.790e-02 1.497 —




Summary Remarks ) e,

The case for multilevel — multifidelity methods
» Push towards higher simulation fidelity can make opt, UQ, OUU untenable

« Multiple model fidelities and discretizations are often available that trade accuracy for
reduced computational cost

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

» Multilevel sampling fmwk for cost-optimized variance reduction is quite general
« ML-MF MC accounts for LF control variate at each HF discretization level within multilevel MC

« ML PCE with CS: Adds optimal sample allocation to previous MF PCE approach. Initial prototype
appears promising, but multiple refinements (estimator var, ML FT, MLMF) in progress.

Towards recursive optimization schemes that exploit the full model ensemble

* Move beyond bi-fidelity: by exploiting richer model ensemble, computational effort can be
pushed down the hierarchy, supporting case of only a handful of HF fine-grid evaluations

+ MG/Opt and recursive TRMM used as foundational algorithms for one hierarchy dimension
* Proposed MLMF approaches recur across both multilevel + multifidelity dimensions:

* Nested MG/Opt, Trust-region managed multigrid, Nested TRMM
 Initial results point to benefits in interfacing optimizers exclusively at LF/coarse levels

+  MG/Opt tends to spread evaluations more evenly across its hierarchy, whereas TRMM only
interfaces optimizer with least expensive model (other models: validation, correction).

» Prototype of Nested MG - Production implementations for TR-managed MG, Nested TRMM



