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A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of discrete model forms

• Discrepancy does not go to 0 under refinement

Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

Discretization levels / resolution controls
• Exploit special structure: discrepancy  0 

at order of spatial/temporal convergence

Combinations for multiphysics, multiscale

An ensemble of peer models lacking clear preference 
structure / cost separation: e.g., SGS models
• With data: model selection, inadequacy characterization

• Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model 

form uncertainty propagation
• Intrusive, nonintrusive

• Within MF context: CV correlation



Multilevel and Multifidelity Sampling Methods

Geometrical MLMC – targeting discretization levels

[Giles, 2008]
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Control variate MC – targeting hierarchical model forms
[Pasupathy et al., 2012,
Ng & Willcox, 2014: 
estimated control means]
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Multilevel-Multifidelity UQ: Multilevel-control variate MC

MLCV MC – both model forms & discretization levels

• Apply control variate to discrepancy at each level:

• Optimal CV parameter and LF sampling increment remain the same as before

• Multilevel sampling allocation becomes

MLCV 
Y-correlation:

G. Geraci, E., G. Iaccarino, “A multifidelity control variate approach for the multilevel Monte 
Carlo technique,” Center for Turbulence Research, Ann Res Briefs 2015, pp. 169—181.
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Multilevel Control Variate MC: 1D transient diffusion

MLCV MC (blue) is effective; LF/HF correlation at level 0 dominates

MLCV Y-correlation:

MLCV Q-correlation:

G. Geraci, E., G. Iaccarino, “A multifidelity multilevel Monte Carlo method for uncertainty propagation in 
aerospace applications,” 19th AIAA Non-Deterministic Approaches Conf., Jan 9 – 13, 2017, Grapevine, TX.



Stochastic collocation: instead of estimating coefficients for 
known basis functions, form interpolants for known coefficients

• Global:  Lagrange (values) or Hermite (values+derivatives)

• Local:    linear (values) or cubic (values+gradients) splines

• Nodal or Hierarchical interpolants

Sparse interpolants formed using  of tensor interpolants

Stochastic Expansions: Polynomial Chaos & Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

using

• Estimate j using regression or numerical integration:
sampling, tensor quadrature, sparse grids, or cubature

• Tailor expansion form:
– p-refinement: anisotropic tensor/sparse, generalized sparse

– h-refinement: local bases with dimension & local refinement

• Method selection: requirements for fault tolerance, decay, sparsity, error estimation



• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ

• Low fidelity “design” codes often exist that are predictive of basic trends

• Can we leverage LF codes w/i HF UQ in a rigorous manner?  global approxs. of model discrepancy

MF UQ with Spectral Stochastic Discrepancy Models

Nlo >> Nhi

discrepancy

Adaptive sparse grid multifidelity algorithm:
• Gen. sparse grids for LF & discrepancy levels
• Greedy selection from grids: max QoI/Cost
• Refine discrepancy where LF is less predictive

Compressed sensing multifidelity algorithm: 
• Target sparsity within the model discrepancy



Elliptic PDE with FEM
QoI is u(0.5, ω). 

LF = coarse spatial 
grid with 50 states.

HF = fine spatial 
grid with 500 states. 

rwork = 40.

Good LF models result in discrepancy with 
one or more of the following properties:

• lower complexity than HF model (sparse grid) 
 faster conv rate (affects exponent)

• lower variance than HF model
 reduction in initial error (affects leading const)

• more sparse than HF model (CS)
 fewer samples to recover coefficients

This particular case is multilevel, rather than 
general multifidelity. LF model is accurate 
predictor of HF results.

Existing multifidelity machinery provides a 
foundation for multilevel PCE approaches 
 augment with optimal sample allocation.



Improve ML estimator: replace MC avg w/ sparse PCE recovery 
 Multilevel sampling with parameterized estimator variance

Assume parameterized form for estimator variance  and derive optimal Nl

V[Q̂]
Q
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N 

V[Q̂]

E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity
Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.

for positive  and 

Note: does not affect relative sample allocation
• Given target and omitting , Nl may overshoot (MSE < target level)

Estimation/update of  (and  if  is important)
• Initial approximation (for CS) from Gauss-Markov theorem (OLS is BLUE)

• Optionally update with cross validation results: 
estimate              from k-fold results
• Q

2 known from recovered PCE
• Fit  across level profile 

for each ML iteration

Var[Q̂]
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Multilevel PCE Regression: SS diffusion
Single and multi-fidelity CS compared to multilevel CS (assumed  values)

Current focus: improve recovery for large systems at coarse level using low rank



MLMF Deployment for DOE/DOD

EFRC WastePD (SciDAC QUEST)

DARPA (EQUiPS)
SEQUOIA ScramjetUQ

High perf UCAV nozzle HiFIRE hypersonic test facility

A2e HFM Wind (EERE)



Context: 3D LES simulation of scramjets is extremely expensive and a significant 
challenge for UQ; even more so for OUU. 

Goal: Demonstrate UQ in moderately high D using only a “handful” of HF simulations, 
by leveraging lower fidelity 2D models and coarsened 2D/3D discretizations

UQ Approach: MLCV algorithm described previously.

Initial Deployment of MLCV MC for Scramjet UQ

Optimized allocation: achieve MSE target for 3D LES in 24D using only 9 HF sims. (50 equiv HF)

Optimal sample allocations based on relative 
cost, observed correlation between models, 
observed variance distribution across levels, 

and MSE target (.045 of pilot MSE)



Updated Deployment of MLCV MC for Scramjet UQ

P1 updated: re-formulate inputs in order to obtain an higher level of turbulence and, 
in turn, a more non-linear response of the system

Observations from pilot sample: decay in variance across discretizations (LF d/8 and 
discrepancy d/16 – d/8) no longer observed for all QoI

Implications: pursuing a more focused analysis of deterministic convergence properties. 
Anticipated outcome is the need to engage additional refinement levels (i.e., d/32, d/64) 
in order to converge QoI statistics that are closely tied to resolution of turbulence.



MLMC is effective across MF discretizations, CV is hampered by LF corr

Results leading to improvements in LF structural models + algorithm 
refinements to adaptively manage (discard) models with low correlation

Optimal sample allocations based on relative 
cost, observed correlation between models, 

and observed variance distribution across levels

Initial Deployment of MLCV MC to UCAV Nozzle UQ

Context: Analysis of performance of UCAV
nozzles subject to environmental, material, 
and manufacturing uncertainties. 

Goal: Explore utility of low fidelity model
(potential flow, hoop stress) alongside 
discretizations for medium fidelity (Euler, FEM)

MF



Updated Deployment of MLCV MC to UCAV Nozzle UQ



Current Focus: Deployment of ML PCE to UCAV Nozzle UQ

ML PCE shows more rapid convergence using coarse/medium/fine discretizations: 
➢ Exploits smoothness in moderate dimension
➢ MC approaches expected to be competitive at higher dimension

Next steps:  estimation, alternate PCE recovery methods, MLMF PCE

Optimal sample allocations based on 
relative cost, variance distribution 

across levels and = 2



Latest ML PCE and ML FT

CURRIN PARK 1 PARK 2



Multilevel-Multifidelity OUU: MG/Opt + recursive TRMM

Trust-region model management

• targets hierarchy of model forms (now an arbitrary number)

• each opt cycle performed on corrected LF model

Multigrid optimization (MG/Opt)

• targets hierarchy of discretization levels

• multigrid V cycle to hierarchy of optimization solves

• coarse optim. generates search direction for fine optim.

• corrections + line search globalization  provable convergence

MLMF combining MG/Opt and TRMM

• both model forms and discretization levels

• Flexible hybridization of 
MG/Opt + recursive TRMM

• Prototype code now 
implemented in Dakota



Emulator-Based Bayesian Inference

ImpactObjectives 
 Avoid direct interfacing of Markov Chain Monte 

Carlo (MCMC) with expensive high fidelity models

 Exploit analytic gradients/Hessians from emulators

 DRAM: Pre-solve for posterior mode and form accurate 
proposal density for efficient MCMC

 MALA/HMC: efficient SDE solves from emulator grads

 Parallel MCMC to identify multimodal posteriors

 Provides a scalable approach for inference

 Interface of MCMC with scalable emulators for UQ

 Laplace approximation of posterior distribution provides 
accurate proposal, eliminating high rejection rates for high-
dimensional MCMC

 Integration of latest inference algorithms into 
production tools for broad SAP deployment

 PISCEES, multi-scale climate, EFRC (CHWM)

Accomplishments

MLE

MAP

Preconditioned MCMC 
of Rosenbrock fn

(samples in black, Hessian 
updates in red)

Average:
22.2
18.9
9.71

Rejection 
rates

 Pre-solve for maximum a posteriori 
probability (MAP) = mode of posterior

 Full Newton minimization of –log(posterior) 
using analytic Hessians of priors & emulators 

• Accurate MCMC proposal distribution 
reduces sample rejection in high dimensions

 10D: 98% rejection reduced to 30%

• Posterior Hessian-based proposal (green) 
balances likelihood (blue) and prior (red)

• Emulator refinement: pivoted LU on chain



Summary Remarks
The case for multilevel – multifidelity methods

• Push towards higher simulation fidelity can make opt, UQ, OUU untenable

• Multiple model fidelities and discretizations are often available that trade accuracy for 
reduced computational cost

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

• Multilevel sampling fmwk for cost-optimized variance reduction is quite general

• ML-MF MC accounts for LF control variate at each HF discretization level within multilevel MC

• ML PCE with CS: Adds optimal sample allocation to previous MF PCE approach. Initial prototype 
appears promising, but multiple refinements (estimator var, ML FT, MLMF) in progress.

Directions

• OUU: move beyond common bi-fidelity approaches; push evals down hierarchy

• Inference: Exploit efficient ML-MF forward emulators for inference



Extra Slides



UQ & Optimization: DOE Mission Deployment

Stewardship (NNSA ASC)
Safety in abnormal environments

Energy (ASCR, EERE, NE)
Wind turbines, nuclear reactors

Climate (SciDAC, CSSEF, ACME)
Ice sheets, CISM, CESM, ISSM, CSDMS

Common theme across these applications:

• High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
 Severe simulation budget constraints (e.g., a handful of runs)

 Significant dimensionality, driven by model complexity (multi-physics, multiscale)

Computational Materials 
(SciDAC+EFRC: CHWM, WastePD)

GSA, inference, forward UQ for 
waste forms / hazardous matls
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Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:

• Mixed aleatory-epistemic uncertainties (segregation  nested iteration)

• Requirement to evaluate probability of rare events (resolve PDF tails for QoI)

• Nonsmooth QoI (exp conv in spectral methods exploits smoothness)

Core (Forward) UQ Capabilities:

• Sampling methods: MC, LHS, QMC, et al.

• Reliability methods: local (MV, AMV+, FORM, …), 
global (EGRA, GPAIS, POFDarts)

• Stochastic expansion methods: PCE, SC, fn train

• Epistemic methods: interval est., Dempster-Shafer evidence

G(u)

Expected
Improvement

Steward Scalable Algorithms within



Research Thrusts for UQ

• Focus: Compute dominant uncertainty effects despite key challenges

• Emphasize scalability and exploitation of structure

• Adaptivity: p- and h- refinement of stochastic expansions

• Adjoints: gradient enhancement for PCE / SC / GP

• Sparsity: compressed sensing

• Low Rank: tensor / function train

• Dimension reduction: active subspaces, adapted basis PCE

• Compound efficiencies

• Multilevel-Multifidelity, Active subspaces + optimal quadrature

• Address complexity w/ component-based approach

• Bayesian inference, Mixed aleatory-epistemic, OUU

• Position UQ for next generation architectures 

• Current (imperative): multilevel parallelism

• Future (declarative): exploit DAG + AMT for ensemble workflows



1D transient diffusion (parabolic PDE)

Model forms: 2 (Nm = 3, 21)
Discretization levels: 4 per form (Nx)
Dimensionality: 7 QoI: 1
Cost model: linear in Nm, cubic in Nx

Centered 
Parameter 

Study



Latest ML PCE and ML FT



Optimization Foundational Components for ML and MF:
• Trust Region Model Management (TRMM)
• Multigrid Optimization (MG/Opt)



Trust-Region Model Management – Multifidelity Case

Sequence of trust regions

Note: bi-fidelity approaches dominate

TRMM solves a series of 
approximate subproblems:
• Data fit (global, local, multipoint)
• Multifidelity
• ROM



Multigrid optimization 
(MG/Opt)

As in multilevel Monte Carlo, exploit 
discretization hierarchy within optimization/OUU:
• Apply multigrid V cycle to hierarchy of optimal solns

• Distinct from applying multigrid to KKT system
• Distinct from successive refinement of optimal solns

(employs bi-directional prolongation / restriction)

Recursively uses coarse resolution 
problems to generate search directions
for finer-resolution solves
• Line search used to compute fine-resolution 

iterate from coarse-resolution search direction
• Globalization enables provable convergence

Special case of / component within 
generalized model management framework 
• Requires effective subproblem solver to 

generate a new iterate at a particular level 
• Leverages 1st and (quasi, finite diff.) 2nd-

order additive & combined corrections

Dive

Return



TRMM + MG/Opt for Multilevel-Multifidelity Hierarchies
• Nested Multigrid
• Trust Region-Managed Multigrid
• Nested TRMM



MLMF 1: Nested Multigrid

• Outer iteration until convergence

• MFOPT: V cycle over model forms

• MLOPT: V cycle over discretizations for each form

• Partial optimization applied to every 
discretization for every model form



MLMF 2: Trust Region Managed Multigrid

• Outer iteration until convergence

• MLOPT: V cycle over discretizations for LF model

• RECTR: Update TR model form hierarchy for each d

• Partial optimization applied to every 
discretization for LF model



MLMF 3: Nested TRMM

• Outer iteration until convergence

• RECTR: Recur over discretizations for LF model

• RECTR: Update TR model form hierarchy for each d

• Optimization applied exclusively to LF model at coarse discretization

• Ordering of sweeps is not prescribed



Computational Experiments
• Model Problem: Target solution profile for SS diffusion
• Model Problem: Minimize CD for transonic airfoil
• Initial deployments for OUU in DARPA EQUiPS



Steady State Diffusion: 
MG/Opt for Multilevel

• MATLAB Opt 
Solvers (2)

• Grid scalings (1D 
and 2D diffusion)

• Solver cost 
scalings (linear, 
quadratic, cubic)

1D diffusion

1D diffusion2D diffusion



Steady State Diffusion: 
Recursive MG/Opt and TRMM

Initial formulation: nested multigrid
MATLAB Prototypes

Dakota: NPSOL & TRMM

HF



Transonic Airfoil Design: Minimize Drag, Preserve Lift

3-level Recursive TRMM for Euler

Single-fidelity (NPSOL) Multifidelity TRMM

Design: Hicks Henne shape fns



From optimization to DUU: DARPA Deployments

LF statistics: L1 sparse grid w/ Euler COARSE
HF statistics: L1 sparse grid w/ Euler MEDIUM
• 1st-order consistent TRMM w/ numerical grads
• 7 rand vars, 29 des vars (21 B-spline, 8 thick)

Trust region cycles
• 5 iterations accepted by filter method
• Tuning of FDSS & solver conv. in progress+bounds, linear cons.

Baseline Robust

UCAV 
Nozzle

Scramjet (P1: Jet in cross flow) Vary UQ approach & simulation discretization: 
• LF stats: L2 sparse grid combined exp, 2D d/8
• HF stats: L2 sparse grid uncertain exp, 2D d/16



Summary Remarks

The case for multilevel – multifidelity methods

• Push towards higher simulation fidelity can make opt, UQ, OUU untenable

• Multiple model fidelities and discretizations are often available that trade accuracy for 
reduced computational cost

Towards multilevel-multifidelity UQ tailored for smoothness and dimensionality

• Multilevel sampling fmwk for cost-optimized variance reduction is quite general

• ML-MF MC accounts for LF control variate at each HF discretization level within multilevel MC

• ML PCE with CS: Adds optimal sample allocation to previous MF PCE approach. Initial prototype 
appears promising, but multiple refinements (estimator var, ML FT, MLMF) in progress.

Towards recursive optimization schemes that exploit the full model ensemble

• Move beyond bi-fidelity: by exploiting richer model ensemble, computational effort can be 
pushed down the hierarchy, supporting case of only a handful of HF fine-grid evaluations

• MG/Opt and recursive TRMM used as foundational algorithms for one hierarchy dimension

• Proposed MLMF approaches recur across both multilevel + multifidelity dimensions:

• Nested MG/Opt,   Trust-region managed multigrid,   Nested TRMM

• Initial results point to benefits in interfacing optimizers exclusively at LF/coarse levels

• MG/Opt tends to spread evaluations more evenly across its hierarchy, whereas TRMM only 
interfaces optimizer with least expensive model (other models: validation, correction).

• Prototype of Nested MG  Production implementations for TR-managed MG, Nested TRMM


