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Introduction

Motivation - Methane (CH,4) Emissions

CH, is a significant contributor to radiative forcing
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Algo Data Model Discr

Bayes formula for Parameter Inference

@ Data Model (fit model + noise): z=m(x;0)+e
o Collectively D = {z1, 2,.. .}

@ Bayes Formula:
p(0, DIM) = p(6|D, M)p(DIM) = p(D|6, M)p(6|M)

POIDM) _ p(DIo,M)  p(o|M) / P(DIM)

Posterior Likelihood Prior Evidence

Prior: knowledge of ¢ prior to data

Likelihood: forward model (M) and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant, used for model comparison
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Algo Data Model Di

Experimental Observations - Livermore, CA

Hourly CH4 and CO concentrations
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Livermore, CA: ~150m above sea level and 27m above ground level
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Algo Data Model Discr

Model - Atmospheric Transport

@ The Weather Research & Forecasting (WRF) Model
@ transport of mass, momentum, energy
@ vertical coordinate: hydrostatic pressure - terrain following
coordinate
@ parameterizations, boundary conditions (surface fluxes)

@ Stochastic Time-Inverted Lagrangian Transport
(STILT) Model
@ Lagrangian particle dispersion model
@ Derive the upstream influence region on
atmospheric measurement locations
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Algo Data Model Discr

Model - Surface Fluxes

CALGEM - CH4 EDGAR - CH4 EDGAR - CO
R b i y >
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@ Given footprint f(x;, tr|x, t), the concentration y at receptor point (xr, t/) is written
as

tr
y(x,,t,):/ /f(x,,t,\x, H)E(x, t)dx dt + yo(xr, 1)
© Js

@ Emission databases: E(x,t) — E(x)

tr
yoet) = [ ( / f(Xr,r,x,t)dr> E(x, )0 + Yo, 1)
s \Ug
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Algo Data Model Discr

Model - Footprints

@ Numerical discretization in space and time
tr
/ f(xr, tr|x, t)dt — Z fi(x) — Z fiji i :time, j: space
b i i

@ The concentration at the measurement site

y=FxE+n

Feb 28, 2015 Mar 14, 2015 Apr 7,2015 June 28, 2015

-123 127 -120 -118 -116 -11 -123 127 -120 -118 -116 -11 -126 127 -120 -118 -116 -11 —12¢ -127 -120 -118 -116 -11
lon lon lon fon

Footprints representative for Livermore, CA
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Algo Data Model Discr

Statistical Discrepancy: Model - Data

Y=FxE+¥%+ e+e + e + e
N—— ~~ ~~

transp,surface error  bgrd error  exper. error

@ Hard to disambiguate between transport and surface flux error
@ Simultaneously infer CH4 and CO fluxes.
@ surface CO fluxes are well understood, leading to the combined

parameter estimation problem

YcHa = F X Ecra + Yo,cHa + €F + €E,cH4 + €0,CHa + €D,CHa
Yco = F x Eco+ Yo,co+ €F+ €o,co+ €p,co

@ CO observations will inform on eg, while CH4 will inform on both ¢ and
€E,CH4-

Safta CH4inv



Algo Data Model Discr

Representation of Model Error - ¢ & e

Augment the footprint F and emission fluxes E with additional terms to account for
model imperfections/limitations

@ Global bias terms
F—>F1+X)&E — E(1 4 Xg)

@ Region- and sector-dependent bias terms
Fik = Fi(1+ Xe k) & Ej ik = Ej k(14 Ag k)

@ High-dimensional bias terms, represented as random fields (RF) via
Karhunen-Loeve Expansions

Gaussian RF over the Bay Area
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Results

Results - Transport and Fluxes for 2015 (Mar-June)

03

Magnitude of bias terms for F and £ 2D Marginal PDFs for 2015, March-June
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@ CO data induce a significant correction for the magnitude of F
@ Currently exploring ways to validate these results, possibly via additional
observations of trace species

@ Limited dependence between F and E - distance correlation between Ar and Ag
are small (< 0.2)

@ Predictive studies can employ corrected F values for other species

Safta CH4inv



Summary
Summary

@ Assembled a framework for the assessment of biases in atmospheric
transport models and emission databases

@ Multiple data streams are used to inform on different model
components (transport vs boundary conditions)

@ Transport bias was significant; currently looking at other sources
that can impact the results, e.g. background model.

@ Moving forward to estimate corrections as random fields.

@ Determine the appropriate model parsimony using Bayesian
model evidence
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