

SAND2017-7357C

# *A Bayesian Framework for the Estimation of Regional Methane Fluxes*

Cosmin Safta, Ray Bambha, Hope Michelsen

[csafta@sandia.gov](mailto:csafta@sandia.gov)

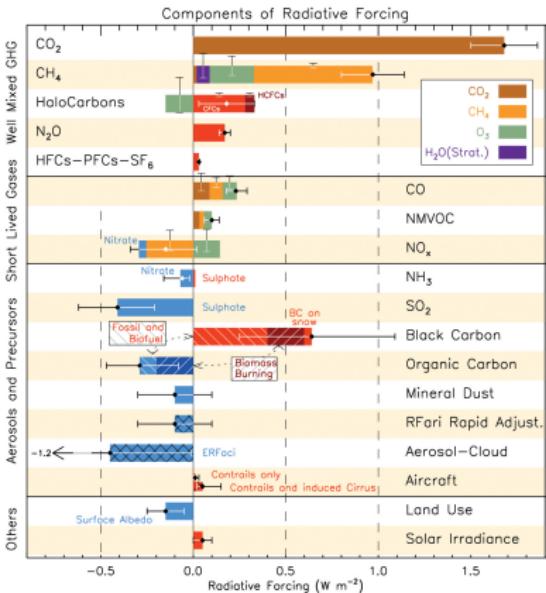
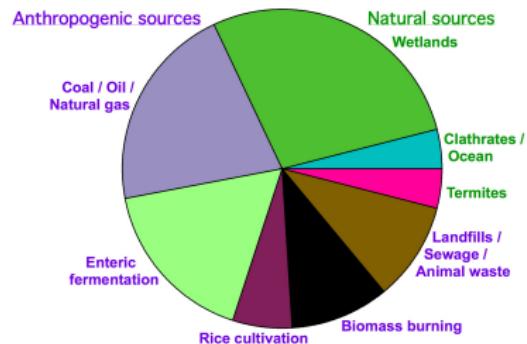
Sandia National Laboratories  
Livermore, CA, USA

14<sup>th</sup> US National Congress on Computational Mechanics  
Montréal, CA  
July 18, 2017

# Acknowledgments

- Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

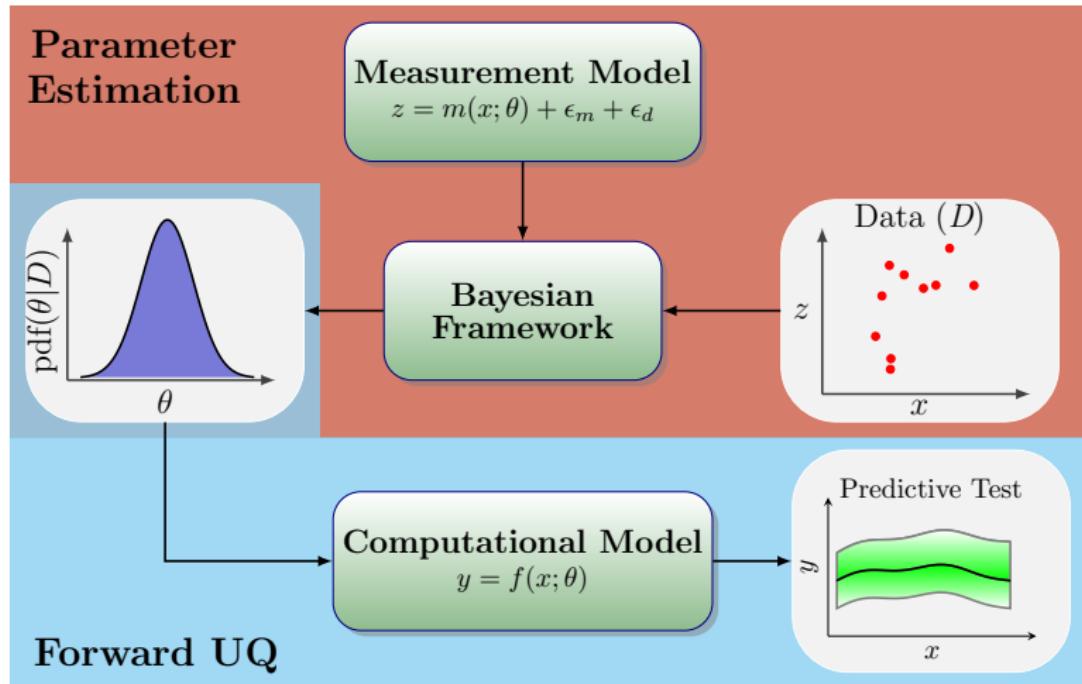
# Outline



- Motivation
- Parameter Estimation Framework
  - Experimental Observations
  - Atmospheric Transport Framework (equations, discretization, assumptions)
  - Modeling the Discrepancy between Model Predictions and Experiments
- Results
- Future Work

# Motivation - Methane (CH<sub>4</sub>) Emissions

## CH<sub>4</sub> is a significant contributor to radiative forcing

- anthropogenic sources are ~ 70% of current total
- wetlands account for ~ 25% of total emissions
- coal/oil/natural gas are ~ 30% of anthropogenic
- short atmospheric lifetime: ~ 12 yrs (>1000 years for CO<sub>2</sub>)


current increase in global CH<sub>4</sub> levels are not explained



IPCC AR5 (2013)

Slugokenky et. al. 2011 (10.1098/rsta.2010.0341)

# Uncertainty Quantification in Computational Science



# Bayes formula for Parameter Inference

- Data Model (fit model + noise):  $z = m(x; \theta) + \epsilon$

- Collectively  $D = \{z_1, z_2, \dots\}$

- Bayes Formula:

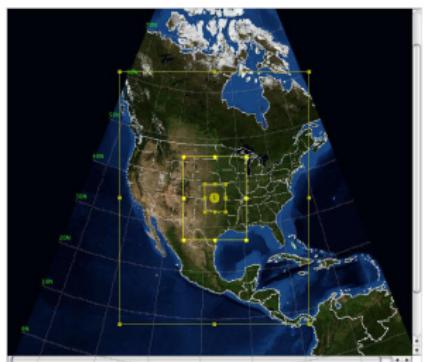
$$p(\theta, D|M) = p(\theta|D, M)p(D|M) = p(D|\theta, M)p(\theta|M)$$

$$p(\theta|D, M) = \frac{p(D|\theta, M)p(\theta|M)}{p(D|M)}$$

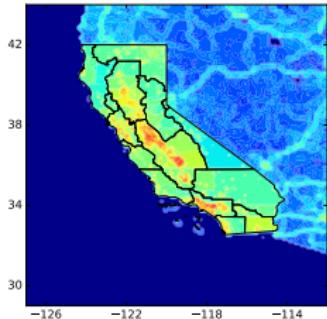
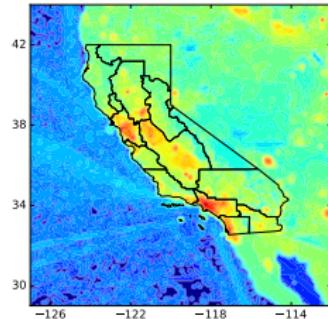
Posterior                      Likelihood                      Prior                      Evidence

- Prior: knowledge of  $\theta$  prior to data
- Likelihood: forward model ( $M$ ) and measurement noise
- Posterior: combines information from prior and data
- Evidence: normalizing constant, used for model comparison

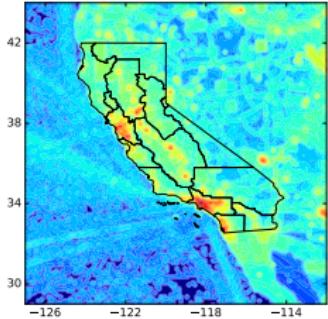
# Experimental Observations - Livermore, CA




Livermore, CA: ~150m above sea level and 27m above ground level


# Model - Atmospheric Transport


- The Weather Research & Forecasting (WRF) Model
  - transport of mass, momentum, energy
  - vertical coordinate: hydrostatic pressure - terrain following coordinate
  - parameterizations, boundary conditions (*surface fluxes*)
- Stochastic Time-Inverted Lagrangian Transport (STILT) Model
  - Lagrangian particle dispersion model
  - Derive the upstream influence region on atmospheric measurement locations



# Model - Surface Fluxes

CALGEM - CH<sub>4</sub>EDGAR - CH<sub>4</sub>

EDGAR - CO



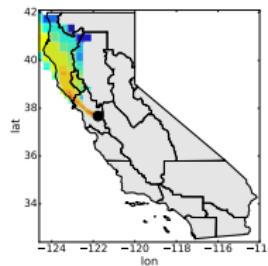
- Given footprint  $f(x_r, t_r | x, t)$ , the concentration  $y$  at receptor point  $(x_r, t_r)$  is written as

$$y(x_r, t_r) = \int_{t_0}^{t_r} \int_S f(x_r, t_r | x, t) E(x, t) dx dt + y_0(x_r, t_r)$$

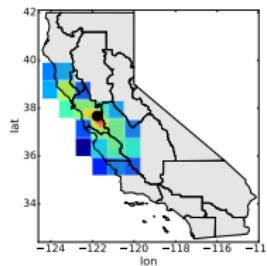
- Emission databases:  $E(x, t) \rightarrow E(x)$

$$y(x_r, t_r) = \int_S \left( \int_{t_0}^{t_r} f(x_r, t_r | x, t) dt \right) E(x, t) dx + y_0(x_r, t_r)$$

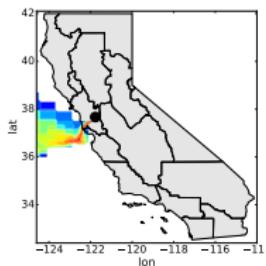
# Model - Footprints


- Numerical discretization in space and time

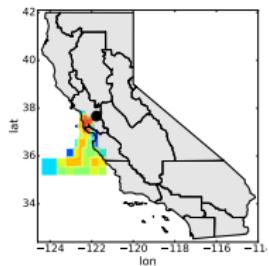
$$\int_{t_0}^{t_r} f(x_r, t_r | x, t) dt \rightarrow \sum_i f_i(x) \rightarrow \sum_i f_{i,j}; \quad i : \text{time}, j : \text{space}$$


- The concentration at the measurement site

$$y = F \times E + y_0$$


Feb 28, 2015




Mar 14, 2015



Apr 7, 2015



June 28, 2015



Footprints representative for Livermore, CA

# Statistical Discrepancy: Model - Data

$$y = F \times E + y_0 + \underbrace{\epsilon_F + \epsilon_E}_{\text{transp, surface error}} + \underbrace{\epsilon_0}_{\text{bgrd error}} + \underbrace{\epsilon_D}_{\text{exper. error}}$$

- Hard to disambiguate between transport and surface flux error
- Simultaneously infer CH<sub>4</sub> and CO fluxes.
  - surface CO fluxes are well understood, leading to the combined parameter estimation problem

$$y_{CH4} = F \times E_{CH4} + y_{0,CH4} + \epsilon_F + \epsilon_{E,CH4} + \epsilon_{0,CH4} + \epsilon_{D,CH4}$$

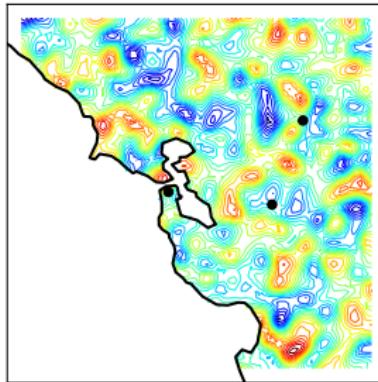
$$y_{CO} = F \times E_{CO} + y_{0,CO} + \epsilon_F + \epsilon_{0,CO} + \epsilon_{D,CO}$$

- CO observations will inform on  $\epsilon_F$ , while CH<sub>4</sub> will inform on both  $\epsilon_F$  and  $\epsilon_{E,CH4}$ .

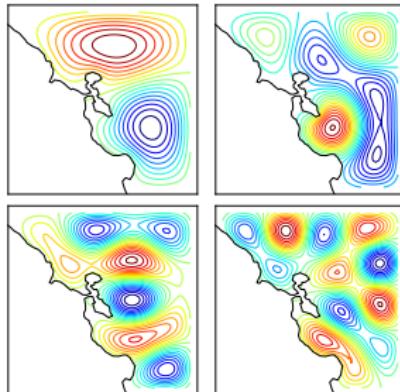
# Representation of Model Error - $\epsilon_F$ & $\epsilon_E$

Augment the footprint  $F$  and emission fluxes  $E$  with additional terms to account for model imperfections/limitations

- Global bias terms

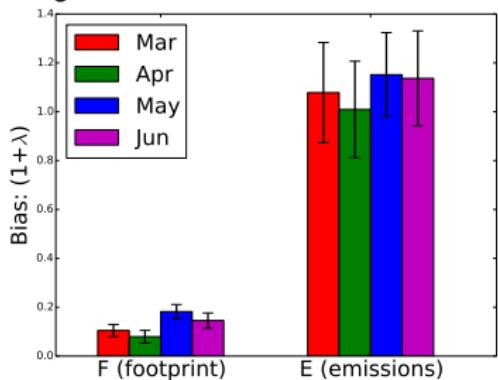

$$F \rightarrow F(1 + \lambda_F) \text{ & } E \rightarrow E(1 + \lambda_E)$$

- Region- and sector-dependent bias terms

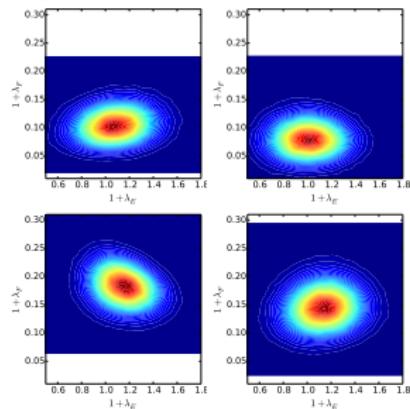

$$F_{j,k} \rightarrow F_{j,k}(1 + \lambda_{F,j,k}) \text{ & } E_{j,k} \rightarrow E_{j,k}(1 + \lambda_{E,j,k})$$

- High-dimensional bias terms, represented as random fields (RF) via Karhunen-Loeve Expansions

*Gaussian RF over the Bay Area*




*RF Modes*




# Results - Transport and Fluxes for 2015 (Mar-June)

Magnitude of bias terms for  $F$  and  $E$



2D Marginal PDFs for 2015, March-June



- CO data induce a significant correction for the magnitude of  $F$ 
  - Currently exploring ways to validate these results, possibly via additional observations of trace species
- Limited dependence between  $F$  and  $E$  - distance correlation between  $\lambda_F$  and  $\lambda_E$  are small ( $< 0.2$ )
  - Predictive studies can employ corrected  $F$  values for other species

# Summary

- Assembled a framework for the assessment of biases in atmospheric transport models and emission databases
  - Multiple data streams are used to inform on different model components (transport vs boundary conditions)
  - Transport bias was significant; currently looking at other sources that can impact the results, e.g. background model.
- Moving forward to estimate corrections as random fields.
  - Determine the appropriate model parsimony using Bayesian model evidence