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Motivation - Methane (CH4) Emissions
CH4 is a significant contributor to radiative forcing

anthropogenic sources are ∼ 70% of current
total

wetlands account for ∼ 25% of total emissions

coal/oil/natural gas are ∼ 30% of anthropogenic

short atmospheric lifetime: ∼ 12 yrs (>1000
years for CO2)

current increase in global CH4 levels are not explained

Dlugokencky et. al. 2011 (10.1098/rsta.2010.0341)

IPCC AR5 (2013)
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Uncertainty Quantification in Computational Science
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Bayes formula for Parameter Inference

Data Model (fit model + noise): z = m(x ; θ) + ε

Collectively D = {z1, z2, . . .}
Bayes Formula:

p(θ,D|M) = p(θ|D,M)p(D|M) = p(D|θ,M)p(θ|M)

p(θ|D,M)
Posterior

=
p(D|θ,M)

Likelihood

p(θ|M)
Prior

/
p(D|M)

Evidence

Prior: knowledge of θ prior to data

Likelihood: forward model (M) and measurement noise

Posterior: combines information from prior and data

Evidence: normalizing constant, used for model comparison
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Experimental Observations - Livermore, CA
Hourly CH4 and CO concentrations
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Livermore, CA: ∼150m above sea level and 27m above ground level
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Model - Atmospheric Transport

The Weather Research & Forecasting (WRF) Model

transport of mass, momentum, energy
vertical coordinate: hydrostatic pressure - terrain following
coordinate
parameterizations, boundary conditions (surface fluxes)

Stochastic Time-Inverted Lagrangian Transport
(STILT) Model

Lagrangian particle dispersion model
Derive the upstream influence region on
atmospheric measurement locations
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Model - Surface Fluxes

CALGEM - CH4
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Given footprint f (xr , tr |x , t), the concentration y at receptor point (xr , tr ) is written
as

y(xr , tr ) =
∫ tr

t0

∫
S

f (xr , tr |x , t)E(x , t)dx dt + y0(xr , tr )

Emission databases: E(x , t)→ E(x)

y(xr , tr ) =
∫

S

(∫ tr

t0
f (xr , tr |x , t)dt

)
E(x , t)dx + y0(xr , tr )
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Model - Footprints

Numerical discretization in space and time∫ tr

t0
f (xr , tr |x , t)dt →

∑
i

fi (x)→
∑

i

fi,j ; i : time, j : space

The concentration at the measurement site

y = F × E + y0
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Footprints representative for Livermore, CA
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Statistical Discrepancy: Model - Data

y = F × E + y0 + εF + εE︸ ︷︷ ︸
transp,surface error

+ ε0︸︷︷︸
bgrd error

+ εD︸︷︷︸
exper. error

Hard to disambiguate between transport and surface flux error

Simultaneously infer CH4 and CO fluxes.

surface CO fluxes are well understood, leading to the combined
parameter estimation problem

yCH4 = F × ECH4 + y0,CH4 + εF + εE,CH4 + ε0,CH4 + εD,CH4

yCO = F × ECO + y0,CO + εF + ε0,CO + εD,CO

CO observations will inform on εF , while CH4 will inform on both εF and
εE,CH4.
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Representation of Model Error - εF & εE
Augment the footprint F and emission fluxes E with additional terms to account for
model imperfections/limitations

Global bias terms
F → F (1 + λF )&E → E(1 + λE )

Region- and sector-dependent bias terms

Fj,k → Fj,k (1 + λF ,j,k )&Ej,k → Ej,k (1 + λE,j,k )

High-dimensional bias terms, represented as random fields (RF) via
Karhunen-Loeve Expansions

Gaussian RF over the Bay Area RF Modes
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Results - Transport and Fluxes for 2015 (Mar-June)

Magnitude of bias terms for F and E
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CO data induce a significant correction for the magnitude of F

Currently exploring ways to validate these results, possibly via additional
observations of trace species

Limited dependence between F and E - distance correlation between λF and λE

are small (< 0.2)

Predictive studies can employ corrected F values for other species
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Summary

Assembled a framework for the assessment of biases in atmospheric
transport models and emission databases

Multiple data streams are used to inform on different model
components (transport vs boundary conditions)

Transport bias was significant; currently looking at other sources
that can impact the results, e.g. background model.

Moving forward to estimate corrections as random fields.

Determine the appropriate model parsimony using Bayesian
model evidence
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