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I2 Example Pulsed Power Application: Plasma Opening Switch

Plasma Opening Switch (Schumer
et al., 2001):

Largest scales, pulsed power
requirements:

Size of device: 10cm

Operation timescale: 10-6s

Smallest scales, plasma physics:

Plasma density: 1012 - 1016 cm-3

Length scale: 10-5cm (D e b y e)

Timescale: 10-12s (Plasma Freq.)
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3 Example Pulsed Power Application: Plasma Opening Switch
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Semi-Implicit two-fluid simulation of plasma opening switch:

o Stiff source terms for multi-fluid model computed using operator split, semi-
implicit method

O Simulation demonstrate penetration of electromagnetic field into the plasma and
opening of the switch



4 Example Pulsed Power Application: Plasma Opening Switch
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Semi-Implicit two-fluid simulation of plasma opening switch:

0 Penetration of EM field into the plasma controlled by non-linear electron MHD
shear instability (Richardson et al., 2016)

° Boundary conditions play a key role.



5 Example Application: Dense Plasma Focus

Mechanisms for pinch formation, ion acceleration
and subsequent neutron production in Dense
Plasma Focus are not well-understood
Li et al. (LANL report, 2016):

O Report high fidelity MHD simulations of a
DPF geometry

O Shear layer between the magnetized region and
unmagnetized region drives the onset of a
Kelvin-Helmholtz-type instability

o Ions are accelerated by local electromotive
forces according to:
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I6 Prototype Pulsed-Power Problem: Plasma Shear Instabilities

Understanding how the electromagnetic
field penetrates into the plasma is a key
aspect of understanding the operation
of the plasma opening switch

O By studying this as a prototype
problem physics, we can remove the
influence of boundary conditions

Allows us to probe differentphyics
using an well-understood problem so that
we can investigate:

O Compressibility (transonic flows)/

O Magnetic field amplification & x
turbulent energy cascades

O Dynamo activity (two-fluid flows)

0 Electrons can be KHI unstable
when ions are stabk

O Relativistic (finite Lorentz factor)
effects
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71 Multi-Fluid Plasma-Electromagnetic Models

Opt +v .[piU 1] = O;at
OpiUi
 +V •[pUiUi + Pi] = Ri+niqiE + tlixB;
Ot
aei

+V •[Ui • (ei+ Pi)] = V •Ri+Qi+ 4 • E
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OE
c2VxB=

dt

Target:

0 multi-species fluid-plasma
problems

Fundamental model:

hydrodynamics: Navier-Stokes

multiple species: ions,
electrons and neutrals

coupling: chemistry, collisions,
and EM

Ei Ji dB

E
 ; 

Ot 
+VxE=0

o 

Different species have different
timescales:

Ions, neutrals: slow

Electrons: fast

Maxwell: really fast

Simplify physics:

Electrostatic: multiple species, but
no EM waves

MHD: single fluid, no light waves
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81 Multi-Fluid Plasma-Electrostatic Models
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1 9 Single Fluid Magnetohydrodynamic Models
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10 Two-Fluid Plasma-Electromagnetic Models
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11 Two-Fluid in MHD-like Form
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121 Implicit Solution Stategy: Preconditioned JFNK

We have built a JFNK solver into a pre-existing
plasma modeling code

O Based on existing infrastructure from Sandia T(un+1) 0/
National Lab available in the Trilinos package.

o Distributed linear algebra: EPETRA 1

, JFNK Solvers: Nonlinear Object-Orientated 
Solutions [(aaL- )n+1,k1-1 

m

O GMRES Solvers: Avec00 (5Uk = T
O AMG Preconditioners: ML

Write non-linear system as a function: n+1,k I
O Lin-HI is tu ,e vector of unknowns at time step j (un+1,k) (aJTg) n+1

Apply standard Newton's method to non-linear
system 6 Uk = 

un+1,k+1 un+1,k
I I

, Solve linear system at each substep using a
Krylov method (either GMRES or BiCGStab) T(un+1,k + cr6uk) T(un+1,k) i

O Krylov iterations can be accelerated via J(Uk)6Uk ^-'  / I
preconditioner GI-

O Jacobian only appears in matrix vector products
=> only need the action
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0 Electrons: fast
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Simplify physics:

Electrostatic: multiple species, but
no EM waves

MHD: single fluid, no light waves
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problems

Fundamental model:

hydrodynamics: Navier-Stokes

multiple species: ions,
electrons and neutrals

coupling: chemistry, collisions,
and EM

— Ti)

E= -V1)4

V200(3174=e(x,y,z)

Electrostatic case: still
need good

preconditioning for
Poisson +electrons

Different species have different
timescales:

0 Ions, neutrals: slow

0 Electrons: fast

Maxwell: really fast

Simplify physics:

Electrostatic: multiple species, but
no EM waves

MHD: single fluid, no light waves



14 Solving Poisson's Equation with Moving Least Squares Operators

Poisson's Equation needed for (e.g.)
electrostatics & constraints

o In 2d for data Q on points x,y with
weights w, Vandermonde matrix:

2 2
WO1 woxo woyo woxoyo woxo yo

w11 WiXi Yi wixiyi /Dix
2 
]. Y1

2

WN1
„„ _2

WNXN WNYN WNXNYN 
„,2 

wIVYN

a0

al

a2

a3

a4

v2cp(x,y,z)=e(x,y z)

wog()

wig].

WNqN

• Eqn of the form PA = with solution:

A = [137 1 1=] 1 PT Q

• Let: B = [PT 13]-1 PT

Then at a point xa,ya

q (xa, ya) [Bct,,6 P (xa, Ya) cy] 2

• with (e.g.)p = (1 ,xly,xy,x2g27

o Derivatives:

dig (xa, ya) = [Ba,o dip (xdax, iy a) ce]
dxi

2

1E-01 —

1E-02

1E-03

1E-04

='190Z

-06213

0.5

Linear Po ori S)ahie in 3D

1 10 100 1000

# of Cells along each axis

2nd Order Convergence Ulixes JFNK



14 Solving Poisson's Equation with Moving Least Squares Operators

Poisson's Equation needed for (e.g.)
electrostatics & constraints

o In 2d for data Q on points x,y with
weights w, Vandermonde matrix:

wo1

w11 W1X1 w1x1y1 

liMilliwOrillirwoYo woxoyo1Wwo o

•
•
•

W1 X
2 

Y 
2

1 1

,„2
NWN1 WNXN WNYN WNXNYN WN.0

(I )

(li

(1);

(14

• Eqn of the form PA = with solution:

A = [PT131 13TQ

Let: B = [PT P] 1 PT

Then at a point xa,ya

q (x ya) = [Ba,0 p (xa, ya)a] Qo
2u)

O with (e.g.) p = (1 ,xly,.r,x2g27

• Derivatives:

diq (xa, ya) [B dip (xa,ya)a]Q
dxi '1'13 dxi

V201)(x,y,z)=e(x,y,z

W0q0

wiqi

WNqN

1E-01

1E-02

1E-03

1E-04

Pseuclocolor
Vor fluids/0,z

m
r-0 304

.0.5

Linear Po o S ve in 3D
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2nd Order Convergence Ulixes JFNK



14 Solving Poisson's Equation with Moving Least Squares Operators

Poisson's Equation needed for (e.g.)
electrostatics & constraints

o In 2d for data Q on points x,y with
weights w, Vandermonde matrix:

W0 1 woxoyo1Wwo o
c/o

al
7-00q0

Wl 1 w1x1 Y1 101x1y1 wlxi 1
a2

a3

W1q1

WNI- WNXN WNYN WNXNYN WNX2N
,2

WNYN a4 wNqN

• Eqn of the form PA = with solution:

A = [PTP] 1 PTQ

Let: B = [PT P] 1 PT

Then at a point xa,ya

q (x a, y a) -= [Ba,0 p (x a, ya)

O with (e.g.) p = ,x,y)xy)x2 g27

• Derivatives:

dig (xa, ya)

dxi Ba"6 dx

dip (xci,
i 
ya) 

[ 
Q0

LI]

2
cc

V201)(x,y,z)=e(x,y,z

1E-01

1E-02

1E-03

lE 04

Pseuclocolor
Var 1100:1001,7
.1-0 304

.0.5

Linear Po o S ve in 3D

10 100 1000

# of Cells along each axis

2nd Order Convergence Ulixes JFNK



15 Solving Poisson's Equation with Moving Least Squares Operators

Poisson's Equation needed for (e.g.)
electrostatics & constraints

O In 2d for data Q on points x,y with
weights w, Vandermonde matrix:

2 ao
11)01

wll

w0x0

wlxl

woyo

Y1

woxoyo

w1x1y1

woxo

2V1xi
2

yo

yl
2 al

a2

a3

WOW

wiqi

WN1 WN XN WNNY WNXNYN
„,2
NWN-, WNYN _ a4 WNqN

• Eqn of the form PA = Q, with solution:

A = [PTP] -1 PTQ

• Let: B = [PT P] 1 PT

( Then at a point xa,ya

q(xal ya) = [-Bc1,0 p (Xal Ya)ce] (2

o with (e.g.) p = (1,x2y,xy,x2g27 cE2

o Derivatives:
dig (xa, ya) [Ba, dip (Xci,.ya)al

dxi dxi 
Qa

1E+00

1E-01

1 E-02

1 E-03

1 E-04

V[KM Vsts (x y,
Pmutlocalar

Ma

)1

Non-Linear

,y,z); = (1)1/2

cp(x,y,z)
lye in 3D

1 10 100

# of Cells along each axis

2nd Order Convergence + Ulixes

1000



15 Solving Poisson's Equation with Moving Least Squares Operators

Poisson's Equation needed for (e.g.)
electrostatics & constraints

O In 2d for data Q on points x,y with
weights w, Vandermonde matrix:

W01 wWwoyo woxoyollrwo4 0

1/11 1 WiX1 Y1 wixlyi 
2 yi2

•
•
•

„,2
WN1 WNXN WNYN WNXNYN WI\T-bAr

a0

al

a2

a3

a4

WOW

W1q1

WNqN

• Eqn of the form PA = Q, with solution:

A = [PTP] -1 PTQ

Let: B = [PT P] 1 PT

Then at a point xa,ya

q (x a, y a) = [-Bco p (Xal Ya)ce] (2

o with (e.g.) p = (1,xly,xy,x2g27 cc2

o Derivatives:
dig (xa, ya) [Ba, dip (xci,.ya)alQ),(3

dxi dxi

1E+00

1E-01

1 E-02

1 E-03

1 E-04

V[KM Vsts (x y,
Pmutlocalar

Ma

)1

Non-Linear

,y,Z); K(4)) = 4)1/2

cp(x,y,z)
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1 10 100
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15 Solving Poisson's Equation with Moving Least Squares Operators

Poisson's Equation needed for (e.g.)
electrostatics & constraints

O In 2d for data Q on points x,y with
weights w, Vandermonde matrix:

wo1 wWwoyo woxoyollrwo4 o

W1 1 W1X1 Y1 W1X1Y1 W1X1
2 

Yi
2

•
•
•

„,2
NWN1 WNXN WNYN WNXNYN WN-b u,NUN

a0

al

a2

a3

a4

WOW

Wlql

WNqN

• Eqn of the form PA = Q, with solution:

A = [PTP] -1 PTQ

Let: B = [PTP] 1 PT

Then at a point xa,ya

q (x a, y a) = [B,„,0 p (xa, YaLj (2
O with (e.g.) p = (I) xly) xy) x2g2)T

O Derivatives:

dig (xa, ya) 
dxi

p 

'13 

dip (X dxal
i 
ya)a 

7:
(2/3

1E+00

1E-01

o

- 1E-02
2
cc

1 E-03

1 E-04

V[K(VV$1)(x,y,
Pmutlocalar

Ma

)1

Non-Linear

,y,z); K(431) = (1)1/2

cp(x,y,z)
lye in 3D

1 10 100

# of Cells along each axis

2nd Order Convergence + Ulixes
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16 Algorithm Provides Good Scalability

Preconditioner is based on the matrix:

diq (x a, Y a) 
dxi

r dip (x a, y a) al
[Ba'13 dxi

Complications:

. Stencil not known a-priori

B must be well-conditioned

Methodology:

. Apply as a right preconditioner:

JkPk 1Pka.,ck = —Gk

o Inverse computed using ML
Uncoupled Smoothed Aggregation:;zg-

,
5 Levels; Jacobi smoother on )8

coarsest; Gauss-Seidel smoother 1
E

on all others -1=

Good weak scaling to 2x1O7 unknowns
on NERSC Hopper

Q0

N
u
m
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 o
f 
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M
R
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S
 I
te
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ti
on
s 
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17

11
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.1 13.....„.cro—ce'ciiss."13

611ftemeore—r•-

+ First Newton Step Second Newton Step a Total iterations
0  
1E+05 1E+06 1E+07 1E+08

Number of Unknowns

+ Preconditioner Setup First Newton Step
0 Second Newton Step Total time

-I I I I i, I I I-
1E+05 1E+06 1E+07 1E+08

Number of Unknowns



17 How to Precondition a Hyperbolic System?

Build on ideas proposed by Nejat & Olliver-
Gooch (2008)

Non-linear system for hyperbolic problem (theta
discretization):

T(U
n+i)

Approximate the Jacobian as:
(un+1,1c 4_ or uk) (un+l,k)

Ruk Ark

Linearize:

J(uk)suk

o-

-96ta().;
OU

Inverting linearized Jacobian requires:

• Stencil for each cell

O Coupling between unknowns in matrix

O Utilize Roe solver to compute fluxes:

O Entropy fix renders flux differentiable

1st Order Stencil for Cell A1 1 rA

1 rl ie
01?, OF(U„UN1)

nlll 
OUN, OUN,

0Ri (U,, UN2) 

OUN2

0Ri

h212,
OUN2

=0F(Ui,UN3)

= Un+1 — Un + (1 — o)R(Un+l) + R(Un) eUN, eUN3
URi aF(li,UN1) OF(Ui,UN2) „ 0F(Ui,UN3)

+ n2l2 + n313.

For Roe Solver:

OF(Ui,UN1) 1 [OF(UN1) 
aUN,

aF(Ui,uN1) 1 FF(ui) +011.aui 2 L aui

f(;ti)

f (112)

f (113)
f (i14)

/1 ,
f (A) = {,12+62

26 /



18 Eigensystem Preconditioning for Hydrodynamics

Linearized Jacobian as Preconditioner:

Auk)(5uk IL1 — (98ta(
OU 
)1 SU

Compute flux Jacobian from Roe Solver:
ORi OF(U,UN1) . 7

h 
aF(ui,UN1) 1 [aF(UN1) :4-t

ati au, fil au-N, 2  au N 1

f (Al)
f(22)

f (A3)
f (14)

Coupling of unknowns is determined by structure
of flux Jacobian

0 Results in a set of linear, coupled PDE's

Conditioning of matrix is determined by the
eigensystem

o Adjust eigensystem to improve conditioning:
alter dispersion relation(s)

Start with Euler: required for multi-fluids

LAI =;k-'

1

Adiabatic Hydro (Stone 2008)

o
+142 /2 —(7

1

— 3)v, —ry'vy
o

—ry'vz
o

A= —vxvy vy vx 0 0
—Vxyz vz 0 vx 0

—vxH +-y'vxv212 H —71v,vy 71 vxvz
yvx

L=

=(vx — a,vx,vx,vx,vx+ a)

R=

1

vx — a

vy

vZ

H — vxa

Na(ry' v2 /2 + vxa)
—vy
—vz

1 Nay'v2
Na(ry42/2 — vxa)

0 0 1

0 0 Vx

1 0 vy

o 1 Vz

vy Vz v2/2

1

vx + a

vy

vz

H vxa

—Na(y'vx + a) —Nary'vy —Nay'vz Nay'

1 o o
0 0 1 0

ry'vx/a2 ry'vy/a2 ry'vz/a2 —ry'/a2
—Na(y'vx — a) —Nay'vÿ —Nay'vz _



Eigensystem Preconditioner Provides Good Scalability for
19 Compressible Flows

Apply using ML Domain-Decomposition
Smoothed Aggregation with 5 levels:

o Block ILU smoothing with zero
overlap and symmetric Gauss-Seidel
relaxation on each level

O Block size chosen to be II of PDE's in
system.

• ML cycle relaxes residual —0

Timestep chosen so that highest
resolution requires 2 Newton iterations

# of GMRES iterations:

o @Fixed CFL

o r dt1/2 @Fixed Problem size

O —N0.2 with increasing N & CFL

Parallel Scaling:
O Time per GMRES iteration remains fixed

• Off node weak scaling is excellent

7.00E+01

o_
.92 5.25E+01
a)

o_

g 3.50E+01

a)

cc
2 1.75E+01

0.00E+00

6.00E+01

o.

in' 4.50E+01

Ec)
i=
115
o_

cs 3.00E+01

2cc 1.50E+01

HD KHI: Scaling @Fixed CFL

y = 476.27x-01962

100,000 200,000 300,000

# of Unknowns

+ 1st Newton O 2nd Newton Li Total
HD KDI: Scaling @Fixed Problem Size

400,000

y = 221.8X°.5533

0.00E+00
0.000E+00 1.750E-02 3.500E-02

dt

5.250E-02 7.000E-02



Eigensystem Preconditioner Provides Good Scalability for
20 Compressible Flows

Apply using ML Domain-Decomposition
Smoothed Aggregation with 5 levels:

Block ILU smoothing with zero
overlap and symmetric Gauss-Seidel
relaxation on each level

O Block size chosen to be # of PDE's in
system.

• ML cycle relaxes residual —0

Timestep chosen so that highest
resolution requires 2 Newton iterations

# of GMRES iterations:

• —Na2 @Fixed CFL

• —dt1/2 @Fixed Problem size

O —N°.2 with increasing N & CFL

Parallel Scaling:
Time per GMRES iteration remains fixed

• Off node weak scaling is excellent
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HD KHI: First Newton Step

+ 2nd Order 1st Order None
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Number of Unknowns

HD KHI: Second Newton Step
9.00E+01 —

y = 0.3387x, 4308
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y = 1.6799)02057
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dr. .... I - ------------7TD.9487x, 2455
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lieri

+ 2nd Order 1st Order None
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Eigensystem Preconditioner Provides Good Scalability for
21 Compressible Flows

Apply using ML Domain-Decomposition
Smoothed Aggregation with 5 levels:

O Block ILU smoothing with zero
overlap and symmetric Gauss-Seidel
relaxation on each level

O Block size chosen to be II of PDE's in
system.

• ML cycle relaxes residual —0

Timestep chosen so that highest
resolution requires 2 Newton iterations

# of GMRES iterations:

@Fixed CFL

• —dt1/2 @Fixed Problem size

O —N0.2 with increasing N & CFL

Parallel Scaling:
O Time per GMRES iteration remains fixed

• Off node weak scaling is excellent

1.00E+01

1.00E+00

-oo
a)

E

▪ 1.00E-01

1.00E 02

3D HD KHI: Scaling on CU Janus

---X---X

1st Newton 2nd Newton
Total Per GMRES Iteration

1E+04 1E+05 1E+06

1.0 —

0.8

.c 0.6

• 0.4

0.2

# of Unknowns

Weak Scaling on Janus

1E+07 1E+08 1

0.0  
1 10

Number of Cores
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22 Plasma Expansion Benchmark

Mora (2003) provides an analytic model of the
expansion of a plasma into a vacuum

nie =4x108/crn3

T,= 0.03K

1x=-100k1 x=0 x=100),D

Model this process using either a two-fluid
electrostatic model or using a Boltzmann electron
model.

O In both cases, ions include compressibility effects

O In the two-fluid model, electrons are compressible

• Mora (2003) analytic theory assumes cold ions and
Boltzmann electrons.

Compressibility causes transient behavior in the
two-fluid model; at late times, expansion is well-
described by Mora analytic theory once the ion
density is accounted for.

Boltzmann model provides good match to analytic
theory at early times; at late times, compressibility
again plays an important role and acts to accelerate
the plasma beyond the analytic expectation.
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1 23 Single Fluid Magnetohydrodynamic Models

0 p

at + V . (pv) = o 
1

2
0 (pv) + v . [pvvT — BBT + l (13 2+ B )1 =at

OB
+ V • (NTBT — BVT) + V f0 =at

a  ii; 2
+V •E±p±

B
)v—(v•B)B =

at 2

Target:

0 multi-species fluid-plasma
problems

Fundamental model:

hydrodynamics: Navier-Stokes

multiple species: ions,
electrons and neutrals

coupling: chemistry, collisions,
and EM

0 ,

o,

0 ,

Different species have different
timescales:

O Ions, neutrals: slow

O Electrons: fast

Maxwell: really fast

Simplify physics:

O MHD: single fluid, no light waves

O Extended MHD: Ohmic, Hall,
electron inertia physics



1 23 Single Fluid Magnetohydrodynamic Models

0 p

at + V . (pv) = o 
1

2
0(pv) + v . [pvvT — BBT + l (P 2 ' + B )1 = °Ot

OB
+ V • (NTBT — BvT) + Vf0 =

at
0 ,

0  b;
at +V •E±p+—

B2
) v — (v • B) B] = 0 ,
2

Target:

0 multi-species fluid-plasma
problems

Fundamental model:

hydrodynamics: Navier-Stokes

multiple species: ions,
electrons and neutrals

coupling: chemistry, collisions,
and EM

Different species have different
timescales:

Ions, neutrals: slow

Electrons: fast

Maxwell: really fast

Simplify physics:

(0 MHD: single fluid, no light wave)

0 Extended MHD: Ohmic, Hall,
electron inertia physics



1 23 Single Fluid Magnetohydrodynamic Models

0 p

at + V . (pv) = o 
1

2
0 (pv) + v . [pvvT — BBT + l (13 2+ B )1 =at

OB
+ V • (NTBT — BVT) + V f0 =at

a  ii; 2
+V •E±p±

B
)v—(v•B)B =

at 2

Target:

0 multi-species fluid-plasma
problems

Fundamental model:

hydrodynamics: Navier-Stokes

multiple species: ions,
electrons and neutrals

coupling: chemistry, collisions,
and EM

0 ,

o,

0 ,

Different species have different
timescales:

O Ions, neutrals: slow

O Electrons: fast

Maxwell: really fast

Simplify physics:

O MHD: single fluid, no light waves

O Extended MHD: Ohmic, Hall,
electron inertia physics



24 Constraint Preservation for ldeal MHD
1

Essential to preserve ap
solenoidal constraint on the at + v • (PAT) = 

0 ,

magnetic field:

O Introduce an additional 
0 (pv) + 

V— .73 [pvvT — BBT + I ( + B2
Ot 

)] = 0 ,
I

equation describing OB 

constraint at + V • 
(VW' — BATT ) + v 0 = 0 , 1

O Augmented system carries 0E 

at 
+ v • [(E + p + E12) v - (AT - 13) B] = 0 ,

two additional modes 
2

o m 00 
odes are decoupled into a at + chy • B

2x2 linear hyperbolic system

=

Godunov flux of this system can be

0Bx 00 computed exactly by: I
Ot Ox 

B; = Bx'L + Bx'R 1 (OR 0 L) , 0 (BX,R — BX,L) I
01, + O R 

00 2 0Bx 2 2ch 2 c2h

—Ch 
Ot Ox Modified states are used to calculate

solution to Riemann problem using standard
solver

1



25 How to Precondition a Hyperbolic System?

Build on ideas proposed by Nejat & Olliver-
Gooch (2008)

Non-linear system for hyperbolic problem (theta
discretization):

T(U
n+i)

Approximate the Jacobian as:
(un+1,1c 4_ or uk) (un+l,k)

Ruk Ark

Linearize:

J(uk)suk

o-

-96ta().;
OU

Inverting linearized Jacobian requires:

• Stencil for each cell

O Coupling between unknowns in matrix

O Utilize Roe solver to compute fluxes:

O Entropy fix renders flux differentiable

1st Order Stencil for Cell A1 1 rA

1 rl ie
01?, OF(U„UN1)

nlll 
OUN, OUN,

0Ri (U,, UN2) 

OUN2

0Ri

h212,
OUN2

=0F(Ui,UN3)

= Un+1 — Un + (1 — o)R(Un+l) + R(Un) eUN, eUN3
URi aF(li,UN1) OF(Ui,UN2) „ 0F(Ui,UN3)

+ n2l2 + n313.

For Roe Solver:

OF(Ui,UN1) 1 FOF(UN1) 

[aUN, aUNI
aF(Ui,uN1) 1 FF(ui) +011.aui 2 L aui

f(;ti)

f (112)

f (113)
f (i14)

/1 ,
f (A) = {,12+62

26



26 Eigensystem Preconditioning for MHD

Linearized Jacobian as Preconditioner:

j(u-k)juk IL1 — 06ta(
OU 
)1 SU

Compute flux Jacobian from Roe Solver:
ORi OF(Ui,UN1) ;;. 7 aF(ui,UN1) 1 [aF(UN1) 
OUNi au, filth 

u 
n 
u 
rr
N1 2 a UNl

f (Al)
f (22)

f (A3)
f (14)

LAI =;k-'

A

Adiabatic MHD (Mignone 2010)

1 Vx P 0 0 0 0 0 0 0 \

0 vx 0 0 0 Bylp Bz/p 11 p 0

0 0 vx 0 0 —Bx/p 0 0 0

0 0 0 vx 0 0 —Bx/p 0 0

A,, = 0 0 0 0 0 0 0

0 By —Bx 0 0 x 0 

0 1

v 0 0

0 Bz 0 —Bx 0 0 vx 0 0

0 Fp 0 0 0 0 0 vx 0

0 0 0 0 c2h 0 0 0 0 /

Al 9 = TCh
A2,8 cf , A3'7 — vx Ca , A4'6 =vx ï Cs , A5 = vx ,

Coupling of unknowns is determined by structure
of flux Jacobian 0

Pal'

-Cfa f

0

0

pas

—asc,

1

0

pas

asc,

0

0

pa f

Cfaf

0 \

0

0 Results in a set of linear, coupled PDE's
0
0

as coyS

ascsi3S

_ P=
Jti
Rs
./i

—a f c AS

—a fcf 0,5

0

0

a fc f f3,S

a fc,n3S

_ P.
'‘/
Rs
./

—ascsi3,S

—ascsi3S

0

0

Conditioning of matrix is determined by the R = 1 0 0 0 0 0 0 0 1

eigensystem
0

0
as.VioaOy

as „gal3s

--VO.. —af '005

VP, —a f V7)03.,

0

0

—af A/79a0y

—af .‘/Toaf3

VP. asA/igat3y

— VI3y a, Vioal3.,

0

0

° Adjust eigensystem to improve conditioning:
alter dispersion relation(s)

0

\ -Ch
afrp

O
0

O
asrp

O
0

O
asFp

O
0

O
afrp

O
0
Ch )



27 Decreased Scalability for Magnetized Compressible Flows

Apply using ML Domain-Decomposition
Smoothed Aggregation with 5 levels:

O Block ILU smoothing with zero overlap
and symmetric Gauss-Seidel relaxation on
each level

O Block size chosen to be # of PDE's in
system.

Examine scaling of system:

• # of GMRES iterations for first Newton
iteration shows good scalability with
increasing N & CFL: —N°.2

• # of GMRES iterations for second
Newton iteration shows reduced scalability
with increasing N & CFL: —N°.3

# of GMRES iterations:

• —N° @Fixed CFL

O —0.9 @Fixed size for 2nd Newton
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28 Decreased Scalability for Magnetized Compressible Flows

Apply using ML Domain-Decomposition
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29 Decreased Scalability for Magnetized Compressible Flows. Why?

Linearized Jacobian as Preconditioner:

Auk)(5uk IL1 — 06ta(
OU 
)1 SU

Compute flux Jacobian from Roe Solver:
ORi OF(Ui,UN1) . 7

h 
aF(ui,UN1) 1 [aF(UN1)

t
OUNI au, fil aUN, 2 auN,

f (21)
f (22)

IAI = k ,
f (23)

f (24)

Not all eigensystems are created equal.

O Even if eigenvectors are orthonormal and
reproduce Jacobian

O Precise details of eigensystem (regularization)
determines scalability

o Replace highlighted elements of right-
eigenvectors with those from Stone (2008)

A

Adiabatic MHD (Mignone 2010)
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30 Eigensystem Preconditioning for MHD

Linearized Jacobian as Preconditioner:

[1 — 96tDR(
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O Replace highlighted elements of right-
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31 Eigensystem Preconditioning for MHD

Linearized Jacobian as Preconditioner:

Auk)(5uk IL1 — (98ta(
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Compute flux Jacobian from Roe Solver:
ORi OF(Ui,UN1) ‘,; 7

h 
aF(ui,UN1) 1 [aF(UN1) 

t 
OUNi au, fil 

aUN, 2 auN,

f (21)
f(22)

LA I = ;Y-1
f (23)

f(24)

Not all eigensystems are created equal.
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o Replace highlighted elements of right-
eigenvectors with those from Stone (2008)
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32 Decreased Scalability for Magnetized Compressible Flows

Apply using ML Domain-Decomposition
Smoothed Aggregation with 5 levels:

O Block ILU smoothing with zero overlap
and symmetric Gauss-Seidel relaxation on
each level

O Block size chosen to be # of PDE's in
system.

Examine scaling of system:

O Not all eigensystems are created equal!

O Precise details of eigensystem
(regularization) determines scalability.

O Stone et al. (2008) eigensystem restores
scalability observed in hydrodynamic
system:

O Decrease tolerance by xl00

o —Na22 with increasing N & CFL
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33 Decreased Scalability for Magnetized Compressible Flows

Apply using ML Domain-Decomposition
Smoothed Aggregation with 5 levels:

0 Block ILU smoothing with zero overlap
and symmetric Gauss-Seidel relaxation on
each level

0 Block size chosen to be # of PDE's in
system.

Route to an optimal solver:

Non-linear convergence to this point
determined by F(U) 2 < tO/

At each Newton iteration, we require that
the linear solve converges to a fixed
tolerance.

If we adjust the non-linear convergence
criteria to: IIG(x0M2 < ea + erMG(012
Linear solver: 11Jkåxk + G(xk)112 < 6cMG(xlc)1 2,
Solver performance approaches optimal
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MHD KHI: Second Newton Step
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Obtain 2nd Order Convergence for Non-Linear Circular Polarized
34 Alfven Waves in MHD

Circularly Polarized Alfven
Wave:

Exact, non-linear solution
to ideal MHD equations

Extremely useful for:

Diagnosing faults in
numerical scheme (see e.g.
Beckwith & Stone, 2011)

Demonstrating overall
2nd order accuracy

Divergence errors are
included in RMS error

Pseudocolor
Var: fluids/current_2

-0.00063 -0.00031 0.0

Max: 0.00063
Min: -0.00063

0.00031 0.00063

1111111

Current normal to plane of wave
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to ideal MHD equations
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35 Preservation of Solenoidal Constraint: Field Loop Advection

Gardiner & Stone (2005, 2008):
discriminating test of a schemes
ability to preserve solenoidal
constraint is advection of a weak
magnetic field loop in multi-
dimensions:

o Evolution of component of
field normal to loop is
governed by degree to which
solenoidal constraint is
preserved by
scheme

o Violations of constraint
typically lead to exponential
growth of normal field

Solve using MUSCL with 2nd
order accurate spatial
reconstruction, 2nd order time-
integration.

Evolution of Magnetic Energy for Field Loop Advection Test

1.00
.-CT2)
rS) 0.96

• 0.92
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36 Preservation of Solenoidal Constraint: Field Loop Advection

Gardiner & Stone (2005, 2008):
discriminating test of a schemes
ability to preserve solenoidal
constraint is advection of a weak
magnetic field loop in multi-
dimensions:

0 Evolution of component of
field normal to loop is
governed by degree to which
solenoidal constraint is
preserved by
scheme

0 Violations of constraint
typically lead to exponential
growth of normal field

Solve using MUSCL with 2nd
order accurate spatial
reconstruction, 2nd order time-
integration.
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Scheme can Handle Transition from Linear to
37 Non-Linear Regimes in Transonic Flows

Kelvin-Helmholtz instability
provides a useful test of
solver capability for non-
linear compressible flows

Magnetized version of this
problem involves magnetic
field amplification

Solver is capable of
evolving instability into
non-linear regime

Magnetic field
amplification by factor
—10.

c 

Pseudocolor
Var: fluidskl_O
it 2.200
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1 500
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Max: 2.187
Min: 0.8751

Time=7,5

Density
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Scheme can Handle Transition from Linear to
38 Non-Linear Regimes in Transonic Flows

Kelvin-Helmholtz instabilit
provides a useful test of
solver capability for non-
linear compressible flows
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39 Two-Fluid Plasma-Electromagnetic Models

Opt +v .[piUd = O;at
OpiUi
 +V •[pUiUi + Pi] = Ri+niqiE + tlixB;
Ot
aei

+V •[Ui • (ei+ Pi)] = V •Ri+Qi+ 4 • E
at

OE
c2VxB=

dt

Target:

0 multi-species fluid-plasma
problems

Fundamental model:

hydrodynamics: Navier-Stokes

multiple species: ions,
electrons and neutrals

coupling: chemistry, collisions,
and EM

Ei Ji dB

E
 ; 

Ot 
+VxE=0

o 

Different species have different
timescales:

Ions, neutrals: slow

Electrons: fast

Maxwell: really fast

Simplify physics:

Two-Fluid: only ions, electrons

Two-fluid in MHD-like form:
Ohmic, Hall, electron inertia
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40 Two-Fluid in MHD-like Form
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41 Reformulate Multi-Fluid Model: Take Advantage of MHD Eigensystem

rn, 
p,E J, x B =

2c t

1  °SE EM 
+ V • TEM

a

• E =
a

DEEM

ot
V • SEM

Use Maxwell's equations to rewrite:

• Lorentz force in terms of conservation
of EM stress.

• Work-done in terms of conservation
of EM energy

Allows reformulation of total momentum
equation as a conservation law without
source terms.

Rewrite two-fluid equations in MHD-like
form:

• Reuse MHD preconditioner

SEM
E x B

1 I FE
TEM =  + BB +TEEM

[to e2

1
EEM — 

(1E2 
+B2po c2

o Incorporate:
• uxB term

• Resistive physics

• Hall physics

o Electron inertia

o Compute multi-fluid shocks in range of
regimes using single solver framework:

• Ideal MHD

O Hall MHD

O Extended MHD

2
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rn, 
p,E J, x B =

2c t

1  °SE EM 
+ V • TEM

a

• E =
a

DEEM

ot
V • SEM

Use Maxwell's equations to rewrite:

[. Work-done in terms of conservation
of EM energy

)Lorentz force in terms of conservation
of EM stress.

Allows reformulation of total momentum
equation as a conservation law without
source terms.

Rewrite two-fluid equations in MHD-like
form:

Reuse MHD preconditioner

SEM
E x B

1 I FE
TEM =  + BB +TEEM

[to e2

1
EEM — 

(1E2 
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o Incorporate:
• uxB term

• Resistive physics

• Hall physics

o Electron inertia

o Compute multi-fluid shocks in range of
regimes using single solver framework:

• Ideal MHD

O Hall MHD

O Extended MHD
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42 Reformulate Multi-Fluid Model: Take Advantage of MHD Eigensystem
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Use Maxwell's equations to rewrite:

• Lorentz force in terms of conservation
of EM stress.

• Work-done in terms of conservation
of EM energy

Allows reformulation of total momentum
equation as a conservation law without
source terms.

Rewrite two-fluid equations in MHD-like
form:

• Reuse MHD preconditioner
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o Incorporate:

• uxB term

• Resistive physics

• Hall physics

o Electron inertia

o Compute multi-fluid shocks in range of
regimes using single solver framework:

• Ideal MHD

O Hall MHD

O Extended MHD
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of EM stress.
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o Incorporate:

• uxB term

• Resistive physics

• Hall physics

o Electron inertia

o Compute multi-fluid shocks in range of
regimes using single solver framework:

• Ideal MHD

O Hall MHD

O Extended MHD



43 Reformulate Multi-Fluid Model: Take Advantage of MHD Eigensystem
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Use Maxwell's equations to rewrite:

• Lorentz force in terms of conservation
of EM stress.

• Work-done in terms of conservation
of EM energy

Allows reformulation of total momentum
equation as a conservation law without
source terms.

Rewrite two-fluid equations in MHD-like
form:

• Reuse MHD preconditioner
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o Incorporate:

• uxB term

• Resistive physics

• Hall physics

o Electron inertia

o Compute multi-fluid shocks in range of
regimes using single solver framework:

• Ideal MHD

O Hall MHD

O Extended MHD
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Use Maxwell's equations to rewrite:

• Lorentz force in terms of conservation
of EM stress.

• Work-done in terms of conservation
of EM energy

Allows reformulation of total momentum
equation as a conservation law without
source terms.

Rewrite two-fluid equations in MHD-like
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• Reuse MHD preconditioner
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o Incorporate:

• uxB term

• Resistive physics

• Hall physics

o Electron inertia

o Compute multi-fluid shocks in range of
regimes using single solver framework:

• Ideal MHD

• Hall MHD

O Extended MHD



44 Controlling Numerical Charge Separation
De
ns
tt
y 
(
M
a
s
s
/
L
e
n
g
t
h
;
 C
h
a
r
g
e
/
L
e
n
g
(
h
)
 

1.0

0.8

0.4

0.2

0.0

Time=O
Curve

_VCI.C.1020hca DensIly).0

CLrve
Vat 0on  Dentty)23.27

arve
-Vac-Cher. Saparchon

0.3

TIme=0.00290849
ae

Vgce  Deraily)4.27

Curve
-Var.-Charge Seperelion

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
Position (Length) Position (Length)

0.90 1 00

Time=0.00290849
.ve

_Vor..2.12.2son Dendly).70

Curve
Van 0on  Derally.0.27

rve
Var.Sdharge

0.10 0.20 0:30 0.40 0 50 0.60 0.20 0.90 13.0 1.00
Position (Length)

Figure 1: Evolution of a two fluid (ion and electron) contact discontinuity. The left panel shows the initial condition, the center panel the evolution of
the discontinuity for stationary fluids and the right panel the evolution when the fluids advect. Numerical diffusion results in a net charge being
created in the static case, while the same numerical effect results in a net current (and hence an electric field) being created in the advecting case.

r Problem: two fluid contact discontinuity (a discontinuity in plasma density at
constant pressure).

o Initial state is charge neutral, with an ion to electron mass ratio of 1/1836.

Fluids are at constant pressure: no force acting on the gas

• Temperatures of the ions and electrons are different

o Upwind finite volume scheme: numerical diffusion is applied in a fashion
proportional to the sound speed

o After ten sound crossing times; the ions and electrons have spread out on the
grid due to numerical diffusion, forming a net charge.
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d
r

1.5 -

1.0 -

0.5 -

0.0

-0.5 -

Time=0.00290849
Curve
Va r: (Electron Density)x270

Curve
Var: (ion Density)x0.27

Curve
Var: Charge Separation

11 1 11 1 1 II 1 11 1 11 1 11 1 11 1 1 11 1 11 1 11 1 11 1 11 1 11 1 1 11 1 11 I 11 1 1 11 1 11 1 1 11 1 11 1 11 1 11 1 11 1 1 11 1 11 1

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
Position (Length)

- 1 ,—„,,,
0.90 1.00



47 Controlling Numerical Charge Separation

1.5 -

1.0 -

0.5 -

0.0 - 0

Time=0.00290849
Curve
Var: (Electron Density)x270

Curve
Var: (lon Density)x0.27

Curve
Var: Charge Separation

CL1 rve
Var: Parallel Electric Field

-0.5 -

i i 1 1 1 1 1
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Position (Length)



48 Controlling Numerical Charge Separation
Time=0.00290849

,%.'1'71ertrori Dently)8270

 ,:ereuy/0.27

curve
—tee-Conroe Separalian

910 0.20 0.50 0.40 0.50 950 920 980 0.90 I MO
Position (Length)

1.5

1.0

0.5

0.0

0.5

Time=0.00290849

,5ralectrce Der1.470

 Cerully110.27
Curve

_Vecl:luerge Separafien

0.10 0.20 0.30 0.40 0.50 0.60 070 0.80 0.90 1.00
Position (Length)

Time=0.00290849

ron Denily)x210

 ,-enely/0.27
Curve
tzSrearge Separatice
%re
Ceerrprel Elec. F.

0 0.20 950 0.40 950 950 920 950 0.90 1.00
Position (Length)

Figure 2: Evolution of a two fluid (ion and electron) contact discontinuity. The left panel shows the evolution for stationary ion and electron fluids
using equal temperatures and the HLLE Riemann solver, the center panel the evolution for stationary ion and electron fluids using unequal
temperatures and the HLLC Riemann solver and the right panel the evolution for the HLLC case where the fluid advects.

Problem: two fluid contact discontinuity (a discontinuity in plasma density at
constant pressure).

• Initial state is charge neutral, with an ion to electron mass ratio of 1/1836.

- Fluids are at constant pressure: no force acting on the gas

• Temperatures of the ions and electrons are different

Upwind finite volume scheme: numerical diffusion is applied in a fashion
proportional to the sound speed

O Contact discontinuity is now resolved by the scheme, numerical charge separation
effects removed.
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52 Benchmark Problems: Magnetized Shock Tube
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Example problems:

0 Classic Trio-Wu' shock-tube:

• MHD regime

O Hall MHD regime

O Multi-fluid regime

0 Electron/Ion shear instabilities:

• Ions linearly unstable to Kelvin-Helmholtz

• Electrons non-linearly unstable.
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0 Example problems demonstrate:

• MHD-like formulation reduces spurious
divergence errors in electric field.

O Pre-conditioner can handle CFL's > 1000

O Multi-fluid Reformulation can handle
separate ion and electron dynamics

o Classic KH modes in the mass density
(ion motion)

0 Generation of magnetic islands (electron
motion)



531 Benchmark Problems: Electron-lon Shear Instability
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Example problems:

0 Classic Trio-Wu' shock-tube:

• MHD regime

O Hall MHD regime

O Multi-fluid regime

0 Electron/Ion shear instabilities:

• Ions linearly unstable to Kelvin-Helmholtz

• Electrons non-linearly unstable.
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0 Example problems demonstrate:

o MHD-like formulation reduces spurious
divergence errors in electric field.

o Pre-conditioner can handle CFL's > 1000

o Multi-fluid Reformulation can handle
separate ion and electron dynamics

o Classic KH modes in the mass density
(ion motion)

o Generation of magnetic islands (electron
motion)



54 Example Pulsed Power Application: Plasma Opening Switch
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Semi-Implicit two-fluid simulation of plasma opening switch:

0 Penetration of EM field into the plasma controlled by non-linear electron MHD
shear instability (Richardson et al., 2016)

° Boundary conditions play a key role.



55 Example Application: Dense Plasma Focus

Mechanisms for pinch formation, ion acceleration
and subsequent neutron production in Dense
Plasma Focus are not well-understood
Li et al. (LANL report, 2016):

O Report high fidelity MHD simulations of a
DPF geometry

O Shear layer between the magnetized region and
unmagnetized region drives the onset of a
Kelvin-Helmholtz-type instability

o Ions are accelerated by local electromotive
forces according to:
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56 Prototype Pulsed-Power Problem: Plasma Shear Instabilities

Understanding how the electromagnetic
field penetrates into the plasma is a key
aspect of understanding the operation
of the plasma opening switch

O By studying this as a prototype
problem physics, we can remove the
influence of boundary conditions

Allows us to probe differentphyics
using an well-understood problem so that
we can investigate:

O Compressibility (transonic flows)/

O Magnetic field amplification & x
turbulent energy cascades

O Dynamo activity (two-fluid flows)

0 Electrons can be KHI unstable
when ions are stabk

O Relativistic (finite Lorentz factor)
effects

z

 *
y

Salvesen et al. (2014)

Po
P2

Bo ®
1u21 = uo

Region 2

Po

P1

Bo ®

lui I = (Jo
Region 1

Po

P2

Bo ®

1(121 = (Jo
Region 2

Z = Zo

pi = 2p2; Uo = O. 1 csi ; Bo = 2Po

z = 0

Z = — Zo



57 Electron Shear Instabilities with Electrostatic Diagnostics
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Electron shear instabilities:

o Stationary ions (provide charge neutrality)

o Electron shear flow: linearly unstable to Kelvin Helmholtz instability

Enables study of EM penetration into plasma (Plasma Opening Switch)

Parameters chosen so that electron inertial length scale is size of domain, e.g. shear layer
scale << electron inertial length

Electric potential computed based on charge separation as diagnostic.

Results:

• Transonic EKH: E-field amplified to —10% of transverse kinetic energy

o Subsonic EKH: E-field amplified to equipartition with transverse kinetic energy

8 10



Electron Shear Instabilities with Electron-lon Collisions and Full-Wave
58 Electromagnetics

Subsonic EKH: electric field amplified to equipartition with transverse kinetic
energy, implies that generated electric field can influence formation of shear flow

• If curl of electric field is non-zero, implies generation of magnetic field

We have re-run the Mach 0.1 calculation using a multi-fluid model in MHD-like
form with a full-wave EM solver

Results: energy density in EM-fields exceeds that of the transverse kinetic energy:

O Characteristic vortices form within electron density and velocity

• EM dynamics exhibit high frequency Langmuir-like oscillations

• B-field spatial colocated with electron vortices
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Electron Shear Instabilities with Electron-lon Collisions and Full-Wave
59 Electromagnetics

Subsonic EKH: electric field amplified to equipartition with transverse kinetic
energy, implies that generated electric field can influence formation of shear flow

(3 If curl of electric field is non-zero, implies generation of magnetic field

We have re-run the Mach 0.1 calculation using a multi-fluid model in MHD-like
form with a full-wave EM solver

Results: energy density in EM-fields exceeds that of the transverse kinetic energy:

O Characteristic vortices form within electron density and velocity

• EM dynamics exhibit high frequency Langmuir-like oscillations

• B-field spatial colocated with electron vortices
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60 Can Simulations of Magnetized Turbulence Tell Us Anything?

Simulations of turbulence can
rarely resolve the dissipation
scale. How can we trust them?

Verify simulations with
unresolved dissipation
against resolved case.

Test:

Compare converged ILES
simulations of decaying
KHI using ILES with
DNS simulations.

0 Convergence for ILES:
shape of power spectrum
unchanged with 2x
increase in resolution.

Pseudocolor
Var: bsiss
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0.1000
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0E101000
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X

Salvesen, Beckwith et al. (2014)



Convergence Can Only
61 Tell Us So Much

Simulations of turbulence
can rarely resolve the
dissipation scale. How can 1 o-2

we trust them? -2
--• 1 o-3

Verify simulations with co LU

unresolved dissipation 1 o-4
against resolved case.

Test: 1 0-5

0 Compare converged
ILES simulations of
decaying KHI using ILES
with DNS simulations.

0 Convergence for ILES:
shape of power spectrum 1 o-5
unchanged with 2x
increase in resolution.
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Verification of ILES Simulation
62 Against DNS Simulation

Simulations of turbulence
can rarely resolve the 102

dissipation scale. How can 103
we trust them?

Verify simulations with 10 4

unresolved dissipation 105
against resolved case.

Add Navier-Stokes shear
viscosity and Ohmic
resistivity to decaying
turbulence model.

Power spectrum obtained is
a precise match, but with a
2x lower effective resolution.
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Non-Linear MHD Turbulence
63 Cross-Code Benchmark

Simulations of turbulence can
rarely resolve the dissipation
scale. How can we trust them?

- Verify simulations with
unresolved dissipation
against resolved case.

Add Navier-Stokes shear
viscosity and Ohmic resistivity
to decaying turbulence model.

More recently, we have
developed analysis tools for
energy transfer in MHD
turbulence that enable both
cross-code comparison and
comparison against analytic
theory across a range of Mach
numbers.
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Left: Magnetic & Kinetic energy power spectra as a
function of wavenumber for driven subsonic ideal MHD

turbulence computed using two finite volume MHD
schemes (Grete et al. 2017).

Below left: Cross-scale energy fluxes in the inertial
range for driven subsonic ideal MHD turbulence

computed using two finite volume MHD schemes (Grete
et al. 2017).

Below right: Results for the same physical setup
computed using spectral and analytic approaches

(Debliquy et al. 2005).
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Key questions in pulsed power are plasma physics problems that benefit
from multi-scale solvers.

Non-linear physics addressed by Jacobian-Free Newton-Krylov (JFNK)
solvers adapted developed by DoE/NNSA efforts.

Performant JFNK solvers require preconditioning:
0 Developed eigensystem-based preconditioning (linearize Jacobian):
performant for compressible MHD

c Eigensystem-based scheme adaptable to resistive, Hall MHD and
compressible multi-fluids

Developed a range of benchmark problems relevant to pulsed power
applications

Investigated behavior of shear flows coupled to electromagnetic fields to
understand the physics operating in plasma switches, dense plasma focus

Begun developing methods for validating simulations of magnetized
turbulence that can be used to understand how energy is transferred
between scales in the turbulence.



65 Beyond 2nd Order Accuracy...

Verification that HO algorithms pass
standard benchmarks for (e.g.) MHD:

• Includes rigorous tests that divergence-
free constraint is preserved in three-
dimensions

• Extensive test-suite developed by a
range of communities including
astrophysics, fusion, etc.

MHD-turbulence is three-dimensional and
non-linear:

• Requires careful analysis and
benchmarking to demonstrate that
algorithm can reproduce established
results
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Non-Linear MHD
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Left: Magnetic & Kinetic energy power spectra as a
function of wavenumber for driven subsonic ideal MHD

turbulence computed using two finite volume MHD
schemes (Grete et al. 2017).

Below left: Cross-scale energy fluxes in the inertial
range for driven subsonic ideal MHD turbulence

computed using two finite volume MHD schemes (Grete
et al. 2017).

Below right: Results for the same physical setup
computed using spectral and analytic approaches

(Debliquy et al. 2005).
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Why Does (Non-Linear) (MHD) Turbulence
66 Need Special Attention?
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Answer: painful experience:

0 e.g. magneto-rotational instability
(MRI, Balbus & Hawley, 1991).

Compare 3 different methods of
computing EMF for induction
equation (Flock et al., 2010):

OB

at + v • 
(VBT — BVT) + V/i) = 0

12

0 All pass standard benchmark test
suite

All produce similar non-linear
saturation level

One of these methods is producing
numerical garbage.

0 Which one?
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Why Does (Non-Linear) (MHD) Turbulence
67 Need Special Attention?

Answer: painful
experience:

e.g. Kelvin-Helmholtz

Compare numerical
schemes at fixed Reynolds
# and a range of
resolutions ecoanet et al.,
2015):

Linear growth compares
well.

Non-linear regime?
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Why Does (Non-Linear) (MHD) Turbulence
67 Need Special Attention?

Answer: painful
experience:

O e.g. Kelvin-Helmholtz

Compare numerical
schemes at fixed Reynolds
# and a range of
resolutions (Lecoanet et al.,
2015):

O Linear growth compares
well.

O Non-linear regime? IT
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68 High Order Schemes: Physics Verification

Large amounts of work have gone into
produce test suites that benchmark
algorithms

Examine convergence of sound waves
in 1D/2D/3D:

• Excellent quantitative test of the
accuracy and convergence of
algorithm

• Sensitive to both diffusion and
dispersion errors

• Very good at detecting coding bugs

Shock tubes:

O Examines codes ability to reproduce
jump conditions

O Extend to multi-dimension:
preservation of symmetry, allow
measurement of numerical
diffusivity through comparison to ld
tests

7

G. 0

00
oi

C.;_ 2 0 . 4 Q. ti

Are these tests sufficient?
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69 High Order Schemes: Physics Verification

No: we want to understand how algorithms
impact performance for 'real scientific
applications'

This kind of study has been performed by
the compressible turbulence community,
see Johnsen (2009); Kritsuk (2011)

Example: Shu-Osher problem

• 1D idealization of shock-turbulence
interaction in which a shock propagates
into a perturbed density field.

• Test the capability of an algorithm to
accurately capture a shock wave, its
interaction with an unsteady density
field, and the waves propagating
downstream of the shock.

• Allows probe of non-linear behavior of
an algorithm on a well-defined problem.

• DG-based AV methods seem to under-
resolve the interaction of the shock
wave with the density field, even at high
order (Yu et al. 2014)
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70 High Order Schemes: Physics Verification

No: we want to understand how
algorithms impact performance for 'real
scientific applications'

This kind of study has been performed by
the compressible turbulence community,
see Johnsen (2009); Kritsuk (2011)

Example: Shu-Osher problem

• 1D idealization of shock-turbulence
interaction in which a shock propagates
into a perturbed density field.

4.5 -

3.5 -

2.5

1.5

0.5

Density

-4 -2 0 2 4

x

Table 1
Estimated number of operations required to compute the convective terms per grid point per Runge-Kutta substep. The order of accuracy of the central

Test the capability of an algorithm to difference and WENO schemes are included in parentheses. For the Stan codes, the 11 Runge-Kutta evaluations march the solution forward by two time steps.
For the ADPDIS3D code, the spatial central base scheme is employed at even( Runge-Kutta substep, but the WENO filter step is only employed after the

•accurately capture a shock wave, its completion of the full time step.

interaction with an unsteady density
Code # RK eval. # Derivative eval. (1st and 2nd) # Ops/grid point

Stan 11/2 24 and 42 1900

field, and the waves propagating Stan-I
Central difference (6)

11/2
4

24 and 42
33 and 0

1900
1100

downstream of the shock. Central difference (8)
WENO (5)

4
4

33 and 0
15 and 0

1600
3100

WENO (7) 4 15 and 0 6200

• Allows probe of non-linear behavior of
an algorithm on a well-defined problem.

• DG-based AV methods seem to under-
resolve the interaction of the shock
wave with the density field, even at high
order (Yu et al. 2014)
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71 High Order Schemes: Physics Verification

We want to understand how algorithms
impact performance for 'real scientific
applications'.

This kind of study has been performed by
the compressible turbulence community, see
Johnsen et al. (2009); Kritsuk et al. (2011)

Example: Shu-Osher problem

• 1D idealization of shock-turbulence
interaction in which a shock propagates
into a perturbed density field.

• Test the capability of an algorithm to
accurately capture a shock wave, its
interaction with an unsteady density field,
and the waves propagating downstream
of the shock.

o Allows probe of non-linear behavior of
an algorithm on a well-defined problem

• DG-based AV methods seem to under-
resolve the interaction of the shock wave
with the density field, even at high order
(Yu et al. 2014)
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72 High Order Schemes: Physics Verification

We want to understand how algorithms
impact performance for 'real scientific
applications'.

This kind of study has been performed by
the compressible turbulence community, see
Johnsen et al. (2009); Kritsuk et al. (2011)

Example: Shu-Osher problem

• 1D idealization of shock-turbulence
interaction in which a shock propagates
into a perturbed density field.

• Test the capability of an algorithm to
accurately capture a shock wave, its
interaction with an unsteady density field,
and the waves propagating downstream
of the shock.

o Allows probe of non-linear behavior of
an algorithm on a well-defined problem

• For smooth flows, nodal DG methods
appear to have larger L2 errors than
equivalent order FV schemes and
requires more DoF (Noguiera et al. 2009)

6.1.3. Results Figure 10 presents a comparison of the convergence performance of the
analyzed discretizations. The L2 errors and convergence rates are broken down in tables V, VI
and VII
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Figure 10. Convergence comparison for different reconstruction/polynomial orders

4th order

hItto
dofs
DG

Error
DG

Order
DG

dofs
FV-MLS

Error
FV-MLS

Order
FV-MLS

1

0.5

0.25

1600

6400

25600

5.80 E-08

3.75 E-09

2.38 E-10

-

3.95

3.98

900

3600

14400

2.02 E-08

1.25 E-09

7.89 E-11

-

4.01

3.99

Table V. Convergence rates for the Ringleb flow and fourth order discretizations.



73 High Order Schemes: Physics Verification

We want to understand how algorithms
impact performance for 'real scientific
applications'.

This kind of study has been performed
by the compressible turbulence
community, see Johnsen et al. (2009);
Kritsuk et al. (2011)

Example: Shock-vorticity/entropy wave
interaction

o Generalization of the Shu-Osher
problem to two-dimensions.

o Interaction of a vorticity/entropy
wave with a normal shock

o Reveal algorithmic sensitivities to
multi-dimensional effects.

O For sufficiently large amplitudes of
incidence, significant post-shock
oscillations can be produced that are
a numerical artifact
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74 High Order Schemes: Physics Verification

We want to understand how algorithms
impact performance for 'real scientific
applications'.

This kind of study has been performed
by the compressible turbulence
community, see Johnsen (2009); Kritsuk
(2011)

Example: Decay of compressible
isotropic turbulence

Probe methods ability to handle
`randomly' distributed shocklets as well
as the accuracy for broadband motions
in the presence of shocks.

Measurements of large scale flow
properties (e.g. enstrophy) and power
spectra allow for detailed comparison
between performance of the numerical
methods

DG computations of similar problems
appear to show existence of small-
scale bottlenecks c.f. reference DNS
computations
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75 High Order Schemes: Physics Verification

We want to understand how algorithms
impact performance for 'real scientific
applications'.

This kind of study has been performed
by the compressible turbulence
community, see Johnsen (2009); Kritsuk
(2011)

Example: Decay of compressible
isotropic turbulence

o Probe methods ability to handle
`randomly' distributed shocklets as well
as the accuracy for broadband motions 100 

in the presence of shocks. 10-2

o Measurements of large scale flow 10-4

properties (e.g. enstrophy) and power
spectra allow for detailed comparison 

10-6

between performance of the numerical 10-8

methods 110---:1411

computations (Yu et al. 2014) 
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