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Wind energy
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Wind energy

Challenges

o High initial investment costs

fa Noise pollution from wind-turbines

o Intermittent and unreliable, or "non-dispatchable"
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Dispatchable energy

o A reliable supplier of energy

se Provides load matching, cover for intermittent sources

o Examples of dispatchable plants: hydroelectricity, biomass, coal
plants, concentrated solar (semi-dispatchable), nuclear, natural gas
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Dispatchable energy

o A reliable supplier of energy

se Provides load matching, cover for intermittent sources

o Examples of dispatchable plants: hydroelectricity, biomass, coal
plants, concentrated solar (semi-dispatchable), nuclear, natural gas

o Wind is highly intermittent and not dispatchable
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Introduction to the problem

Description:

o Bid a promised amount of energy for the day-ahead market

o Provide that energy using (co-located) wind and conventional
generator
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Introduction to the problem

Description:

a Bid a promised amount of energy for the day-ahead market

o Provide that energy using (co-located) wind and conventional
generator

co Large penalty for not meeting promise

o Wind is cheap but highly stochastic

Not looking at: ancillary services, spinning reserve, intra-day market

Bismark Singh (Sandia) Wind Generator Hybrid May 9, 2018 7 / 27



Contents

Optimization models

Bismark Singh (Sandia) Wind Generator Hybrid May 9, 2018 8 / 27



Two optimization models:

Decisions for each hour: (i) how much energy to promise, and (ii) how

much energy to schedule from conventional generator

• •
•• ••••

• Max profit &
• Input be reliable
• 
• • • •• •

Deterministic
forecast for
energy prices

• Promise
energy

• Schedule
conventional
generator

Non-adaptive model

• Day-ahead dispatch decisions

o Example: coal plant

Observe
(random)
wind energy
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Two optimization models

Decisions for each hour: (i) how much energy to promise, and (ii) how
much energy to schedule from conventional generator

• •

• • • •  • 
• )

Max expected
Input • profit & be

• reliable• 
• • • •• •

Deterministic
Promise

forecast for
energy

energy prices

Adaptive model

• Real-time dispatch decisions
• Example: natural gas plant

• Observe
(random)
wind energy

• Schedule
conventional
generator
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Joint chance constraints (JCC)

P( f(x, y(0) < 0) > 1 — E

• First stage decision x, then an uncertainty, then a second stage
decision y(0

o Possibly dependency between uncertainty

o Computationally challenging

o Theoretically NP-hard
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Optimization model

Sets
T Set of time periods (hours) {1,2,...,
Q Set of wind energy scenarios {w1,W2, • • • ,wioi}
Parameters
Bt Operation cost of generator at time t ($/MWh)
Rt Market clearing price at time t ($/MWh)
vt4" Wind energy available from the farm under scenario w at time t (MWh)
p' Probability of scenario b.)(pw = 1/N under SAA 1)
E Threshold on probability of failing to meet promised energy output
A Hourly ramp of conventional generator (MWh)
Mr Sufficiently large positive number for an integer programming big M

formulation
U Minimum number of time periods required for generator to be on before

it can be turned off (hours)
✓ Minimum number of time periods required for generator to be off before

it can be turned on (hours)
G Maximum hourly output of generator if on (MWh)
g Minimum hourly output of generator if on (MWh)

1Sample Average Approximation
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Optimization model (contd.)

Decision Variables
xt Promised energy output to be delivered at time t (MWh)
yr Energy above the minimum hourly output from the generator at time t

under scenario w (MWh)
z' Takes value 1 if the promise is not met under scenario w and takes

value 0 otherwise
Takes value 1 if the promise is not met for all scenarios with wind-energy values
at least as large as scenario w's value at time t, and takes value 0 otherwise

rt On/off status of generator at time t (1 if on, else 0)
ut̀̀' Start-up status of generator at time t (1 if switched on, else 0)
vr Shutdown status of generator at time t (1 if switched off, else 0)

pi
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Optimization model (contd.)

Adaptive model:

max E (Rtxt - E[Bt(34' + grn])
x,y,r,u,v

tE T

(2a)

s.t. IFVt' g4") + 4 > xt,Vt E T) > 1 — E (2b)

xt > 0,Vt E T (2c)

(yw, , vw) E Y ,Vw E S2 <— generator operating constraints (2d)
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Optimization model (contd.)

Adaptive model:

max
x,y,r,u,v

s.t.

E (Rtxt — E[Bt(34' grn])
tE T

P(yt̀.' g4") + 4 > xt,vt E T) > 1 — E (2b)

xt > 0, Vt E T (2c)

(yw , rw , uw , vw) E Y ,Vw E S2 <— generator operating constraints (2d)

Non-adaptive model:

(2a)

x, ,v
max E (Rtxt — BtOtt + grt)) (3a)

u 
tE T

s.t. I[I)(yt grt + wt > xt,vt E T) > 1 — E (3b)

xt > 0, Vt E T (3c)

(y, r, u, v) E Y <— generator operating constraints (3d)

R
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Computational requirements of adaptive and non-adaptive

models without any heuristics

Scenarios e Problem Objective ($) MIP Gap Time (sec)

1500 0.05 Non-adaptive 2563.0 0% 3

1500 0.01 Non-adaptive 1889.5 0% 3

1500 0.05 Adaptive 3422.3 67.4% 2100

1500 0.01 Adaptive 3946.6 56.5% 2100
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Algorithm

Algorithm Iterative Regularization with SAA

Input: m, (5, p, time, 1500 i.i.d. realizations of w.
Output: 2: objective function value of original model with 1500 scenarios.
1: Generate m i.i.d. realizations of w, and solve the SAA of original model to obtain

xm*. Let 'X <— 4.
2: while time < time do
3: Let m [m(1+ 6)1.
4: Generate m i.i.d. realizations of w, and solve the SAA of regularized model to

obtain x,;,. Let 'X x,*„.
5: Solve original model with 1500 scenarios with x fixed to 3'<, and let 2 denote the

objective function value.
6: Update time to the cumulative wall-clock time consumed so far.

7: end while
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Result 1: p = 40 achieves the largest expected profit in the
least time
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Result 2: Adaptive model achieves synergy in solutions
unlike the non-adaptive model
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For the entire day, the non-adaptive model promises 300 MWh of energy while the adaptive
model promises 625 MWh • 5 ,
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Summary

o There is significant $ benefit to coupling a fast-moving energy source
with a renewable source (adaptive model)
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Summary

o There is significant $ benefit to coupling a fast-moving energy source
with a renewable source (adaptive model)

o A slow-moving energy source and a renewable source could be looked
as two separate assets (non-adaptive model)

We welcome collaborations with faculty, practitioners, and students!
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Set of operating constraints for the generator, Y

,)4° < A(u`t°±1+ rn,Vt E \ {17-1}

34° < A(v+1H- rr+i),Vt E T \ {M}

E J < rt ,V t ,17-11

(4a)

(4b)

(4c)
k=t — U+1

E vk <1_ E (4d)
k=t— v+1

(4e)Lit — vt = rt — rt_1,Vt E T

(G — g)rt̀'' — (G — — (G — > yt Vt E T (4f)

4', ur , vt E {0,1},VtE T (4g)

)4`' > 0, Vt E T (4h)
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Wind energy scenarios

120

100

20

0

CP.S.CPRPRPIZPKIZPRPg:PR:PR:PgPf:131S3CPCPXP43.SZP3ZPer N. 'V nx b. gy

Hour

1500 hourly scenarios for wind energy generated using Monte Carlo sampling with
a warm-up period of 140 hours. Dashed black line is median hourly value, and
solid black line is lOth percentile.
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Iterative regularization heuristic

Motivation:
Use regularization to help break symmetry and exploit knowledge of a
potentially good solution
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Iterative regularization heuristic

Motivation:
Use regularization to help break symmetry and exploit knowledge of a
potentially good solution

max (Rtxt E[Bt.4) — E PIxt -
x,y,r,u,v

s.t.

tET tE T

P(.)4° + + 14) > xt,* E T) > 1 — 6
Xt E T

(y ù, v``') E Y, Vw E S.2

(5a)

(5b)

(5c)

(5d)
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Iterative regularization heuristic

Motivation:
Use regularization to help break symmetry and exploit knowledge of a
potentially good solution

max (Rtxt —E[Bty t̀' + grN) — pkt — )41 (5a)
x,y,r,u,v

tET tET

s.t. P()' 144' > xt,et E T) > 1 — E (5b)

Xt > 0,Vt E T (5c)

, E Y,Vco E f2 (5d)

Unlike traditional regularization, we independently draw realizations for
SAA at each iteration
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Adaptive model: Big M formulation for SAA

xt < yt + grr wr + Mr zw ,Vt E T, w E Q

E L NE]
w ER

E {OM, Vw E

(6a)

(6b)

(6c)
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Non-adaptive model: Extended variable formulation for
SAA

First, sort the wind scenarios for each t: w`t")(1,0 < < w;."(N,t)

N-1

Xt 
< 

Yt 
4.0,0 E (i44o(t+1,t) 4,(t,t)) et,t),

t=i

qt < zw, Vw E S2, t E T
et-Fl,t) < cet,t) bE = 1, 2, ... , N — 2, Vt e T

E z- < [NE]
c,es2

E {0, 1}, Vw E

Vt E T (7a)

(7b)

(7c)

(7d)

(7e)
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Magnitude of failures
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I

Magnitude of daily failures when we do fail
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For the 75 failed scenarios (E = 0.05), magnitude of average daily-failure is
368MWh
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Result 3: p = 40 achieves a statistically larger expected
profit than other p values

o Using 10 i.i.d. batches of 1500 scenarios, reject the null hypothesis
(that expected profit under p = 40 is at most that under p = 80) with
a p-value of p = 0.999

o Using same 10 batches, 95% confidence interval on expected profit
with p = 40 is [6069.8, 6123.2]
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