

An Adaptive Model with Joint Chance Constraints for a Hybrid Wind-Conventional Generator System

Bismark Singh

Discrete Mathematics & Optimization,
Sandia National Laboratories, USA

Joint with: David Morton, Surya Santoso

May 9, 2018

Contents

1 Introduction

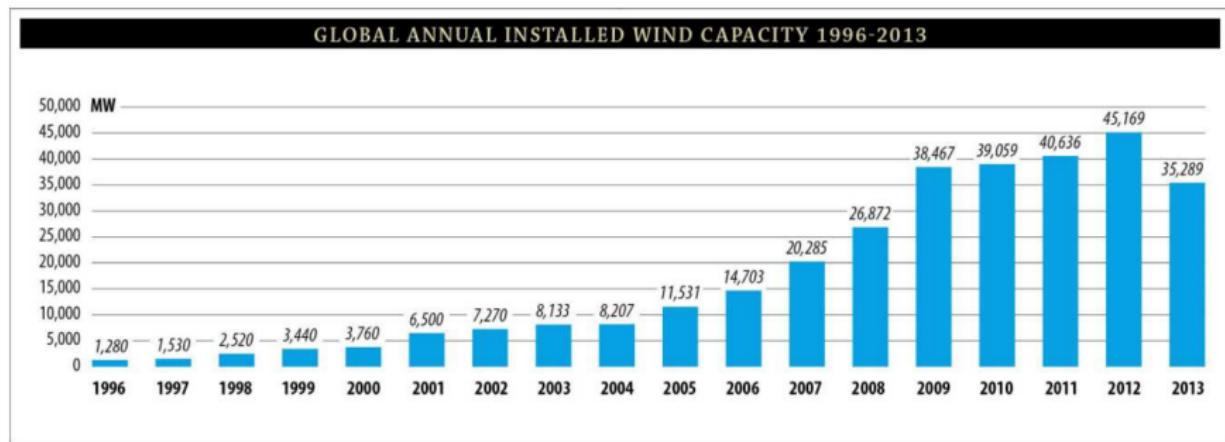
2 Optimization models

3 Appendices

Acknowledgements

- UVIG Academic Scholarship for Travel Grant for this workshop
- Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Wind energy



Source: Global Wind Energy Council

Challenges

- High initial investment costs
- Noise pollution from wind-turbines
- Intermittent and unreliable, or “non-dispatchable”

Dispatchable energy

- A reliable supplier of energy
- Provides load matching, cover for intermittent sources
- Examples of dispatchable plants: hydroelectricity, biomass, coal plants, concentrated solar (semi-dispatchable), nuclear, natural gas

Dispatchable energy

- A reliable supplier of energy
- Provides load matching, cover for intermittent sources
- Examples of dispatchable plants: hydroelectricity, biomass, coal plants, concentrated solar (semi-dispatchable), nuclear, natural gas
- Wind is highly intermittent and not dispatchable

Introduction to the problem

Description:

- Bid a promised amount of energy for the day-ahead market
- Provide that energy using (co-located) wind and conventional generator

Introduction to the problem

Description:

- Bid a promised amount of energy for the day-ahead market
- Provide that energy using (co-located) wind and conventional generator
- Large penalty for not meeting promise
- Wind is cheap but highly stochastic

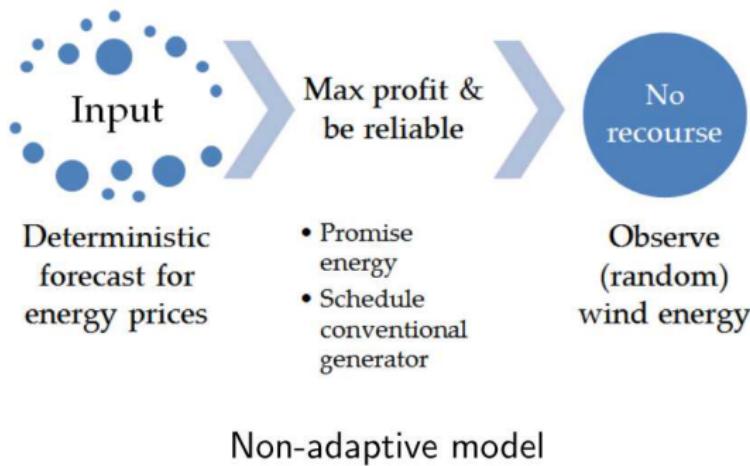
Not looking at: ancillary services, spinning reserve, intra-day market

Contents

- 1 Introduction
- 2 Optimization models
- 3 Appendices

Two optimization models:

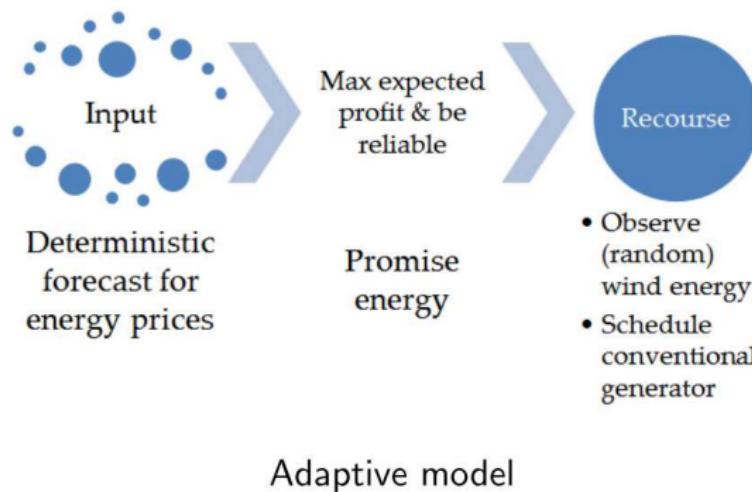
Decisions for each hour: (i) how much energy to promise, and (ii) how much energy to schedule from conventional generator



- Day-ahead dispatch decisions
- Example: coal plant

Two optimization models

Decisions for each hour: (i) how much energy to promise, and (ii) how much energy to schedule from conventional generator



- Real-time dispatch decisions
- Example: natural gas plant

Joint chance constraints (JCC)

JCC

$$\mathbb{P}(f(x, y(\xi)) \leq 0) \geq 1 - \varepsilon$$

- First stage decision x , then an uncertainty, then a second stage decision $y(\xi)$
- Possibly dependency between uncertainty
- Computationally challenging
- Theoretically NP-hard

Optimization model

Sets

- T Set of time periods (hours) $\{1, 2, \dots, |T|\}$
 Ω Set of wind energy scenarios $\{\omega_1, \omega_2, \dots, \omega_{|\Omega|}\}$

Parameters

- B_t Operation cost of generator at time t (\$/MWh)
 R_t Market clearing price at time t (\$/MWh)
 w_t^ω Wind energy available from the farm under scenario ω at time t (MWh)
 p^ω Probability of scenario ω ($p^\omega = 1/N$ under SAA ¹)
 ε Threshold on probability of failing to meet promised energy output
 Δ Hourly ramp of conventional generator (MWh)
 M_t^ω Sufficiently large positive number for an integer programming big M formulation
 U Minimum number of time periods required for generator to be on before it can be turned off (hours)
 V Minimum number of time periods required for generator to be off before it can be turned on (hours)
 G Maximum hourly output of generator if on (MWh)
 g Minimum hourly output of generator if on (MWh)

Optimization model (contd.)

Decision Variables

- | | |
|--------------|---|
| x_t | Promised energy output to be delivered at time t (MWh) |
| y_t^ω | Energy above the minimum hourly output from the generator at time t under scenario ω (MWh) |
| z^ω | Takes value 1 if the promise is not met under scenario ω and takes value 0 otherwise |
| q_t^ω | Takes value 1 if the promise is not met for all scenarios with wind-energy values at least as large as scenario ω 's value at time t , and takes value 0 otherwise |
| r_t^ω | On/off status of generator at time t (1 if on, else 0) |
| u_t^ω | Start-up status of generator at time t (1 if switched on, else 0) |
| v_t^ω | Shutdown status of generator at time t (1 if switched off, else 0) |

Optimization model (contd.)

Adaptive model:

$$\max_{x, y, r, u, v} \sum_{t \in T} (R_t x_t - \mathbb{E}[B_t(y_t^\omega + gr_t^\omega)]) \quad (2a)$$

$$\text{s.t. } \mathbb{P}(y_t^\omega + gr_t^\omega + w_t^\omega \geq x_t, \forall t \in T) \geq 1 - \varepsilon \quad (2b)$$

$$x_t \geq 0, \forall t \in T \quad (2c)$$

$$(y^\omega, r^\omega, u^\omega, v^\omega) \in Y, \forall \omega \in \Omega \leftarrow \text{generator operating constraints} \quad (2d)$$

Optimization model (contd.)

Adaptive model:

$$\max_{x,y,r,u,v} \sum_{t \in T} (R_t x_t - \mathbb{E}[B_t(y_t^\omega + gr_t^\omega)]) \quad (2a)$$

$$\text{s.t. } \mathbb{P}(y_t^\omega + gr_t^\omega + w_t^\omega \geq x_t, \forall t \in T) \geq 1 - \varepsilon \quad (2b)$$

$$x_t \geq 0, \forall t \in T \quad (2c)$$

$$(y^\omega, r^\omega, u^\omega, v^\omega) \in Y, \forall \omega \in \Omega \leftarrow \text{generator operating constraints} \quad (2d)$$

Non-adaptive model:

$$\max_{x,y,r,u,v} \sum_{t \in T} (R_t x_t - B_t(y_t + gr_t)) \quad (3a)$$

$$\text{s.t. } \mathbb{P}(y_t + gr_t + w_t^\omega \geq x_t, \forall t \in T) \geq 1 - \varepsilon \quad (3b)$$

$$x_t \geq 0, \forall t \in T \quad (3c)$$

$$(y, r, u, v) \in Y \leftarrow \text{generator operating constraints} \quad (3d)$$

Computational requirements of adaptive and non-adaptive models without any heuristics

Scenarios	ε	Problem	Objective (\$)	MIP Gap	Time (sec)
1500	0.05	Non-adaptive	2563.0	0%	3
1500	0.01	Non-adaptive	1889.5	0%	3
1500	0.05	Adaptive	3422.3	67.4%	2100
1500	0.01	Adaptive	3946.6	56.5%	2100

Algorithm

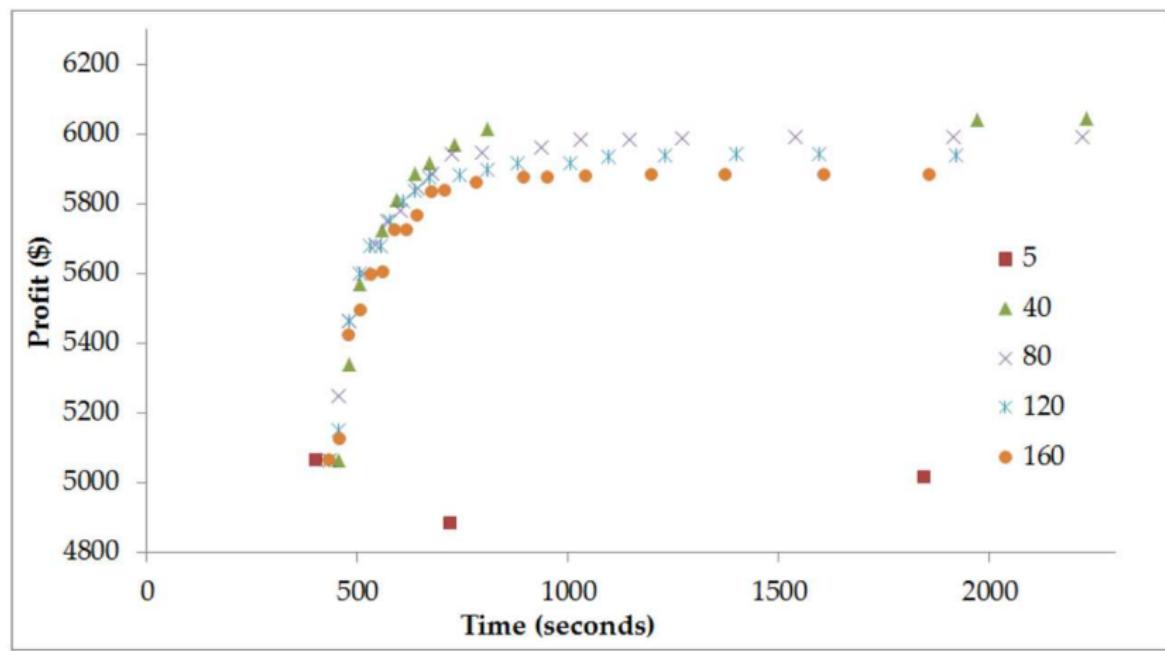
Algorithm Iterative Regularization with SAA

Input: $m, \delta, \rho, \text{time}$, 1500 i.i.d. realizations of w .

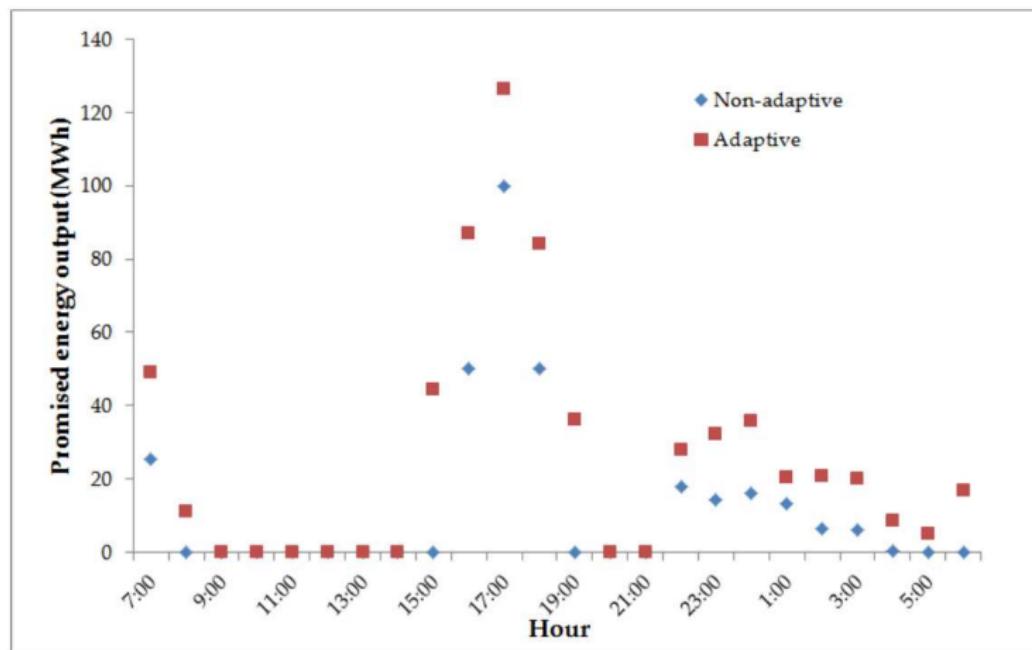
Output: \hat{z} : objective function value of original model with 1500 scenarios.

- 1: Generate m i.i.d. realizations of w , and solve the SAA of original model to obtain x_m^* . Let $\hat{x} \leftarrow x_m^*$.
 - 2: **while** $\text{time} \leq \text{time}$ **do**
 - 3: Let $m \leftarrow \lceil m(1 + \delta) \rceil$.
 - 4: Generate m i.i.d. realizations of w , and solve the SAA of regularized model to obtain x_m^* . Let $\hat{x} \leftarrow x_m^*$.
 - 5: Solve original model with 1500 scenarios with x fixed to \hat{x} , and let \hat{z} denote the objective function value.
 - 6: Update time to the cumulative wall-clock time consumed so far.
 - 7: **end while**
-

Result 1: $\rho = 40$ achieves the largest expected profit in the least time



Result 2: Adaptive model achieves synergy in solutions unlike the non-adaptive model



For the entire day, the non-adaptive model promises 300 MWh of energy while the adaptive model promises 625 MWh

Summary

- There is significant \$ benefit to coupling a fast-moving energy source with a renewable source (adaptive model)

Summary

- There is significant \$ benefit to coupling a fast-moving energy source with a renewable source (adaptive model)
- A slow-moving energy source and a renewable source could be looked as two separate assets (non-adaptive model)

We welcome collaborations with faculty, practitioners, and students!

Contents

- 1 Introduction
- 2 Optimization models
- 3 Appendices

Set of operating constraints for the generator, Y

$$y_{t+1}^{\omega} - y_t^{\omega} \leq \Delta(u_{t+1}^{\omega} + r_t^{\omega}), \forall t \in T \setminus \{|T|\} \quad (4a)$$

$$y_t^{\omega} - y_{t+1}^{\omega} \leq \Delta(v_{t+1}^{\omega} + r_{t+1}^{\omega}), \forall t \in T \setminus \{|T|\} \quad (4b)$$

$$\sum_{k=t-U+1}^t u_k^{\omega} \leq r_t^{\omega}, \forall t \in \{U, \dots, |T|\} \quad (4c)$$

$$\sum_{k=t-V+1}^t v_k^{\omega} \leq 1 - r_t^{\omega}, \forall t \in \{V, \dots, |T|\} \quad (4d)$$

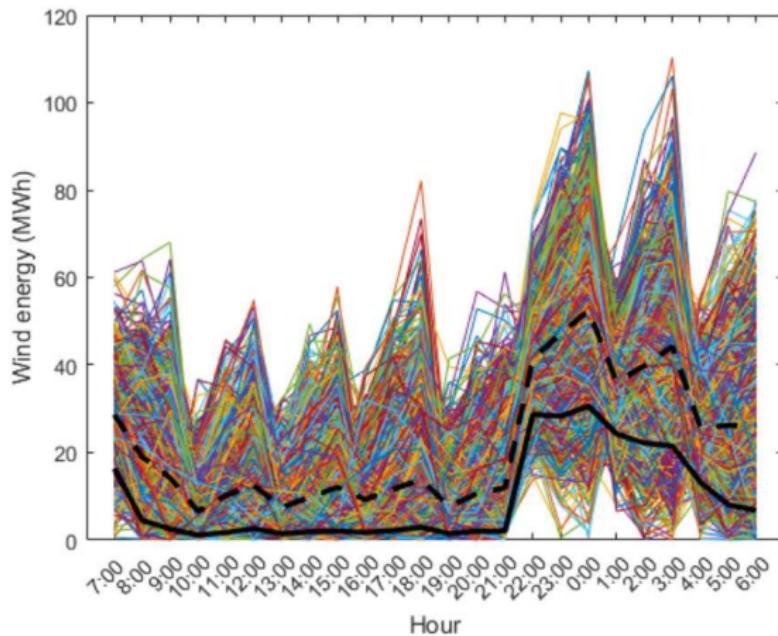
$$u_t^{\omega} - v_t^{\omega} = r_t^{\omega} - r_{t-1}^{\omega}, \forall t \in T \quad (4e)$$

$$(G - g)r_t^{\omega} - (G - \Delta)u_t^{\omega} - (G - \Delta)v_{t+1}^{\omega} \geq y_t^{\omega}, \forall t \in T \quad (4f)$$

$$r_t^{\omega}, u_t^{\omega}, v_t^{\omega} \in \{0, 1\}, \forall t \in T \quad (4g)$$

$$y_t^{\omega} \geq 0, \forall t \in T \quad (4h)$$

Wind energy scenarios



1500 hourly scenarios for wind energy generated using Monte Carlo sampling with a warm-up period of 140 hours. Dashed black line is median hourly value, and solid black line is 10th percentile.

Iterative regularization heuristic

Motivation:

Use regularization to help break symmetry and exploit knowledge of a potentially good solution

Iterative regularization heuristic

Motivation:

Use regularization to help break symmetry and exploit knowledge of a potentially good solution

$$\max_{x, y, r, u, v} \sum_{t \in T} (R_t x_t - \mathbb{E}[B_t y_t^\omega + g r_t^\omega]) - \sum_{t \in T} \rho |x_t - \hat{x}_t| \quad (5a)$$

$$\text{s.t.} \quad \mathbb{P}(y_t^\omega + g r_t^\omega + w_t^\omega \geq x_t, \forall t \in T) \geq 1 - \varepsilon \quad (5b)$$

$$x_t \geq 0, \forall t \in T \quad (5c)$$

$$(y^\omega, r^\omega, u^\omega, v^\omega) \in Y, \forall \omega \in \Omega \quad (5d)$$

Iterative regularization heuristic

Motivation:

Use regularization to help break symmetry and exploit knowledge of a potentially good solution

$$\max_{x, y, r, u, v} \sum_{t \in T} (R_t x_t - \mathbb{E}[B_t y_t^\omega + g r_t^\omega]) - \sum_{t \in T} \rho |x_t - \hat{x}_t| \quad (5a)$$

$$\text{s.t.} \quad \mathbb{P}(y_t^\omega + g r_t^\omega + w_t^\omega \geq x_t, \forall t \in T) \geq 1 - \varepsilon \quad (5b)$$

$$x_t \geq 0, \forall t \in T \quad (5c)$$

$$(y^\omega, r^\omega, u^\omega, v^\omega) \in Y, \forall \omega \in \Omega \quad (5d)$$

Unlike traditional regularization, we independently draw realizations for SAA at each iteration

Adaptive model: Big M formulation for SAA

$$x_t \leq y_t^\omega + gr_t^\omega + w_t^\omega + M_t^\omega z^\omega, \forall t \in T, \omega \in \Omega \quad (6a)$$

$$\sum_{\omega \in \Omega} z^\omega \leq \lfloor N\varepsilon \rfloor \quad (6b)$$

$$z^\omega \in \{0, 1\}, \quad \forall \omega \in \Omega \quad (6c)$$

Non-adaptive model: Extended variable formulation for SAA

First, sort the wind scenarios for each t : $w_t^{\omega(1,t)} \leq \dots \leq w_t^{\omega(N,t)}$

$$x_t \leq y_t + w_t^{\omega(1,t)} + \sum_{\ell=1}^{N-1} \left(w_t^{\omega(\ell+1,t)} - w_t^{\omega(\ell,t)} \right) q_t^{\omega(\ell,t)}, \quad \forall t \in T \quad (7a)$$

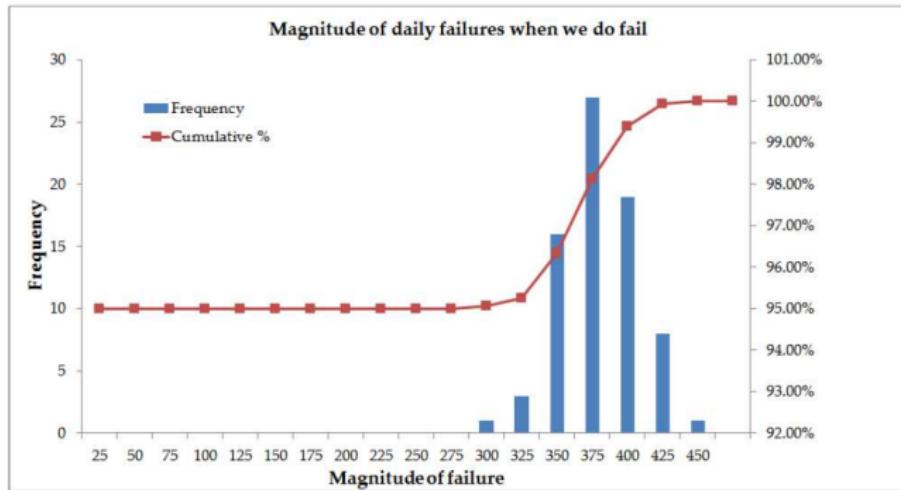
$$q_t^{\omega} \leq z^{\omega}, \quad \forall \omega \in \Omega, t \in T \quad (7b)$$

$$q_t^{\omega(\ell+1,t)} \leq q_t^{\omega(\ell,t)}, \quad \forall \ell = 1, 2, \dots, N-2, \forall t \in T \quad (7c)$$

$$\sum_{\omega \in \Omega} z^{\omega} \leq \lfloor N\varepsilon \rfloor \quad (7d)$$

$$q_t^{\omega}, z^{\omega} \in \{0, 1\}, \quad \forall \omega \in \Omega \quad (7e)$$

Magnitude of failures



For the 75 failed scenarios ($\varepsilon = 0.05$), magnitude of average daily-failure is 368MWh

Result 3: $\rho = 40$ achieves a statistically larger expected profit than other ρ values

- Using 10 i.i.d. batches of 1500 scenarios, reject the null hypothesis (that expected profit under $\rho = 40$ is at most that under $\rho = 80$) with a p -value of $p = 0.999$
- Using same 10 batches, 95% confidence interval on expected profit with $\rho = 40$ is [6069.8, 6123.2]