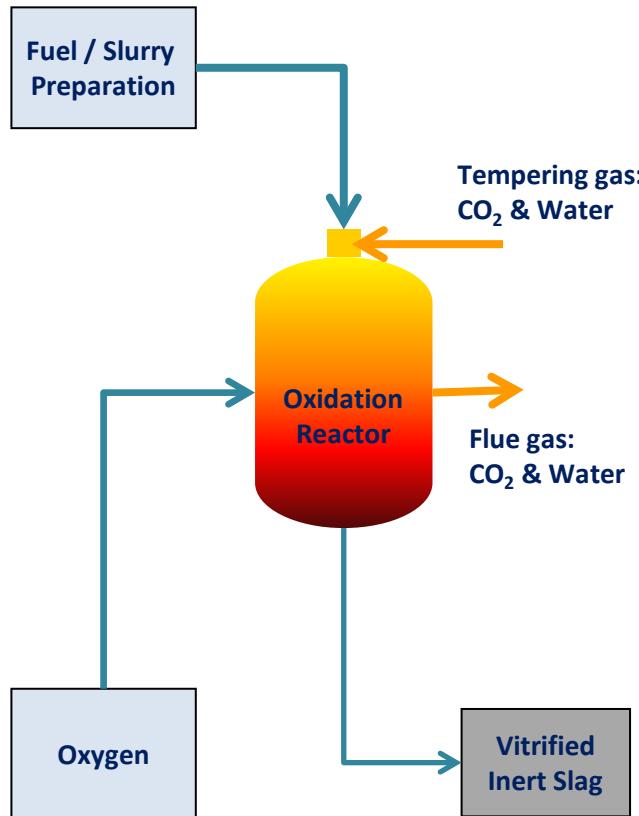


Improving Coal Power Economics: Retrofitting Flameless Pressurized Oxy- Combustion with Integral CO2 Capture


Peter Reineck, Peter Reineck Associates Ltd
Dr. Ing Massimo Malavasi, Itea S.p.A - Co-Author
NCC Spring Annual Meeting, Washington DC, April 12, 2019

Peter Reineck Associates Ltd
peter.reineck@gmail.com
M: +44 779 298 5164 (UK)
C: +1 307 223 6444 (USA)

Agenda

- **FPO technology**
 - Philosophy and performance vs. traditional combustion
 - Added value
 - Development path
- **Large Pilot Planning**
 - Update on DOE Project DE-FE0031580
 - Cycle diagram
 - Plan for commercial-scale cycle
- **LCOE for FPO with Integral CC**
 - Comparison with SCPC technology, with and without PCC
 - FPO firing PRB coal, New-Build and Retrofit
- **FPO Retrofitting**
- **Projected Output of New-Build and Retrofit Plants**
- **Outlook for Commercialization**

FPO versus traditional combustion processes

Philosophy and purpose

- Recover energy from low ranking coal and other brown fuels
- Enable CO₂ capture on an economically viable basis
- Minimize emissions of NOx, particulates and heavy metals

Proven technology outperforms traditional combustion

- Flameless combustion using industrial oxygen in an atmosphere of CO₂ and water vapor
- Complete oxidation: low TOC & zero soot at combustor exit
- Zero thermal NOx: organic nitrogen converted to N₂
- Flue gas volume reduced by ~ 85% minimizes scrubbing cost
- No fly-ash: all Incombustibles end in zero carbon slag

Added Value of Itea FPO

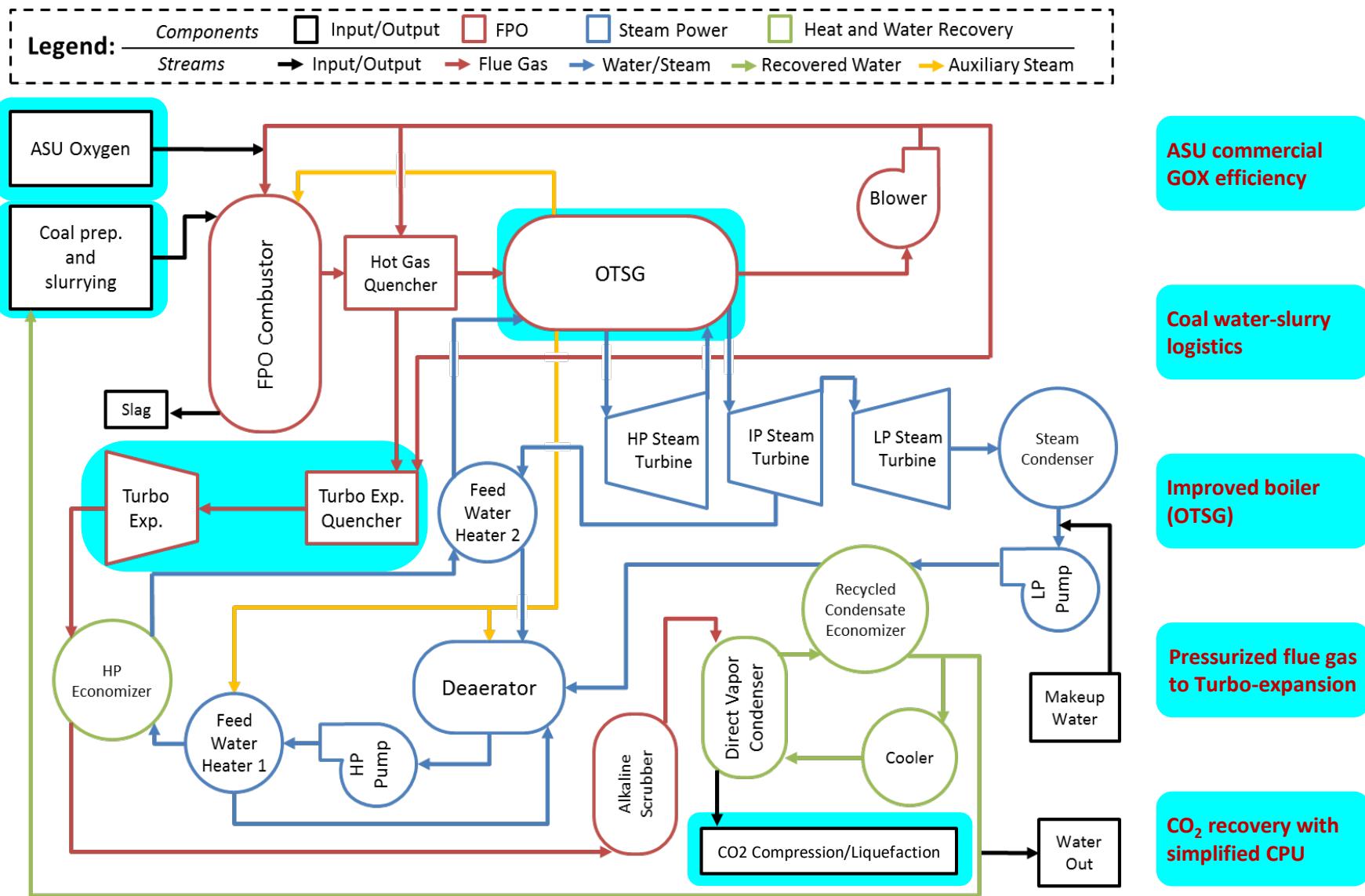
- Accepts up to 65% water content: fuels fired as slurry in water
- Enables use of low-ranking coals up to 40% ash, including alkaline ash
- Enables CO₂ capture (CC) on an economically viable basis
- Addresses peaking by fast response: from 5% to 100% capacity in <1/2 hr
- Retrofittable to supercritical and subcritical pulverized coal plants
- Potential for Small Modular Power Plants 80 to 350-MWe

FPO - Development Path

Planned development

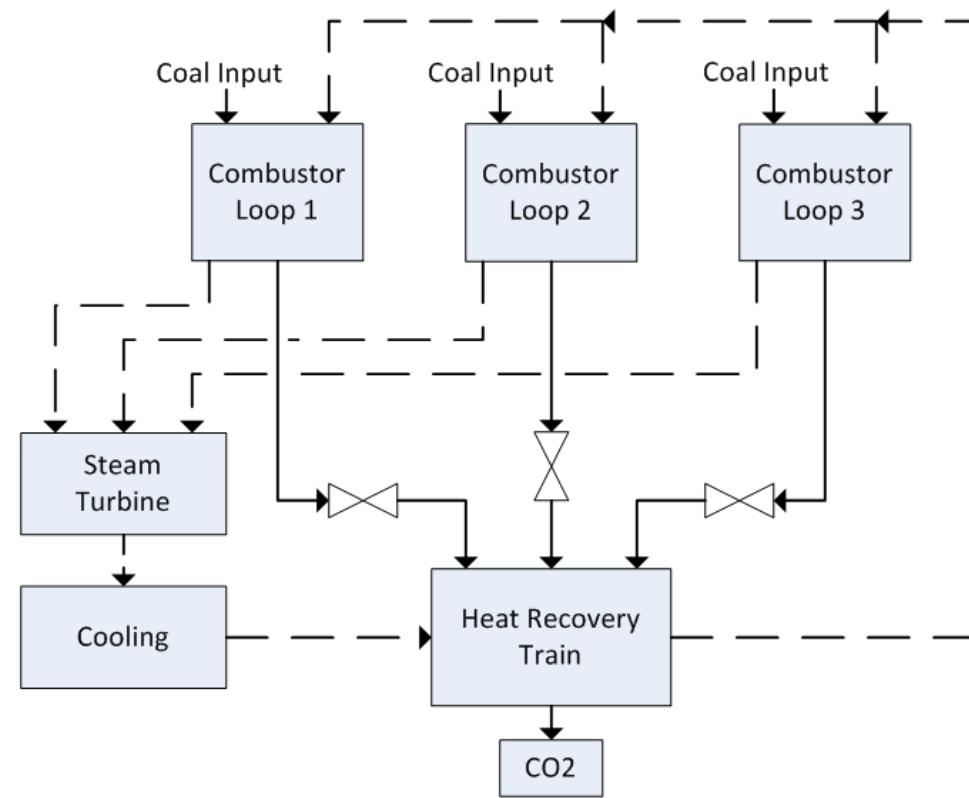
- Large Pilot for coal power with CO₂ Capture – Planning Project started leading to
- 240 to 500-MWth Modular Unit for commercial coal power plant with Integral CO₂ Capture (CC) – Retrofit or New-Build

Large Pilot Planning - Update


DOE funded planning projects

- DE - FE0027771 - Completed early 2019
- DE-FE0031580 (Phase 1) - Started July 2018
- Development of a Large Pilot as a scale up of 5-MWth pilot plant operating at Itea's Gioia del Colle R&D Centre, Italy since 2006
- Pre-FEED
- Cycle modeled in Aspen Plus
- Cycle design and optimization complete
- Near complete combustion shown with zero fly ash and high purity of CO2
- Pilot will fire high- and low-rank coals over 2 year test program

Next step


- Phase 2 FEED

FPO Commercial Application– Cycle Diagram

Plan for Commercial-Scale Cycle

- Combustor scaled from Large Pilot to 240 to 500-MWth
- 500-MWe with ASU and CO₂ Separation is possible with 3 X 500-MWth combustors
- Modular approach limits costs of combustor and steam generator
- Turbo-expander acts as control from pressurized loop to heat recovery and cleanup
- Potential CHP format could provide improved economics in favorable locations

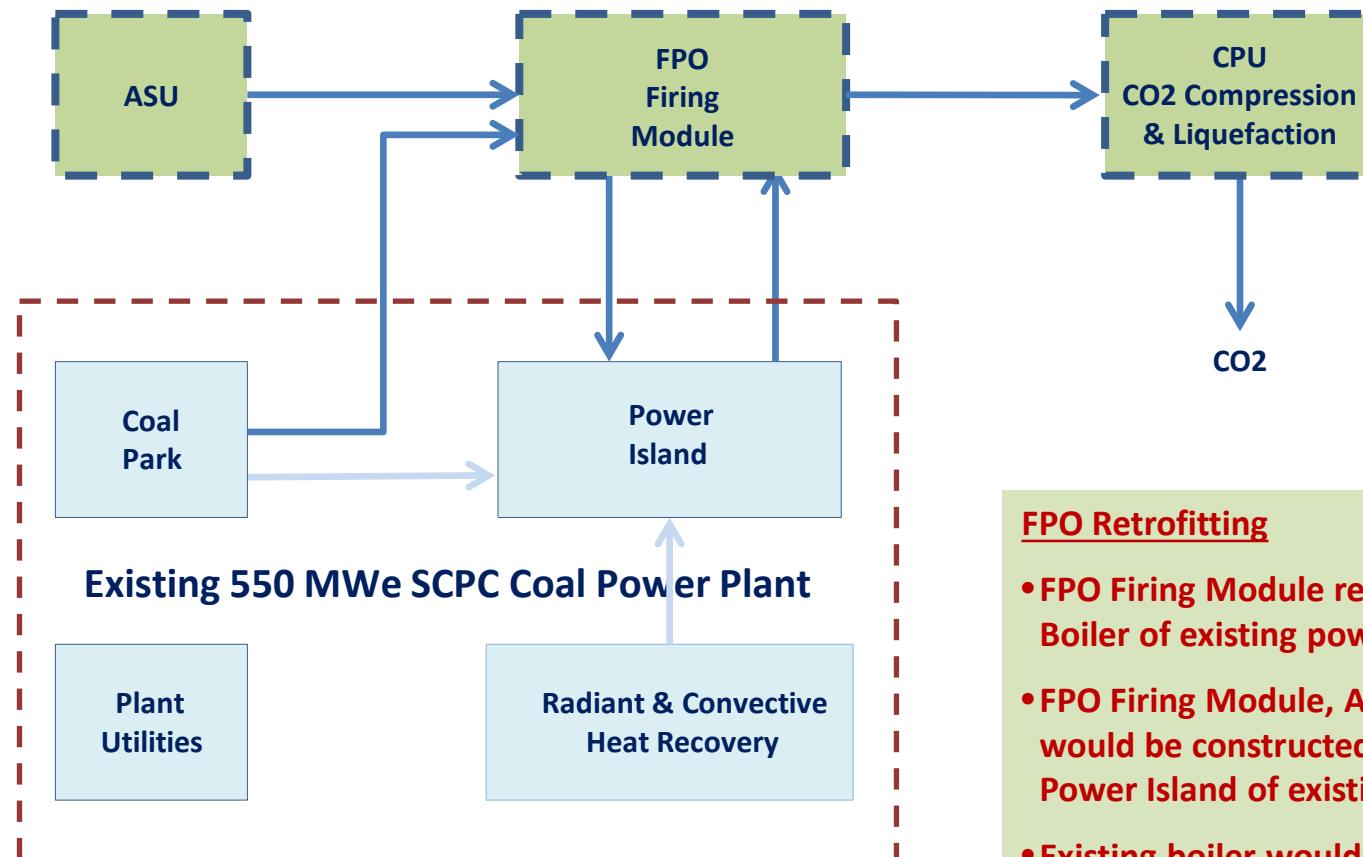
Comparison of LCOE for SCPC, PCC and FPO 550-MWe

Parameter	Unit	PRB SCPC no CC Baseline (S12A) updated to \$2018	PRB SCPC with PCC Baseline (S12B) updated to \$2018	Projected n th -of-a-kind PRB FPO / Integral CC based on ITEA Projection
Power-in (LHV)	MWth	1,369	1,963	1,453
Gross Power	MWe	583	673	700
Parasitic Power	MWe	33	123	150
Net Power	MWe	550	550	550
Efficiency	% LHV	40.4%	28.0%	37.9%
Total Plant Cost	\$M	\$1,293	\$2,281	\$1,327
per kWe	\$/kWe	\$2,351	\$4,147	\$2,413
LCOE	\$/MWh	\$92.3	\$178.1	\$109.6
LCOE compared to S12A Baseline		193%	119%	
LCOE compared to S12B Baseline			61.5%	

Post CC Power-in high for reboiler steam cogen

FPO efficiency high due to heat recovery

Turbo-expander boosts FPO efficiency for PRB (and Lignite)


Affordable COE with CO2 Capture

- PRB Coal LHV 19.7 MJ/kg (8,486 Btu/lb), S 0.2%, 4.5% ash, 27% moisture
- Projected nth-of-a-kind based on 350-MWe ENEL detailed engineering study, scaled up to 550-MWe for Italy location. Used NETL methods for technology comparative studies
- For USA location capital cost, applied exchange rate of \$1.12/€1.00 throughout. For USA operating cost, applied exchange rate of \$1.12/€1.00 to Italian costs.

FPO Performance Firing PRB Coal, New-Build & Retrofit

Parameter	Unit	PRB SCPC no CC Baseline (S12A) updated to \$2018	PRB SCPC with PCC Baseline (S12B) updated to \$2018	Projected n th -of-a-kind FPO / Integral CC based on ITEA Projection	
				New Build	Retrofit
Power-in (LHV)	MWth	1,369	1,963	1,453	1,500
Gross Power	MWe	583	673	700	719
Parasitic Power	MWe	33	123	150	169
Net Power	MWe	550	550	550	550
Efficiency	% LHV	40.4%	28.0%	37.9%	36.7%
Total Plant Cost	\$M	\$1,293	\$2,281	\$1,327	\$736
per kWe	\$/kWe	\$2,351	\$4,147	\$2,413	\$1,338
LCOE	\$/MWh	\$92.3	\$178.1	\$109.6	\$83.5
LCOE compared to S12A Baseline			193%	119%	90.5%
LCOE compared to S12B Baseline				61.5%	46.9%

FPO Retrofitting

FPO Retrofitting

- FPO Firing Module replaces Boiler of existing power plant
- FPO Firing Module, ASU & CPU would be constructed next to Power Island of existing plant
- Existing boiler would be shut down and FPO Firing Module connected to Power Island

Retrofit FPO Plant with Integral CO2 Capture Firing PRB Coal (ITEA Prospect)

	CAPEX (\$M)	Efficiency (% LHV)	Capacity (MWe net)	CO2 (t/hr) [1]
Retrofit to Subcritical	\$760	31.5%	567	600
Retrofit to SCPC	\$736	36.7%	550	500

[1] Assumes capture of 90% of CO2 produced

Outlook for Commercialisation

FPO provides a pathway towards affordable, efficient, and clean coal power with integral CO2 capture

With growth of renewables, U.S. market will need more load-following plants

- High availability based on standby at 5% capacity rate and coal storage on site
- FPO fast response to fluctuating demand
- FPO can operate as base load, daily cycling or renewable cycling response

CO2

- FPO captures over 90% of CO2 as clean stream ready for compression and liquefaction

Opportunities for FPO Technology

- Retrofitting FPO to coal plants in favourable locations provides solution for potentially stranded assets, reducing CO2 emissions by 90% and increasing revenue by producing CO2 and load-following.
- High efficiency and CO2 capture firing low-ranking coals as-mined, without drying
- Potential for Small Modular Power Plants 80 to 350-MWe