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Abstract—The deployment of public charging infrastructure 
networks has been a major factor in enabling electric vehicle 
(EV) technology transition, and must continue to support the
adoption of this technology. DC fast charging (DCFC) increases 
customer convenience by lowering charging time, enables long-
distance EV travel, and could allow the electrifcation of high-
mileage feets. Yet, high capital costs and uneven power demand
have been major challenges to the widespread deployment of 
DCFC stations. There is a need to better understand DCFC 
stations’ loading and customer service quality. Furthermore, the
relationship between the initial investment decision on building 
certain number of ports and customer satisfaction should be 
quantifed. This study aims to analyze these aspects using one 
million vehicle-days of travel data within the Columbus, OH, 
region. Monte Carlo analysis is carried out in three types of 
areas - urban, suburban, and rural- to quantify the effect of 
uncertain parameters on DCFC station loading and service 
quality. Additional simulations based on a homogeneous vehicle 
population are carried out, and closed-form equations are derived
therefrom to estimate charging duration and waiting time in the
queue. Optimization of DCFC station design is also addressed
through the number and capacity of ports. 

Index Terms—Electric vehicles, DC fast chargers, optimization,
modeling, queueing 

NOMENCLATURE 

n Number of DCFC ports 
p Power rating (capacity) of each port [kW] 
P Total power rating of the station [kW] (e.g. P = 

np) 
δ Arrival SOC of each vehicle (%) 
d Energy demand of each vehicle [kWh] 
tc Charging duration of each vehicle [minutes] 
Wq Mean waiting time in the queue before charging 

[minutes] 
s Set-up time between two subsequent vehicles to be 

charged at the same port [minutes] 
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I. INTRODUCTION 

The electric vehicle (EV) market is taking off, with over 
500k EVs on the road in the United States and over 2M glob-
ally. Although EVs are becoming more popular, the issues that 
prevent their mass penetration such as limited infrastructure 
are still present. Replacement of traditional internal combus-
tion engine vehicles by EVs goes hand-in-hand with the mass 
deployment of reliable and fast charging infrastructure. 

There are two types of EV charging methods: (i) on-board 
charger for AC grid connection which can be single-phase 
Level 1 (L1) and Level 2 (L2) as defned in SAE J1772, and 
three-phase AC charging as defned in SAE J3068 (work in 
progress); and (ii) DC fast charging (DCFC) as defned in SAE 
J1772-Combo/CHAdeMO standards. L1 and L2 are mostly 
located at residential and public/workplace charging premises. 
These stations do not include a power electronics converter 
but rather utilize the vehicle’s on-board charger which is rated 
at low power levels (typically less than 19.2 kW) [1]. On the 
other hand, DCFC stations operate at high power DC voltage 
and use an off-board AC-DC converter. Thus, they provide 
much higher charging power level compared to L1 and L2. 

There are several issues that should be addressed for the 
wide-spread usage of DCFC stations: their locations, opera-
tion costs, and how to evaluate the service quality for the 
customer [2]. DCFC geographic location has to be close to 
where it is needed and should ensure relatively high mobility 
of EVs [2]. Berjoza and Jurgena [2] proposed an algorithm 
that determines metrics like the availability ratio for charging 
stations. Zenginis et al. [3] describe a novel queuing model 
where the customers’ mean waiting time is computed by 
considering the available charging outlets, arrival times, and 
charging needs of various EVs. Quality of service (QoS) is 
measured by waiting time of the customers in the queue prior 
to charging their EVs. 

Fan et al. [4] studies the impact of the requested state of 
charge (SOC) of EVs on charging times and proposes an 
operation analysis of fast charging stations where operators 
can set a limit on the requested SOCs to obtain maximized 
revenue. Yunus et al. [5] investigated the impact of DCFC 
stations on distribution transformer loading using stochastic 
EV mobility parameters. System bus voltage profles are also 
analyzed using DigSILENT PowerFactory. Akhavan-Rezai et 
al. [6] extracted mobility models from a national survey in 
Canada and used them to compare normal and DCFC stations 
in terms of their impact on voltage violations, power losses, 
and line loading. 

Yang et al. [7] explores the optimal sizing problem of DCFC 
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stations. EV charging demand is calculated based on random 
generation of EV mobility statistics. Then, a queuing model is 
developed, and an optimization algorithm is run considering 
service quality and limitations of the power network. Com-
pared to our study, the generated data set does not rely on real 
feld data, and it does not implement any charge acceptance 
curve which is very limiting in the evaluation of service 
quality. [8] proposes an estimation method based on Markov 
arrival process for stochastic modeling of charging stations. 
They essentially aim to determine the required number of 
charge ports in a station to keep the probability of waiting 
below a pre-defned threshold. They use the number of arriving 
vehicles during a fxed time slot and service time distributions 
as inputs. However, this study does not fully describe impor-
tant details such as vehicle type, charge acceptance, station 
location, and port capacity, but rather uses generic modeling. 

Design and operational management of DCFC stations play 
a crucial role in meeting the requirements for high QoS. 
Metrics such as the average waiting time in queue (Wq) or 
average charging duration (tc) depend mostly on DCFC design 
parameters (e.g. port number (n), total power rating (P ), and 
individual port capacity (p)). Stations with lower waiting and 
charging times will attract more customers. Similarly, station 
design that gives the best QoS with minimum investment is 
desired by the station operator. These suggest that an analysis 
building a relationship between the total installation&operation 
costs and customer satisfaction have the potential to increase 
the total station revenue. 

The National Renewable Energy Laboratory (NREL) to-
gether with the California Energy Commission (CEC) devel-
oped the Electric Vehicle Infrastructure Projection Tool (EVI-
Pro) to estimate regional requirements for charging infrastruc-
ture to support consumer adoption of EVs [9], [10]. EVI-
Pro utilizes EV market and real-world travel data to estimate 
future requirements for home, workplace, and public charging 
infrastructure [9], [10]. In this study, one million vehicle-days 
of travel from the Columbus, OH, region – the winner of the 
U.S. Department of Transportation’s Smart City award [11] – 
were simulated in EVI-Pro to generate about 23,000 DCFC 
events. A lite version of this tool is publicly available at [12]. 

This study develops tools for and analyzes DCFC operation 
to minimize the costs while ensuring high customer satisfac-
tion. We further present DCFC power consumption based on 
data provided by EVI-Pro. The model generates instantaneous 
and 15-minute average active power consumption to report 
peak demand consumption for a given system. To analyze the 
results of the simulation model, the present paper utilizes the 
queueing theory, data analytics and optimization. Queueing 
theory is helpful in estimating waiting times, which are directly 
related to customer satisfaction and QoS. We focus on a ho-
mogeneous vehicle population in our analysis, and supplement 
queueing theory approximation with data analytics to obtain 
a reliable closed-form expression of waiting time. We then 
optimize the power and number of ports of the DCFC station 
to simultaneously minimize cost and waiting time. The focus 
of the present paper is at the macro level; whereas the existing 
literature focuses on operational scheduling [13] or combines 
station design with location selection [14], [15]. 

The overview of the DCFC system operation is summarized 
in Fig. 1. An EV arrives at the DCFC station and waits for a 
specifc time if there is a queue at the station. Then, when it 
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Figure 1: The overview of the DCFC model developed in this 
study. 

is the EV’s turn, the station charges the EV’s battery based on 
its initial SOC, energy demand, and available power capacity 
of the charging port. 

Our contributions in this paper can be summarized as 
follows: 
• A novel DCFC station model is developed as a tool to 

generate the charging and queuing statistics of any station 
for any given vehicle/customer data. 

• The model is developed using highly-cleansed feld mo-
bility data and experimental EV DCFC power vs. SOC 
curves. 

• Statistical Monte Carlo (MC) results comparing three 
station options suited for three different locations in terms 
of port numbers, and total power capacities are presented. 

• The impact of station parameters on the QoS is clearly 
presented under the light of real feld mobility data. 

• An optimization algorithm is developed to further analyze 
the selection of port number and capacity that ensures 
minimum queuing times and initial investment require-
ment. This analysis sheds light on the diffcult task of 
designing DCFC for a specifc location QoS requirement. 

The organization of the paper is as follows. Section II 
presents the methods of data collection from EVI-Pro. Section 
III describes the development of the DCFC station model and 
presents the statistical MC simulation results. Section IV is 
concerned with the mathematical analysis on DCFC operation 
to estimate average charging time, queuing time, and total 
station cost. Section V explains the optimal decision making 
to meet station requirements, and fnally, Section VI concludes 
the study. 

II. DATA COLLECTION METHODOLOGY AND EVI-PRO 
MODEL 

EVI-Pro anticipates spatially and temporally resolved con-
sumer charging demand while capturing variations with re-
spect to residents of single-unit dwellings (SUDs) and multi-
unit dwellings (MUDs), weekday/weekend travel behavior, 
and regional differences in travel patterns and vehicle adop-
tion. To identify the optimal charging strategy, individual travel 
days from a travel data set (originally completed using a 
conventional gasoline vehicle) are simulated in EVI-Pro under 
different assumptions for charging infrastructure availability. 
The EVI-Pro model is designed to model regular, everyday 
travel demand as represented in travel surveys and individual 
drivers’ GPS datasets. It does not account for the occasional 
long distance road trip that would require on-route charging 
as it is inherently a different paradigm compared to everyday 
charging. Therefore, this paper examines the demand for 
“destination” or “community” DC Fast Chargers as opposed 
to “highway rest area” type stations. 
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Figure 2: Map of station locations and charging events in 
Colombus, OH (Blue: urban, green: suburban, magenta: rural). 

The modeled vehicle feet consists of both plug-in hybrid 
(PHEVs) and battery electric vehicles (BEVs), but only BEVs 
are eligible to use DCFC stations. The default charging be-
havior is “home-dominant,” meaning that consumers prefer to 
charge at their residence, then at their workplace, and fnally in 
public locations. This charging demand simulation generates 
a set of charging sessions required to satisfy the travel pat-
terns displayed in the data in a way that maximizes electric 
miles traveled and minimizes operational cost. These charging 
sessions are then post-processed spatially and temporally to 
output electric vehicle supply equipment (EVSE) requirements 
and station utilization for the Columbus region. More detail 
on this methodology can be found in [16]. 

EVI-Pro relies on real-world travel data to simulate EV 
charging demand. A large, commercial data set was procured 
from INRIX [17], consisting of GPS travel trajectories (mode 
imputed as driving trips by INRIX) that intersected the Colum-
bus, OH, region in 2016. Each trajectory features trip-level 
data such as start/end times and GPS coordinates (including 
origins, destinations, and intermediate way points). The full 
data set was down selected to include only light-duty consumer 
vehicle GPS data collected from mobile/cellular devices. A 
thorough data cleansing routine was applied to ensure the 
integrity of travel days simulated in EVI-Pro. The cleansed 
input data set includes approximately 1.02 million full travel 
days, 3.71 million trips, and 30.6 million miles of driving. 

The results of these simulations show that the majority 
of charging required to satisfy travel needs of drivers from 
the INRIX data set can be accommodated with residential 
charging. However, some DCFC is required to accommodate 
high vehicle miles traveled (VMT), short dwell time travel 
days. The simulation generated about 23,600 DCFC events 
across the Columbus region, with the highest density (just 
over half of all events) occurring in Franklin County, 30% 
occurring in the six neighboring counties, and the remaining 
20% scattered across the rest of Ohio and the Midwest. 
These charging events are clustered into 400 DCFC stations, 
fagged as urban (Franklin County), suburban (six neighboring 
counties), and rural (outside of the Columbus metro area). The 
map of all stations are shown in Fig. 2. The size of the circles 
is proportional to the number of charging sessions, and the 
colors represent the three zones. 

The number of DCFC charge events is determined in EVI-
Pro by the daily travel schedule of simulated vehicles. DCFC 
is modeled as being the most expensive charging option, so 
drivers will only choose it if residential, workplace or public 
AC slow charging does not enable them to satisfy their travel 
demand. DCFC charge events are then aggregated into 400 
stations by clustering them spatially to create “hot-spots”, as 

(a) (b) 

Figure 3: Structure of the (a) DCFC station model and EVI-
Pro interaction and (b) data generation. 

opposed to point locations. Actual land use is currently not 
taken into account by the siting algorithm: as a result, there 
may be architectural or environmental constraints on station 
siting. 

III. DCFC STATION LOAD MODEL AND SIMULATION 
TEST STUDY 

A. DCFC Station Modeling 

Fig. 3a shows the structure of the interaction between 
the developed DCFC station model and EVI-Pro. EVI-Pro 
provides the necessary input data and stochastic mobility 
parameter distributions to the DCFC station model which in 
turn generates vehicle charging events and stations. The input 
data provided by EVI-Pro can be divided into three categories: 
(i) station parameters, (ii) vehicle parameters, and (iii) station 
use parameters. 

Station parameters include number of stations, their capac-
ities, number of ports, and port capacities. Vehicle parameters 
defne vehicle types, battery sizes, maximum charging powers, 
and charge acceptance curves. The data also provide several 
distributions for vehicle types, arrival times, energy demands, 
and initial SOCs along with number of charging events at each 
station. A brief overview of the variable generation process is 
shown in Fig. 3b. 

In order to understand the design criteria for a DCFC 
station, it is necessary to develop the likelihood of all possible 
outcomes and the risks these represent. The MC analysis is an 
effective tool for this purpose. It provides possible outcomes 
and also their associated probabilities bringing a broader view 
of what might happen. For this purpose, we utilized MC 
analysis by running 10 monthly simulations with the same 
input data. At each run, vehicle related parameters such as 
time of arrival, energy demand, initial SOC, etc. are randomly 
regenerated from the associated probability density functions 
(PDFs) as shown in Fig. 3b. During the simulations, vehicles 
arrive at the corresponding stations, wait in the queue (if there 
is not any available port), are plugged in, and then charged 
according to their charge acceptance curves. They depart after 
their energy demand is met, and a new vehicle from the queue 
is plugged into an available port. 

B. Charge Acceptance Curves 

The charge acceptance curves for the vehicle types are given 
in Fig. 4a. This fgure shows how the charging power of 
vehicle batteries vary as a function of battery SOC. The curves 
for each vehicle type were developed based on DCFC data 
acquired from a 2012 Nissan LEAF [18]. This charging power 
data are collected after a full vehicle thermal soak to allow 
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(a) (b) 

(c) (d) 

Figure 4: (a) Charge acceptance curves for three vehicle types 
with Nissan LEAF fast charging data, and (b) charging profle 
results of a 24 kWh, (c) 60 kWh, and (d) 85 kWh electric 
vehicle. 

the battery to reach 25◦C. The vehicle data are included in 
Fig. 4 and are for a charge from about 15% to 90% SOC. A 
curve-ft method is used to defne the charge acceptance curve 
at intervals of 2.5% SOC for the 24 kWh vehicle type. The 
remaining charge acceptance curves are determined assuming 
a cell-level charge power decrease of 60% in the power-to-
energy (P-E) ratio that is then scaled for the larger capacity 
60 kWh and 85 kWh vehicle types. The decrease in P-E is 
used to account for the use of more energy dense cells in the 
production of longer range vehicles [19], [20]. 

These charge acceptance curves are used by the DCFC 
model to limit the charge power to the charging vehicles 
based on their SOC throughout the fast charge. Thermal and 
time-dependent charge diffusion limitations on charging power 
have not been accounted for in this model. The charge data 
from the Nissan LEAF demonstrate a simplifed constant-
current (CC) charging method up to 60% SOC and a then 
constant-voltage (CV) methodology to higher SOCs. While 
the SOC transition to constant-voltage may vary depending on 
battery chemistry and other more aggressive charging methods 
have been proposed [21] [22], this approach provides an 
approximation of the battery limitations on charging power. 

C. Simulation Test Set-up 

All the simulation parameters used in this study are listed 
in Table I. The justifcations for the selection of parameters 
pertaining to vehicles and stations are explained as follows. We 
simulated three stations which characterize the three typical 
station confgurations found today. The frst station type, 
located in the urban core, has 12 ports and a total capacity 
of 1,800 kW, to respond to high demand. The second station 
type, located in suburban areas, has 4 ports and a total capacity 
of 600 kW. Finally, the third station type corresponds to a rural 
station with only one 50 kW port, which primarily serves to 

Table I: Simulation, station, and vehicle parameters used in 
this study. 

Station parameters 
[1] Urban [2] Suburban [3] Rural 

Number of ports 12 4 1 
Station capacity [kW] 1800 600 50 
Port capacity [kW] 150 150 50 

Vehicle parameters 
EV-1 EV-2 EV-3 

Battery size [kWh] 24 60 85 
Max. SOC limit [%] 80 80 80 
Probability Distributions: 

Urban 0.8900 0.0503 0.0598 
Suburban 0.8513 0.0691 0.0796 

Rural 0.6403 0.1675 0.1922 
Simulation parameters 

Total number of MC Simulations: 10 
Single simulation duration: 4 weeks (1-min resolution) 

provide network coverage – i.e. a safety net – to BEV drivers 
traveling outside the city. The number of plugs for each station 
type was determined by averaging the number of plugs per 
station simulated in each zone (urban, suburban and rural, 
respectively). 

The probability distributions for each EV type are deter-
mined by EVI-Pro based on the frequency at which each 
vehicle type utilizes DCFC stations in urban, suburban and 
rural settings. The DCFC network, regardless of station type, 
is primarily utilized by short range EVs whose daily driving 
distance can often exceed their range. 24 kWh EV owners 
residing in the urban core will be less inclined to drive to the 
farther outskirts of the city due to their limited range. Con-
versely, 85 kWh EV can complete longer trips and will utilize 
the rural DCFC network more frequently. When evaluating 
the impact of probability distributions to the model outputs, 
one should consider that charge acceptance rate increases with 
increased capacity EVs. This provides faster charge speeds 
when the port capacity is higher than the vehicle demand (i.e. 
in urban and suburban stations). However, the energy demand 
also increases with increased capacity EVs. In this study, we 
develop a methodological approach to factor in all the possible 
causes impacting the user experience at the DCFC station. 

To demonstrate how a charging event takes place, the 
charging profles of three different types of vehicles (with 
24, 60, and 85 kWh battery sizes) are presented in Figs. 4b– 
4d, respectively. The vehicles are randomly selected out of 
approximately 23,000 charging events. In these fgures, one 
can observe when the vehicles arrived at the stations, whether 
or not they had to wait in a queue (none of them entered the 
queue in the presented cases), its set-up time (selected as 5-
min), and when its charging started. Further, one can observe 
how EVs’ charging power changed over time as a result of 
charge acceptance rate, how their SOC changed, and when 
they fnished with charging and departed. 

The charge acceptance curves play a role in the total time 
EVs spend at the charging station. The main impact to the 
results are a function of the arrival SOC and the required 
energy demanded for each charge event. If the charge stays 
in the lower CC range of the chosen curves, it will have a 
minimal impact on the charge duration as seen in Fig. 5(b). 
However, as seen in Figs. 5(a) and (c), the rate of charge 
can reduce at the end of the charge (CV range). The charge 
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Table II: Important statistical results of MC simulations. 
Station Details Station 1 Station 2 Station 3 
Station port count 
Station power capacity (kW) 
Monthly charging events 

12 
1800 
3976 

4 
600 
896 

1 
50 
308 

Charging 
Power 

Aver. demand power (kW) 
Max. demand power (kW) 

136.26 
606.58 

55.19 
279.83 

36.59 
50 

Charging 
Duration 

Max. charging dur. (min) 
Aver. charging dur. (min) 
Min. charging dur. (min) 

54 
20.73 

8 

54 
21.73 

8 

91 
35.14 

8 

Queuing 
Max. queuing dur. (min) 
Aver. queuing dur. (min) 
Max. queue length (# EV) 
Aver. queue length (# EV) 

12 
0.04 

5 
0.004 

30 
0.25 

5 
0.006 

276 
30.14 

7 
0.230 

Port 
Utilization 

Max. port util. (# ports) 
Aver. port util. (%) 

12 
30.8 

4 
39 

1 
100 

acceptance rate will depend most dramatically on how a 
manufacturer develops the battery management system when 
trying to balance battery life constraints against both battery 
temperature and SOC. 

We leave it for future work to examine in detail how these 
decisions will impact the queuing of a station and design 
decisions around the built infrastructure for a station. Our 
approach is to use the MC simulations that randomly assigns 
incoming SOC and required energy for these curves based on 
the EVI-Pro statistics explained above. Therefore, we believe 
we have bounded the problem appropriately and removed 
some of the impact of the chosen curves. 

D. Simulation Results and Discussions 

The simulations were run with the parameters defned above 
for a station design in each region using the average number 
of charge events of the stations in the respective region. 
Table II gives the statistical results of all MC simulations 
for each station. Four criteria have been chosen for analysis 
and comparison: 15-min average power consumption of the 
stations (termed as “demand power” in this study), charging 
duration statistics at each station, queuing statistics (queuing 
duration and queue length), and port usage. Table II can 
help draw important conclusions regarding the load profle, 
QoS, and effective use of available power at the station. As 
an example, an increase in average and peak demand power 
and a decrease in the queuing durations can be noted from 
station 3 to station 1 due to increased power capacities and port 
numbers. Further, maximum power consumption of station 1 is 
almost a third of the station total capacity. However, the same 
station experiences a maximum queuing duration as high as 
12 min. 

Demand charges can be as high as 90% of electricity costs 
of a DCFC station according to a recent report [23]. Therefore, 
demand power consumption of different DCFC station types 
are explained using box plots. Fig. 5 shows the box plots 
of demand power consumption of the stations for each day 
after 10 MC simulations. Bottom and top lines of each box 
represent 25th and 75th percentile of all samples, respectively. 
Straight lines in each box refer to median of all samples. 
Maximum limit of the dotted lines (>) cover the 99.3%, and 
the remaining red outliers (+) fall into 0.7% of all samples. 

Even though the total capacities of stations 1 and 2 are 
1,800 kW and 600 kW, respectively, 75th percentile of all 
power consumptions fall well below their rated capacity with 
the outlier events below half of the rated power. The peak 
demand power for station 1 designated by the outliers is 

(a) (b) (c) 

Figure 5: Demand power boxplots of stations (a) #1, (b) #2, 
and (c) #3. 

(a) (b) (c) 

Figure 6: Demand power probability histograms of stations (a) 
#1, (b) #2, and (c) #3 (No EV case excluded). 

around one-third of the station’s rated capacity. This ratio is a 
little higher for station 2, indicating that the capacity of station 
2 is more effectively used. Station 3, on the other hand, uses 
all of its capacity every day since it has only one port. This 
means that either or both a capacity increase and port count 
increase for this station should be considered. 

Fig. 6 shows the probability histograms of the demand 
power consumption for all time at each station for 10 MC 
simulations. These fgures show the likelihoods of total power 
consumptions that the stations will have to handle. As seen, 
the fgures are consistent with the statistical results presented 
in Table II. Fig. 7 corresponds to the percent of station port 
utilization. ”0 port” indicates the times when no EVs are 
present at the station. This fgure reveals that 70% of the time, 
the ports of station 3 are not utilized. The percentages in the 
fgure add up to 100% for each station corresponding to 24h 
horizon. 

The queue at the station is another important parameter that 
results in extra waiting times and decreases QoS. The average 
and maximum queue length and queuing durations among all 
MC simulations for each station in a month were already 
given in Table II. Fig. 8 shows the probability of queuing 
durations at each station for the customers that happened to 
wait in the queue excluding zero waiting times. This provides 
better information on the queuing time spectrum. Further, the 
probabilities of waiting in different time intervals in a day 
are also calculated. The results are presented for different 
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(a) (b) (c) 

Figure 8: Queuing duration probabilities for stations (a) #1, 
(b) #2, and (c) #3. (zero queuing time excluded) 

waiting times as a probability chart in Table III. It shows the 
probability of how long a user will wait in the queue at each 
station at any time of the day. As the queue length increases, 
the waiting times will increase and QoS will decrease. Since 
Station 1 offers charging at higher powers and has more ports, 
it is very unlikely to wait more than 10 min at this station. The 
worst case scenario happens for Station 3 where the probability 
of waiting more than 25 min in the queue between 12:00-14:00 
is 37%. This also follows the statistical results in Table II that 
show the average waiting duration for Station 3 is 30 min. 
This is defnitely not a reasonable risk for the station operator 
since it clearly loses potential customers to other stations. 
To overcome this problem, either the power capacity of the 
available port/station or installing an additional port should be 
considered. 

To make the best decision in selecting the DCFC design 
parameters and providing a satisfactory QoS to customer, 
we will develop a mathematical formulation between the 
aforementioned parameters in the next section. 

IV. ANALYSIS TO ESTIMATE AVERAGE CHARGING TIME, 
QUEUING TIME, AND TOTAL COST 

In this section, we use the queueing theory and analytics 
to approximate the customer satisfaction aspect of DCFC 
stations. The mathematical functions derived in this section 
serve as the building blocks of our optimization model in the 
next section. 

In the preceding simulations, three different stations with 
three distinct sets of characteristics were used. In the follow-
ing, we use a new station and [controllably] vary two of its 
critical characteristics for optimization. 

For sake of simplicity, consider a station serving a homo-
geneous population of vehicles with 60 kWh battery capacity, 
i.e., type 2 vehicle in Section III. The charge acceptance curve 
(Fig. 4a) indicates that the maximum power needed by this 
vehicle is approximately 72 kW at 60% SOC. Investment 
costs depend on port capacity (p), hence it is suboptimal 
to set p higher than the maximum that can be utilized by 
the vehicles. However, it can be benefcial to strategically 
install lower-capacity ports to reduce investment costs. To 
investigate the effect of lower port capacity, we experiment 
with p ∈ {48, 60, 72}. Note that our analysis can be gen-
eralized to heterogeneous vehicle populations. Also note that 
installing higher-capacity ports than currently needed could be 
considered under speculative motives (such as vehicles with 
larger battery capacity utilizing the station in the future), which 
are excluded from this analysis. 

Another design characteristic that directly affects costs is 
the number of ports (n). In the following, we show the 
results of a full-factorial experiment with two parameters (n ∈ 

{9, 10, 11, 12} and p ∈ {48, 60, 72}) to see the effects of these 
two key station design parameters on customer satisfaction. 
The 12 combinations (of n and p) were simulated 10 times 
using the DCFC station model developed in Section III-A. In 
each run, 142 vehicles were populated per day, for 28 days. 
Consequently, there were 142 × 28 × 10 × 12 = 477, 120 
vehicles in the entire experiment. Some of our analyses are 
based on all 477,120 vehicles, whereas some others on the 
averages observed for each of the four n values and/or three 
p values. 

All our analyses are conducted using the SAS 9.4 software 
package [24]. We rely on the p-value statistical measure 
where applicable. More specifcally, we conduct regression 
analysis to predict a dependent variable and use the p-value 
to conclude on the strength of the hypothesized relationship 
between a set of independent variables and the dependent 
variable. The p-value values less than 0.01 are interpreted 
to show overwhelming evidence for the relationship [25, p. 
397]. In interpreting regression analysis results, we also rely 
on the coeffcient of determination (r2), which is the fraction 
of variability in the dependent variable explained by using the 
estimated regression equation. Threshold r2 values acceptable 
to conclude strong regression vary by application [25, p. 616]. 
In our case, we look for r2 ≥ 0.90. In building our regression 
models, we adopted the stepwise regression approach [25, p. 
784], which is available in the SAS 9.4 package. 

A. Estimating the charging duration 

For a particular vehicle, charging duration is a function 
of port power, arrival SOC, and energy demand, i.e., tc = 
F (p, δ, d). Charging duration is expected to be inversely 
related to p, proportionally decrease with δ and proportionally 
increase with d. We ran a step-wise regression with two-factors 

−1 (i.e., products) of p , δ and d on the collective set of 477,120 
vehicles in our simulation. The step-wise regression model 

−1 yielded F (p, δ, d) = β0 
F + β1 

F dp−1 + β2 
F p + β3 

F d + β4 
F δ 

and estimated the parameter values to be βF = 13.94996, 0 
βF = 40.97261, βF = 418.88514, βF = 0.14887, and 1 2 3 
βF = −1.91644 based on the given data. All coeffcient values 4 
were found statistically signifcant at the 0.0001 level. Also, 
r2 was 0.9959, indicating practically all variability in charging 
duration is explained by the estimated F (p, δ, d) function. 

Energy demand and arrival SOC distributions are given 
among inputs of the simulation model from EVI-Pro. Incor-
porating their respective distributions, we obtain the expected 
value of charging duration as follows: 

E [tc] = E[F (p)] 
−1 −1 = βF + β1 

F E [d] p + β2 
F p + β3 

F E [d] + β4 
F E [δ] 0 � � � � −1 = βF + β3 

F E [d] + β4 
F E [δ] + β1 

F E [d] + βF p 0 2 

= βF 0 + βF 0 −1 p (1) 0 1 

Here, βF 0 = β0 
F +β3 

F E [d]+β4 
F E [δ] and βF 0 = β1 

F E [d]+β2 
F . 0 1 

In our data set, these two parameter values were calculated 
as βF 0 = 9.41316 and βF 0 = 1767.97909. In addition, we 0 1 
conducted a simple linear regression analysis between p1 and 
the actual average charging durations. Each actual duration 
(for a given p value) is averaged over 142 × 28 × 10 × 4 = 

2 159, 040 vehicles. The regression analysis resulted in r = 
0.9880, showing a very strong relationship even for only 3 
observed p values. 
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Table III: Probability of queuing duration for three stations at different times of day (%). 
Time 

Inverval 
0-5 min 5-10 min 10-15 min 15-20 min 20-25 min >25 min 

St. 1 St. 2 St. 3 St. 1 St. 2 St. 3 St. 1 St. 2 St. 3 St. 1 St. 2 St. 3 St. 1 St. 2 St. 3 St. 1 St. 2 St. 3 
00:00-02:00 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
02:00-04:00 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
04:00-06:00 100 100 84.16 0 0 2.97 0 0 0 0 0 0.99 0 0 0 0 0 10.89 
06:00-08:00 100 100 78.19 0 0 2.13 0 0 0.53 0 0 1.06 0 0 2.13 0 0 15.43 
08:00-10:00 100 99.07 56.35 0 0.28 1.11 0 0.47 4.45 0 0.19 2.67 0 0 3.12 0 0 28.29 
10:00-12:00 99.78 98.07 43.05 0.21 0.87 2.51 0.01 0.75 2.51 0 0.25 3.18 0 0.06 4.52 0 0 34.34 
12:00-14:00 99.05 96.57 36.48 0.89 1.77 3.09 0.06 1.05 3.81 0 0.39 2.18 0 0.22 2.54 0 0 37.75 
14:00-16:00 99.67 95.89 46.04 0.31 2.15 4.46 0.01 0.95 3.85 0 0.7 4.26 0 0.19 3.85 0 0.13 27.18 
16:00-28:00 99.84 99.47 47.23 0.12 0.35 2.11 0.04 0.18 3.43 0 0 5.28 0 0 1.85 0 0 29.02 
18:00-20:00 100 99.17 61.01 0 0 1.38 0 0.55 3.21 0 0 3.21 0 0.28 4.59 0 0 22.48 
20:00-22:00 100 100 84.42 0 0 1.30 0 0 0 0 0 2.60 0 0 2.60 0 0 5.19 
22:00-24:00 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B. Estimating the waiting time in the queue following closed form equation: 

The queueing system underlying the modeled charging 
station operation is complicated by (i) time-dependent arrivals, 
(ii) a general service time distribution, and (iii) multiple 
servers (i.e., ports), in order of their importance in increasing 
the complexity. 

Arrival time distribution is time-dependent, and there is 
much fuctuation between arrivals during peak and non-peak 
hours. Our approach in defning waiting time (Wq) focuses 
on the peak hours1 (i.e., worst case), hence customers arriv-
ing in non-peak hours can expect to get their service after 
signifcantly shorter waiting. 

We assume inter-arrival times are exponentially distributed, 
as is common in numerous queueing applications. The queue-
ing theory gives us a useful baseline, however it falls short of 
giving us a closed-form expression to estimate average waiting 
(in-queue) time. Furthermore, our focus in this study is on the 
average waiting time during peak hours. We bridge the gap 
between the queueing theory and our needs with analytics as 
follows. 

The best closed-form estimate of Wq we can use from the 
queueing theory is from the M/M/c model, which assumes 
exponential inter-arrival and service times, and multiple (c > 
1) servers [26, Section 3.3]. In our application, each port is a 
server, hence we replace c by n in the formulation. We denote 
this estimate by Ωq and express it as follows: 

(λ/µ)n 

n!(nµ − λ)2 
Ωq = (2) 

nP−1 (λ/µ)i P ∞ (λ/µ)i 
+ 

i! ni−nn! i=0 i=n 

Here, λ is the arrival rate in vehicles per minute, which 
is known a priori. On the other hand, µ is the service rate 
in vehicles per minute, which depends on the setup time and 
charging durations as follows. 

µ = (s + E [tc])
−1 � �−1 

−1 = s + βF 0 + βF 0 p (3) 0 1 

where s is taken as 5 min. Plugging (3) into (2), we get the 

1the peak hours are designated as 10:00AM-4:00PM based on the feld 
mobility data provided by EVI-Pro 

� � �� 
−1 n 

λ s+βF 0 +βF 0 p 0 1 !2 

n n! −λ 
(s+βF 0 +βF 0 p−1) 

Ωq = 0 1 

∞nP−1 (λ(s+βF 0 +βF 0 p−1))
i P (λ(s+βF 0 +βF 0 p−1 ))

i 
0 1 0 1 + i! ni−n n! 

i=0 i=n 
(4) 

We hypothesize that the expected queue time is a function 
of n and p, i.e., E[Wq] = G(n, p). We use Ωq , which is a a 
closed-form nonlinear function of n and p itself, as a factor 
in estimating the G function. We also use the inverses of µ 
and n as factors. The smaller the inverse of the service rate or 
the number of ports, the shorter we expect vehicles to wait in 
queue. We again performed a step-wise regression based on 

−1 −1 two-factors of Ωq , n and µ to estimate the G function. 
Based on the 12 observations from our simulations, the best 
estimate of the G function is the following: 

+ βG −1 G(n, p) = β0 
G 

1 Ωq + β2 
G Ωq n + β3 

G (nµ)−1 (5) 

Here, the parameter values were estimated as βG = 0 
−21.20508, β1 

G = 134.44303, β2 
G = −947.71254, and 

β3 
G = 6.62322. In the model, all coeffcient values were 

found signifcant at the 0.01 level. Also, r2 = 0.9968, which 
indicates a very strong relationship. 

Plugging the service rate estimation (3) into the waiting time 
estimation (5), we get the following expression: 

−1+βG G(n, p)=β0 
G +β1 

G Ωq+β2 
G Ωqn 3 (nµ)

−1 � � 
+βF 0 −1 

Ωq 
s+β0 

F 0 
1 p

=β0 
G +β1 

G Ωq+βG +βG 
2 3 n n � � Ωq 1 1 

=β0 
G +βG +βG +βG s+βF 0 +β3 

G βF 0 
1 Ωq 2 3 0 1 n n np 

Ωq 1 1 
=β0 

G +β1 
G Ωq+βG +βG0 +βG0 (6) 2 3 4 n n np � � 

Here, β3 
G0 = β3 

G s + βF 0 and β4 
G0 = β3 

G βF 0 . Recall that 0 1 

Ωq is a function of n and p, and it is kept in equation (6) for 
sake of brevity in the formula. 

C. Estimating the total cost 
Both investment and operation costs can depend on the 

design criteria of a charging station. Investment costs include 
a fxed term f that may depend on factors such as location, 
but not the total station power, number of ports or the power 
of each port. We consider variable terms of investment costs 
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in two parts: α(P ) and nβ(p). Both α and β are assumed 
nonlinear functions that are monotonically non-decreasing and 
have diminishing returns in P and p, respectively, consistent 
with the cost function estimated in [27]. 

Operation costs depend largely on the energy consumption 
and the traffc going through the station. Pricing and other 
demand management tools can be utilized to assure that each 
additional vehicle charged in the station yields at least enough 
revenue to cover the operational costs it causes. Therefore, in W

q
 ,

A
vg

.w
ai

t 
tim

e 
(m

in
)

0 

20 

40 
Actual Expected 

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 
the current work, we focus on analyzing the trade-offs between Z, Total investment cost ($ Millions) 
investment cost and customer satisfaction. Total investment (a) 
cost (Z) is expressed as follows. 

Minimize Z = f + α(P ) + nβ(p) (7) 

V. OPTIMIZATION OF DCFC STATION CAPACITY AND 
NUMBER OF PORTS 

There is an inherent trade-off in cost vs. customer satis-
faction. With increased competition among station operators, 
customer satisfaction becomes more important. Keeping costs W

q
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low can mean sacrifcing customer satisfaction, however it is 
necessary for the long term and for fnancial sustainability of 
any given station operator. In the case of a charging station, 
customer satisfaction can be measured via waiting time during 
peak hours. 

The trade-off between total investment cost 
calculated using an example cost function and 
average waiting times during peak hours (Wq) is 
depicted in Figure 9a. The example cost function is 
Z = −0.6699P 2+1919.4565P +n(−0.4145p2+520.7421p), 
which approximates the costs reported in [27] for the case 
without solar panel or battery storage investment. The actual 
observations for every (n, p) combination are depicted by 
the blue diamonds and acquired using the developed DCFC 
model explained in Section III. The “expected” orange circles 
in the same fgure are the estimates calculated via equation 
(6). The expected values are calculated for each even p 
value in the interval [48, 72] kW, to display the trade-off 
in more detail. It is seen in the fgure that the actual and 
expected values are very close together, and they both show 
a “frontier” in the quest to minimize both Z and Wq (for 
quality, or, customer satisfaction). 

Figure 9b displays the effcient frontier consisting of select 
“expected” points from Figure 9a. More specifcally, the eff-
cient frontier contains only such solutions that can be ordered 
and then connected with line segments without leaving any 
solution, i.e., point, to the bottom-left side of any line segment. 
This defnition also ensures that, the line segments are ordered 
from steepest to slightest when the points are ordered from left 
to right. 

The decision maker can use the trade-off information con-
veyed in Figures 9a and 9b to select a solution in a number 
of ways. Firstly, a new objective function in the form of 
Ω = Z + λWq can be formulated. In this structure, λ is the 
relative penalty associated with increasing Wq by a minute 
compared to increasing Z by $1, 000, 000. For each value of 
λ, a point on the effcient frontier is optimal, i.e., minimizes 
this objective function. Table IV shows which effcient solution 
is optimal for what values of λ. Note that λ intervals overlap, 
hence for some λ values there are two optimal solutions. 

Z, Total investment cost ($ Millions) 

(b) 
Figure 9: (a) Trade-off between Z and Wq and (b) Effcient 
frontier. 

Table IV: Optimal effcient solution for slope (λ) values 

λ Z Wq 
≤0.003769 0.921 46.534 

≥0.003769 AND ≤0.005179 0.953 37.895 
≥0.005179 AND ≤0.007090 1.007 27.412 
≥0.007090 AND ≤0.007389 1.042 22.495 
≥0.007389 AND ≤0.012596 1.091 15.877 
≥0.012596 AND ≤0.024882 1.172 9.473 
≥0.024882 AND ≤0.031049 1.211 7.918 
≥0.031049 AND ≤0.036985 1.248 6.698 
≥0.036985 AND ≤0.042517 1.285 5.696 
≥0.042517 AND ≤0.047588 1.322 4.844 
≥0.047588 AND ≤0.052212 1.357 4.099 
≥0.052212 AND ≤0.056434 1.392 3.436 
≥0.056434 AND ≤0.060304 1.426 2.837 
≥0.060304 AND ≤0.063869 1.459 2.290 
≥0.063869 AND ≤0.067167 1.491 1.786 
≥0.067167 AND ≤0.070227 1.522 1.318 
≥0.070227 AND ≤0.073069 1.553 0.883 

≥0.073069 1.582 0.476 

Secondly, the decision maker may restrict either Z or Wq 

value via a new constraint and minimize the other (Wq or Z) 
among the remaining feasible effcient solutions. For example, 
a budget constraint may place an upper limit Z as depicted in 
Fig. 10a. If Z ≤ 1.3 is imposed as shown in the fgure, then 
(Z = 1.285,Wq = 5.696) emerges as the optimal solution. 
Similarly, customer expectations may impose an upper limit 
on Wq as shown in Fig. 10b. For Wq ≤ 10 shown in the fgure, 
(Z = 1.172,Wq = 9.473) is the resulting optimal solution. 

The decision maker can also simply make his or her decision 
by simply observing the trade-off shown in Figure 9a. As 
long as the chosen solution is not dominated by another 
solution, i.e., there is no other solution with both smaller 
P and smaller Wq , then the chosen solution can be a good 
choice even if it is not on the effcient frontier. For example, 
(Z = 1.128,Wq = 13.194) may appear very attractive to the 
decision maker in his/her evaluation even if it’s slightly on the 
upper-right side of the effcient frontier. Multi-criteria decision 
making is complex even for only two criteria. We refer the 
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(b) 
Figure 10: Minimizing (a) Wq for constrained P and (b) 
Minimizing P for constrained Wq . 

reader to [28] for further reading on the approaches presented 
here and more. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, we developed a DCFC station model and 
analyzed three different DCFC stations using charging and mo-
bility data acquired from EVI-Pro. The model ran a thorough 
analysis on DCFC station operation to understand statistical 
metrics such as peak demand power, customer service quality, 
and port utilization. While the increased station power capacity 
and number of ports result in a higher peak demand power, it 
is very dependent on EV charge acceptance. 

Further, increasing port number increases customer QoS but 
decreases port utilization. As an example, an 1,800 kW, 12-
port DCFC resulted in a 33.7% peak loading and 30.8% port 
utilization. The probability of waiting more than fve minutes 
in the queue at this station is at worst 0.95% during a day. We 
analyzed this relationship in greater detail with the use of the 
queueing theory and data analytics, and obtained a series of 
closed-form mathematical expressions to estimate queue time. 
We further explored the optimization of DCFC station power 
in a bi-objective model through the trade-off between cost and 
customer satisfaction. We showed increasing the number of 
ports for a given DCFC station power decreases waiting time. 

Queueing theory is very useful in estimating waiting times, 
however it is also limiting due to its inherent mathematical 
complexity. In our present analysis, we focused our attention 
to homogeneous electric vehicle populations. Extension of 
the present work to heterogeneous populations emerges as a 
potential future research direction. Optimization of a DCFC 
station is complicated by factors such as space limitations, 
the current charge technology and the uncertainty regarding 
both the demand and technology development. For example, 
designing optimal control policies for a limited-capacity (P ) 

station to serve a heterogeneous population of vehicles needs 
to be addressed. 

Another possible future research direction is to integrate 
this analytical framework with empirical fndings regarding 
customer behavior in order to optimize station design for the 
whole ecosystem. For example, customers may be impatient, 
i.e., they may show balking and/or reneging behaviors, which 
can be captured in the same framework. The extent of changes 
in the model under such impatience can be explored in a 
future extension of this study. Also, some customers may be 
concerned with the total (waiting plus charging) time in the 
system, more so than the waiting time alone. Such a change 
in the cost vs. QoS trade-off is expected to shift the optimal 
solution towards fewer faster ports. A more complex system 
design incorporating multi-level prioritization of ports and/or 
customers, possibly with different prices may be studied to 
quantify the effects as well as to jointly optimize for multiple 
stakeholders at the same time. 
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