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Abstract—The deployment of public charging infrastructure
networks has been a major factor in enabling electric vehicle
(EV) technology transition, and must continue to support the
adoption of this technology. DC fast charging (DCFC) increases
customer convenience by lowering charging time, enables long-
distance EV travel, and could allow the electrification of high-
mileage fleets. Yet, high capital costs and uneven power demand
have been major challenges to the widespread deployment of
DCFC stations. There is a need to better understand DCFC
stations’ loading and customer service quality. Furthermore, the
relationship between the initial investment decision on building
certain number of ports and customer satisfaction should be
quantified. This study aims to analyze these aspects using one
million vehicle-days of travel data within the Columbus, OH,
region. Monte Carlo analysis is carried out in three types of
areas - urban, suburban, and rural- to quantify the effect of
uncertain parameters on DCFC station loading and service
quality. Additional simulations based on a homogeneous vehicle
population are carried out, and closed-form equations are derived
therefrom to estimate charging duration and waiting time in the
queue. Optimization of DCFC station design is also addressed
through the number and capacity of ports.

Index Terms—Electric vehicles, DC fast chargers, optimization,
modeling, queueing

NOMENCLATURE

Number of DCFC ports

Power rating (capacity) of each port [kW]

Total power rating of the station [kW] (e.g. P =
np)

Arrival SOC of each vehicle (%)

Energy demand of each vehicle [kWh]

Charging duration of each vehicle [minutes]
Mean waiting time in the queue before charging
[minutes]

S Set-up time between two subsequent vehicles to be
charged at the same port [minutes]
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I. INTRODUCTION

The electric vehicle (EV) market is taking off, with over
500k EVs on the road in the United States and over 2M glob-
ally. Although EVs are becoming more popular, the issues that
prevent their mass penetration such as limited infrastructure
are still present. Replacement of traditional internal combus-
tion engine vehicles by EVs goes hand-in-hand with the mass
deployment of reliable and fast charging infrastructure.

There are two types of EV charging methods: () on-board
charger for AC grid connection which can be single-phase
Level 1 (L1) and Level 2 (L2) as defined in SAE J1772, and
three-phase AC charging as defined in SAE J3068 (work in
progress); and (i¢) DC fast charging (DCFC) as defined in SAE
J1772-Combo/CHAdeMO standards. L1 and L2 are mostly
located at residential and public/workplace charging premises.
These stations do not include a power electronics converter
but rather utilize the vehicle’s on-board charger which is rated
at low power levels (typically less than 19.2 kW) [1]. On the
other hand, DCFC stations operate at high power DC voltage
and use an off-board AC-DC converter. Thus, they provide
much higher charging power level compared to L1 and L2.

There are several issues that should be addressed for the
wide-spread usage of DCFC stations: their locations, opera-
tion costs, and how to evaluate the service quality for the
customer [2]. DCFC geographic location has to be close to
where it is needed and should ensure relatively high mobility
of EVs [2]. Berjoza and Jurgena [2] proposed an algorithm
that determines metrics like the availability ratio for charging
stations. Zenginis et al. [3] describe a novel queuing model
where the customers’ mean waiting time is computed by
considering the available charging outlets, arrival times, and
charging needs of various EVs. Quality of service (QoS) is
measured by waiting time of the customers in the queue prior
to charging their EVs.

Fan et al. [4] studies the impact of the requested state of
charge (SOC) of EVs on charging times and proposes an
operation analysis of fast charging stations where operators
can set a limit on the requested SOCs to obtain maximized
revenue. Yunus et al. [5] investigated the impact of DCFC
stations on distribution transformer loading using stochastic
EV mobility parameters. System bus voltage profiles are also
analyzed using DigSILENT PowerFactory. Akhavan-Rezai et
al. [6] extracted mobility models from a national survey in
Canada and used them to compare normal and DCFC stations
in terms of their impact on voltage violations, power losses,
and line loading.

Yang et al. [7] explores the optimal sizing problem of DCFC
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stations. EV charging demand is calculated based on random
generation of EV mobility statistics. Then, a queuing model is
developed, and an optimization algorithm is run considering
service quality and limitations of the power network. Com-
pared to our study, the generated data set does not rely on real
field data, and it does not implement any charge acceptance
curve which is very limiting in the evaluation of service
quality. [8] proposes an estimation method based on Markov
arrival process for stochastic modeling of charging stations.
They essentially aim to determine the required number of
charge ports in a station to keep the probability of waiting
below a pre-defined threshold. They use the number of arriving
vehicles during a fixed time slot and service time distributions
as inputs. However, this study does not fully describe impor-
tant details such as vehicle type, charge acceptance, station
location, and port capacity, but rather uses generic modeling.

Design and operational management of DCFC stations play
a crucial role in meeting the requirements for high QoS.
Metrics such as the average waiting time in queue (W) or
average charging duration (¢.) depend mostly on DCFC design
parameters (e.g. port number (n), total power rating (P), and
individual port capacity (p)). Stations with lower waiting and
charging times will attract more customers. Similarly, station
design that gives the best QoS with minimum investment is
desired by the station operator. These suggest that an analysis
building a relationship between the total installation&operation
costs and customer satisfaction have the potential to increase
the total station revenue.

The National Renewable Energy Laboratory (NREL) to-
gether with the California Energy Commission (CEC) devel-
oped the Electric Vehicle Infrastructure Projection Tool (EVI-
Pro) to estimate regional requirements for charging infrastruc-
ture to support consumer adoption of EVs [9], [10]. EVI-
Pro utilizes EV market and real-world travel data to estimate
future requirements for home, workplace, and public charging
infrastructure [9], [10]. In this study, one million vehicle-days
of travel from the Columbus, OH, region — the winner of the
U.S. Department of Transportation’s Smart City award [11] —
were simulated in EVI-Pro to generate about 23,000 DCFC
events. A lite version of this tool is publicly available at [12].

This study develops tools for and analyzes DCFC operation
to minimize the costs while ensuring high customer satisfac-
tion. We further present DCFC power consumption based on
data provided by EVI-Pro. The model generates instantaneous
and 15-minute average active power consumption to report
peak demand consumption for a given system. To analyze the
results of the simulation model, the present paper utilizes the
queueing theory, data analytics and optimization. Queueing
theory is helpful in estimating waiting times, which are directly
related to customer satisfaction and QoS. We focus on a ho-
mogeneous vehicle population in our analysis, and supplement
queueing theory approximation with data analytics to obtain
a reliable closed-form expression of waiting time. We then
optimize the power and number of ports of the DCFC station
to simultaneously minimize cost and waiting time. The focus
of the present paper is at the macro level; whereas the existing
literature focuses on operational scheduling [13] or combines
station design with location selection [14], [15].

The overview of the DCFC system operation is summarized
in Fig. 1. An EV arrives at the DCFC station and waits for a
specific time if there is a queue at the station. Then, when it
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Figure 1: The overview of the DCFC model developed in this
study.

is the EV’s turn, the station charges the EV’s battery based on
its initial SOC, energy demand, and available power capacity
of the charging port.

Our contributions in this paper can be summarized as
follows:

o A novel DCFC station model is developed as a tool to
generate the charging and queuing statistics of any station
for any given vehicle/customer data.

o The model is developed using highly-cleansed field mo-
bility data and experimental EV DCFC power vs. SOC
curves.

« Statistical Monte Carlo (MC) results comparing three
station options suited for three different locations in terms
of port numbers, and total power capacities are presented.

o The impact of station parameters on the QoS is clearly
presented under the light of real field mobility data.

« An optimization algorithm is developed to further analyze
the selection of port number and capacity that ensures
minimum queuing times and initial investment require-
ment. This analysis sheds light on the difficult task of
designing DCFC for a specific location QoS requirement.

The organization of the paper is as follows. Section II
presents the methods of data collection from EVI-Pro. Section
IIT describes the development of the DCFC station model and
presents the statistical MC simulation results. Section IV is
concerned with the mathematical analysis on DCFC operation
to estimate average charging time, queuing time, and total
station cost. Section V explains the optimal decision making
to meet station requirements, and finally, Section VI concludes
the study.

II. DATA COLLECTION METHODOLOGY AND EVI-PRO
MODEL

EVI-Pro anticipates spatially and temporally resolved con-
sumer charging demand while capturing variations with re-
spect to residents of single-unit dwellings (SUDs) and multi-
unit dwellings (MUDs), weekday/weekend travel behavior,
and regional differences in travel patterns and vehicle adop-
tion. To identify the optimal charging strategy, individual travel
days from a travel data set (originally completed using a
conventional gasoline vehicle) are simulated in EVI-Pro under
different assumptions for charging infrastructure availability.
The EVI-Pro model is designed to model regular, everyday
travel demand as represented in travel surveys and individual
drivers’ GPS datasets. It does not account for the occasional
long distance road trip that would require on-route charging
as it is inherently a different paradigm compared to everyday
charging. Therefore, this paper examines the demand for
“destination” or “community” DC Fast Chargers as opposed
to “highway rest area” type stations.
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Figure 2: Map of station locations and charging events in
Colombus, OH (Blue: urban, green: suburban, magenta: rural).

The modeled vehicle fleet consists of both plug-in hybrid
(PHEVs) and battery electric vehicles (BEVs), but only BEVs
are eligible to use DCFC stations. The default charging be-
havior is “home-dominant,” meaning that consumers prefer to
charge at their residence, then at their workplace, and finally in
public locations. This charging demand simulation generates
a set of charging sessions required to satisfy the travel pat-
terns displayed in the data in a way that maximizes electric
miles traveled and minimizes operational cost. These charging
sessions are then post-processed spatially and temporally to
output electric vehicle supply equipment (EVSE) requirements
and station utilization for the Columbus region. More detail
on this methodology can be found in [16].

EVI-Pro relies on real-world travel data to simulate EV
charging demand. A large, commercial data set was procured
from INRIX [17], consisting of GPS travel trajectories (mode
imputed as driving trips by INRIX) that intersected the Colum-
bus, OH, region in 2016. Each trajectory features trip-level
data such as start/end times and GPS coordinates (including
origins, destinations, and intermediate way points). The full
data set was down selected to include only light-duty consumer
vehicle GPS data collected from mobile/cellular devices. A
thorough data cleansing routine was applied to ensure the
integrity of travel days simulated in EVI-Pro. The cleansed
input data set includes approximately 1.02 million full travel
days, 3.71 million trips, and 30.6 million miles of driving.

The results of these simulations show that the majority
of charging required to satisfy travel needs of drivers from
the INRIX data set can be accommodated with residential
charging. However, some DCFC is required to accommodate
high vehicle miles traveled (VMT), short dwell time travel
days. The simulation generated about 23,600 DCFC events
across the Columbus region, with the highest density (just
over half of all events) occurring in Franklin County, 30%
occurring in the six neighboring counties, and the remaining
20% scattered across the rest of Ohio and the Midwest.
These charging events are clustered into 400 DCFC stations,
flagged as urban (Franklin County), suburban (six neighboring
counties), and rural (outside of the Columbus metro area). The
map of all stations are shown in Fig. 2. The size of the circles
is proportional to the number of charging sessions, and the
colors represent the three zones.

The number of DCFC charge events is determined in EVI-
Pro by the daily travel schedule of simulated vehicles. DCFC
is modeled as being the most expensive charging option, so
drivers will only choose it if residential, workplace or public
AC slow charging does not enable them to satisfy their travel
demand. DCFC charge events are then aggregated into 400
stations by clustering them spatially to create “hot-spots”, as
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Figure 3: Structure of the (a) DCFC station model and EVI-
Pro interaction and (b) data generation.

opposed to point locations. Actual land use is currently not
taken into account by the siting algorithm: as a result, there
may be architectural or environmental constraints on station
siting.

III. DCFC STATION LOAD MODEL AND SIMULATION
TEST STUDY

A. DCFC Station Modeling

Fig. 3a shows the structure of the interaction between
the developed DCFC station model and EVI-Pro. EVI-Pro
provides the necessary input data and stochastic mobility
parameter distributions to the DCFC station model which in
turn generates vehicle charging events and stations. The input
data provided by EVI-Pro can be divided into three categories:
(7) station parameters, (i7) vehicle parameters, and (7¢¢) station
use parameters.

Station parameters include number of stations, their capac-
ities, number of ports, and port capacities. Vehicle parameters
define vehicle types, battery sizes, maximum charging powers,
and charge acceptance curves. The data also provide several
distributions for vehicle types, arrival times, energy demands,
and initial SOCs along with number of charging events at each
station. A brief overview of the variable generation process is
shown in Fig. 3b.

In order to understand the design criteria for a DCFC
station, it is necessary to develop the likelihood of all possible
outcomes and the risks these represent. The MC analysis is an
effective tool for this purpose. It provides possible outcomes
and also their associated probabilities bringing a broader view
of what might happen. For this purpose, we utilized MC
analysis by running 10 monthly simulations with the same
input data. At each run, vehicle related parameters such as
time of arrival, energy demand, initial SOC, etc. are randomly
regenerated from the associated probability density functions
(PDFs) as shown in Fig. 3b. During the simulations, vehicles
arrive at the corresponding stations, wait in the queue (if there
is not any available port), are plugged in, and then charged
according to their charge acceptance curves. They depart after
their energy demand is met, and a new vehicle from the queue
is plugged into an available port.

B. Charge Acceptance Curves

The charge acceptance curves for the vehicle types are given
in Fig. 4a. This figure shows how the charging power of
vehicle batteries vary as a function of battery SOC. The curves
for each vehicle type were developed based on DCFC data
acquired from a 2012 Nissan LEAF [18]. This charging power
data are collected after a full vehicle thermal soak to allow
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the battery to reach 25°C. The vehicle data are included in
Fig. 4 and are for a charge from about 15% to 90% SOC. A
curve-fit method is used to define the charge acceptance curve
at intervals of 2.5% SOC for the 24 kWh vehicle type. The
remaining charge acceptance curves are determined assuming
a cell-level charge power decrease of 60% in the power-to-
energy (P-E) ratio that is then scaled for the larger capacity
60 kWh and 85 kWh vehicle types. The decrease in P-E is
used to account for the use of more energy dense cells in the
production of longer range vehicles [19], [20].

These charge acceptance curves are used by the DCFC
model to limit the charge power to the charging vehicles
based on their SOC throughout the fast charge. Thermal and
time-dependent charge diffusion limitations on charging power
have not been accounted for in this model. The charge data
from the Nissan LEAF demonstrate a simplified constant-
current (CC) charging method up to 60% SOC and a then
constant-voltage (CV) methodology to higher SOCs. While
the SOC transition to constant-voltage may vary depending on
battery chemistry and other more aggressive charging methods
have been proposed [21] [22], this approach provides an
approximation of the battery limitations on charging power.

C. Simulation Test Set-up

All the simulation parameters used in this study are listed
in Table I. The justifications for the selection of parameters
pertaining to vehicles and stations are explained as follows. We
simulated three stations which characterize the three typical
station configurations found today. The first station type,
located in the urban core, has 12 ports and a total capacity
of 1,800 kW, to respond to high demand. The second station
type, located in suburban areas, has 4 ports and a total capacity
of 600 kW. Finally, the third station type corresponds to a rural
station with only one 50 kW port, which primarily serves to

Table I: Simulation, station, and vehicle parameters used in
this study.

Station parameters
[1] Urban |, [2] Suburban |, [3] Rural
Number of ports 12 4 1
Station capacity [kW] 1800 600 50
Port capacity [kW] 150 150 50
Vehicle parameters
EV-1 EV-2 EV-3
Battery size [kWh] 24 60 85
Max. SOC limit [%] 80 80 80
Probability Distributions:
Urban | 0.8900 0.0503 0.0598
Suburban | 0.8513 0.0691 0.0796
Rural | 0.6403 0.1675 0.1922
Simulation parameters
Total number of MC Simulations: 10
Single simulation duration: 4 weeks (1-min resolution)

provide network coverage — i.e. a safety net — to BEV drivers
traveling outside the city. The number of plugs for each station
type was determined by averaging the number of plugs per
station simulated in each zone (urban, suburban and rural,
respectively).

The probability distributions for each EV type are deter-
mined by EVI-Pro based on the frequency at which each
vehicle type utilizes DCFC stations in urban, suburban and
rural settings. The DCFC network, regardless of station type,
is primarily utilized by short range EVs whose daily driving
distance can often exceed their range. 24 kWh EV owners
residing in the urban core will be less inclined to drive to the
farther outskirts of the city due to their limited range. Con-
versely, 85 kWh EV can complete longer trips and will utilize
the rural DCFC network more frequently. When evaluating
the impact of probability distributions to the model outputs,
one should consider that charge acceptance rate increases with
increased capacity EVs. This provides faster charge speeds
when the port capacity is higher than the vehicle demand (i.e.
in urban and suburban stations). However, the energy demand
also increases with increased capacity EVs. In this study, we
develop a methodological approach to factor in all the possible
causes impacting the user experience at the DCFC station.

To demonstrate how a charging event takes place, the
charging profiles of three different types of vehicles (with
24, 60, and 85 kWh battery sizes) are presented in Figs. 4b—
4d, respectively. The vehicles are randomly selected out of
approximately 23,000 charging events. In these figures, one
can observe when the vehicles arrived at the stations, whether
or not they had to wait in a queue (none of them entered the
queue in the presented cases), its set-up time (selected as 5-
min), and when its charging started. Further, one can observe
how EVs’ charging power changed over time as a result of
charge acceptance rate, how their SOC changed, and when
they finished with charging and departed.

The charge acceptance curves play a role in the total time
EVs spend at the charging station. The main impact to the
results are a function of the arrival SOC and the required
energy demanded for each charge event. If the charge stays
in the lower CC range of the chosen curves, it will have a
minimal impact on the charge duration as seen in Fig. 5(b).
However, as seen in Figs. 5(a) and (c), the rate of charge
can reduce at the end of the charge (CV range). The charge
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Table II: Important statistical results of MC simulations.

Station Details Station T | Station 2 | Station 3
Station port count 12 4 I
Station power capacity (kW) 1800 600 50
Monthly charging events 3976 896 308
Charging Aver. demand power (kW) 136.26 55.19 36.59
Power Max. demand power (kW) 606.58 279.83 50
Charging Max. charging dur. (min) 54 54 91
Duration Aver. charging dur. (min) 20.73 21.73 35.14
Min. charging dur. (min) 8 8 8
Max. queuing dur. (min) 12 30 276
Queuing Aver. queuing dur. (min) 0.04 0.25 30.14
Max. queue length (# EV) 5 5 7
Aver. queue length (# EV) 0.004 0.006 0.230
Port Max. port util. (# ports) 12 4 1
Utilization | Aver. port util. (%) 30.8 39 100

acceptance rate will depend most dramatically on how a
manufacturer develops the battery management system when
trying to balance battery life constraints against both battery
temperature and SOC.

We leave it for future work to examine in detail how these
decisions will impact the queuing of a station and design
decisions around the built infrastructure for a station. Our
approach is to use the MC simulations that randomly assigns
incoming SOC and required energy for these curves based on
the EVI-Pro statistics explained above. Therefore, we believe
we have bounded the problem appropriately and removed
some of the impact of the chosen curves.

D. Simulation Results and Discussions

The simulations were run with the parameters defined above
for a station design in each region using the average number
of charge events of the stations in the respective region.
Table II gives the statistical results of all MC simulations
for each station. Four criteria have been chosen for analysis
and comparison: 15-min average power consumption of the
stations (termed as “demand power” in this study), charging
duration statistics at each station, queuing statistics (queuing
duration and queue length), and port usage. Table II can
help draw important conclusions regarding the load profile,
QoS, and effective use of available power at the station. As
an example, an increase in average and peak demand power
and a decrease in the queuing durations can be noted from
station 3 to station 1 due to increased power capacities and port
numbers. Further, maximum power consumption of station 1 is
almost a third of the station total capacity. However, the same
station experiences a maximum queuing duration as high as
12 min.

Demand charges can be as high as 90% of electricity costs
of a DCFC station according to a recent report [23]. Therefore,
demand power consumption of different DCFC station types
are explained using box plots. Fig. 5 shows the box plots
of demand power consumption of the stations for each day
after 10 MC simulations. Bottom and top lines of each box
represent 25" and 75" percentile of all samples, respectively.
Straight lines in each box refer to median of all samples.
Maximum limit of the dotted lines (T) cover the 99.3%, and
the remaining red outliers (+) fall into 0.7% of all samples.

Even though the total capacities of stations 1 and 2 are
1,800 kW and 600 kW, respectively, 75t percentile of all
power consumptions fall well below their rated capacity with
the outlier events below half of the rated power. The peak
demand power for station 1 designated by the outliers is
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Figure 5: Demand power boxplots of stations (a) #1, (b) #2,
and (c) #3.
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Figure 6: Demand power probability histograms of stations (a)
#1, (b) #2, and (c) #3 (No EV case excluded).
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around one-third of the station’s rated capacity. This ratio is a
little higher for station 2, indicating that the capacity of station
2 is more effectively used. Station 3, on the other hand, uses
all of its capacity every day since it has only one port. This
means that either or both a capacity increase and port count
increase for this station should be considered.

Fig. 6 shows the probability histograms of the demand
power consumption for all time at each station for 10 MC
simulations. These figures show the likelihoods of total power
consumptions that the stations will have to handle. As seen,
the figures are consistent with the statistical results presented
in Table II. Fig. 7 corresponds to the percent of station port
utilization. ”0 port” indicates the times when no EVs are
present at the station. This figure reveals that 70% of the time,
the ports of station 3 are not utilized. The percentages in the
figure add up to 100% for each station corresponding to 24h
horizon.

The queue at the station is another important parameter that
results in extra waiting times and decreases QoS. The average
and maximum queue length and queuing durations among all
MC simulations for each station in a month were already
given in Table II. Fig. 8 shows the probability of queuing
durations at each station for the customers that happened to
wait in the queue excluding zero waiting times. This provides
better information on the queuing time spectrum. Further, the
probabilities of waiting in different time intervals in a day
are also calculated. The results are presented for different
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Figure 7: Port utilization of each station.
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Figure 8: Queuing duration probabilities for stations (a) #I,
(b) #2, and (c) #3. (zero queuing time excluded)

waiting times as a probability chart in Table III. It shows the
probability of how long a user will wait in the queue at each
station at any time of the day. As the queue length increases,
the waiting times will increase and QoS will decrease. Since
Station 1 offers charging at higher powers and has more ports,
it is very unlikely to wait more than 10 min at this station. The
worst case scenario happens for Station 3 where the probability
of waiting more than 25 min in the queue between 12:00-14:00
is 37%. This also follows the statistical results in Table II that
show the average waiting duration for Station 3 is 30 min.
This is definitely not a reasonable risk for the station operator
since it clearly loses potential customers to other stations.
To overcome this problem, either the power capacity of the
available port/station or installing an additional port should be
considered.

To make the best decision in selecting the DCFC design
parameters and providing a satisfactory QoS to customer,
we will develop a mathematical formulation between the
aforementioned parameters in the next section.

IV. ANALYSIS TO ESTIMATE AVERAGE CHARGING TIME,
QUEUING TIME, AND TOTAL COST

In this section, we use the queueing theory and analytics
to approximate the customer satisfaction aspect of DCFC
stations. The mathematical functions derived in this section
serve as the building blocks of our optimization model in the
next section.

In the preceding simulations, three different stations with
three distinct sets of characteristics were used. In the follow-
ing, we use a new station and [controllably] vary two of its
critical characteristics for optimization.

For sake of simplicity, consider a station serving a homo-
geneous population of vehicles with 60 kWh battery capacity,
i.e., type 2 vehicle in Section III. The charge acceptance curve
(Fig. 4a) indicates that the maximum power needed by this
vehicle is approximately 72 kW at 60% SOC. Investment
costs depend on port capacity (p), hence it is suboptimal
to set p higher than the maximum that can be utilized by
the vehicles. However, it can be beneficial to strategically
install lower-capacity ports to reduce investment costs. To
investigate the effect of lower port capacity, we experiment
with p € {48,60,72}. Note that our analysis can be gen-
eralized to heterogeneous vehicle populations. Also note that
installing higher-capacity ports than currently needed could be
considered under speculative motives (such as vehicles with
larger battery capacity utilizing the station in the future), which
are excluded from this analysis.

Another design characteristic that directly affects costs is
the number of ports (n). In the following, we show the
results of a full-factorial experiment with two parameters (n €

{9,10,11,12} and p € {48, 60, 72}) to see the effects of these
two key station design parameters on customer satisfaction.
The 12 combinations (of n and p) were simulated 10 times
using the DCFC station model developed in Section III-A. In
each run, 142 vehicles were populated per day, for 28 days.
Consequently, there were 142 x 28 x 10 x 12 = 477,120
vehicles in the entire experiment. Some of our analyses are
based on all 477,120 vehicles, whereas some others on the
averages observed for each of the four n values and/or three
p values.

All our analyses are conducted using the SAS 9.4 software
package [24]. We rely on the p-value statistical measure
where applicable. More specifically, we conduct regression
analysis to predict a dependent variable and use the p-value
to conclude on the strength of the hypothesized relationship
between a set of independent variables and the dependent
variable. The p-value values less than 0.01 are interpreted
to show overwhelming evidence for the relationship [25, p.
397]. In interpreting regression analysis results, we also rely
on the coefficient of determination (r?), which is the fraction
of variability in the dependent variable explained by using the
estimated regression equation. Threshold r? values acceptable
to conclude strong regression vary by application [25, p. 616].
In our case, we look for 72 > 0.90. In building our regression
models, we adopted the stepwise regression approach [25, p.
784], which is available in the SAS 9.4 package.

A. Estimating the charging duration

For a particular vehicle, charging duration is a function
of port power, arrival SOC, and energy demand, i.e., t, =
F(p,d,d). Charging duration is expected to be inversely
related to p, proportionally decrease with ¢ and proportionally
increase with d. We ran a step-wise regression with two-factors
(i.e., products) of p~!, § and d on the collective set of 477,120
vehicles in our simulation. The step-wise regression model
yielded F(p,6,d) = B3 + i dp~" + B3p~" + B d + b1 6
and estimated the parameter values to be 8L = 13.94996,
BE = 4097261, BL = 418.88514, BY = 0.14887, and
BY = —1.91644 based on the given data. All coefficient values
were found statistically significant at the 0.0001 level. Also,
r2 was 0.9959, indicating practically all variability in charging
duration is explained by the estimated F'(p, d, d) function.

Energy demand and arrival SOC distributions are given
among inputs of the simulation model from EVI-Pro. Incor-
porating their respective distributions, we obtain the expected
value of charging duration as follows:

Elt.] = E[F(p)]

=05 +BLBldp~t + By p~t + 5 Bl + 5i E 0]

= (80 + 85 Eld + B{E]] + [B7Eld) + 8] p~"

=5 + B (1)
Here, 5" = 5§’ +55 E [d+5{ E 6] and B = B E [d)+].
In our data set, these two parameter values were calculated
as ﬂg/ = 9.41316 and BlF = 1767.97909. In addition, we
conducted a simple linear regression analysis between p; and
the actual average charging durations. Each actual duration
(for a given p value) is averaged over 142 x 28 x 10 x 4 =
159,040 vehicles. The regression analysis resulted in 72 =
0.9880, showing a very strong relationship even for only 3
observed p values.



Table III: Probability of queuing duration for three stations at different times of day (%).

Time 0-5 min [ 5-10 min 10-15 min [ 15-20 min [ 20-25 min [ >25 min \
Inverval [ St T St.2 St.3 | St.1 St.2 St 3 [St.1 St.2 St.3 | St.1 St.2 St.3[St1 St.2 St.3 [ St1 St.2 St.3 |
00:00-02:00 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02:00-04:00 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04:00-06:00 100 100 84.16 0 0 2.97 0 0 0 0 0 0.99 0 0 0 0 0 10.89
06:00-08:00 100 100 78.19 0 0 2.13 0 0 0.53 0 0 1.06 0 0 2.13 0 0 15.43
08:00-10:00 100 99.07 56.35 0 0.28 1.11 0 047 445 0 019 267 0 0 3.12 0 0 28.29
10:00-12:00 | 99.78 98.07 43.05 | 0.21 087 251 0.01 075 251 0 025 3.8 0 0.06 4.52 0 0 34.34
12:00-14:00 | 99.05 96.57 36.48 | 0.89 177 3.09 | 0.06 1.05 3.8l 0 039 218 0 022 254 0 0 37.75
14:00-16:00 | 99.67 95.89 46.04 | 0.31 215 446 | 0.01 095 385 0 0.7 4.26 0 0.19 385 0 0.13  27.18
16:00-28:00 | 99.84 9947 4723 | 0.12 035 211 0.04 018 343 0 0 5.28 0 0 1.85 0 0 29.02
18:00-20:00 100 99.17  61.01 0 0 1.38 0 055  3.21 0 0 3.21 0 028  4.59 0 0 22.48
20:00-22:00 100 100 84.42 0 0 1.30 0 0 0 0 0 2.60 0 0 2.60 0 0 5.19
22:00-24:00 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B. Estimating the waiting time in the queue

The queueing system underlying the modeled charging
station operation is complicated by (i) time-dependent arrivals,
(i) a general service time distribution, and (iii) multiple
servers (i.e., ports), in order of their importance in increasing
the complexity.

Arrival time distribution is time-dependent, and there is
much fluctuation between arrivals during peak and non-peak
hours. Our approach in defining waiting time (W) focuses
on the peak hours! (i.e., worst case), hence customers arriv-
ing in non-peak hours can expect to get their service after
significantly shorter waiting.

We assume inter-arrival times are exponentially distributed,
as is common in numerous queueing applications. The queue-
ing theory gives us a useful baseline, however it falls short of
giving us a closed-form expression to estimate average waiting
(in-queue) time. Furthermore, our focus in this study is on the
average waiting time during peak hours. We bridge the gap
between the queueing theory and our needs with analytics as
follows.

The best closed-form estimate of W, we can use from the
queueing theory is from the M /M /c model, which assumes
exponential inter-arrival and service times, and multiple (¢ >
1) servers [26, Section 3.3]. In our application, each port is a
server, hence we replace ¢ by n in the formulation. We denote
this estimate by {2, and express it as follows:

(A/p)"
nl(npu — X)?
Qq = n—1 i o) % (2)
D O

Here, A is the arrival rate in vehicles per minute, which
is known a priori. On the other hand, p is the service rate
in vehicles per minute, which depends on the setup time and
charging durations as follows.

p=(s+E[t])™"
= (s+8 +80v7)

3)
where s is taken as 5 min. Plugging (3) into (2), we get the

Ithe peak hours are designated as 10:00AM-4:00PM based on the field
mobility data provided by EVI-Pro

following closed form equation:

(A({r88 +8571) |
N >

-

! (s+ﬁg/:}3f/p_1)

n—1 A S_,’_,@F’_,’_BF’p—l i O (A S+BF/+5FIP_1 i
£ CL o)y Gt
1= =N

“)

We hypothesize that the expected queue time is a function
of n and p, i.e., E[W,] = G(n,p). We use §,, which is a a
closed-form nonlinear function of n and p itself, as a factor
in estimating the G function. We also use the inverses of p
and n as factors. The smaller the inverse of the service rate or
the number of ports, the shorter we expect vehicles to wait in
queue. We again performed a step-wise regression based on
two-factors of Q,, n~! and p~! to estimate the G function.
Based on the 12 observations from our simulations, the best
estimate of the G function is the following:

G(n,p) = B§ + BYQq + BFQen ™" + B (n) ™ (5)

Here, the parameter values were estimated as Bg =
—21.20508, B¢ = 134.44303, 5§ = —947.71254, and
53? = 6.62322. In the model, all coefficient values were
found significant at the 0.01 level. Also, r2 = 0.9968, which
indicates a very strong relationship.

Plugging the service rate estimation (3) into the waiting time
estimation (5), we get the following expression:

G (n, p)=BG +B7 Q85 Qqn ™" +55 (njs) ™!

F’ F', -1
Q (5+ﬁ0 +B8i p )
=B85 81 Q85 L +55 .

Q, =

Q ! i1
=55+07 0+ - 1465 (s+687) - +6560

Q 1
=65 4+BE 0, +585 ?%6:? wa (6)

1
np
Here, [33‘?' = ﬂg gerﬂéw and ﬂf/ = ﬂgﬁf/. Recall that
2, is a function of n and p, and it is kept in equation (6) for
sake of brevity in the formula.

C. Estimating the total cost

Both investment and operation costs can depend on the
design criteria of a charging station. Investment costs include
a fixed term f that may depend on factors such as location,
but not the total station power, number of ports or the power
of each port. We consider variable terms of investment costs
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in two parts: «(P) and nfS(p). Both « and 3 are assumed
nonlinear functions that are monotonically non-decreasing and
have diminishing returns in P and p, respectively, consistent
with the cost function estimated in [27].

Operation costs depend largely on the energy consumption
and the traffic going through the station. Pricing and other
demand management tools can be utilized to assure that each
additional vehicle charged in the station yields at least enough
revenue to cover the operational costs it causes. Therefore, in
the current work, we focus on analyzing the trade-offs between
investment cost and customer satisfaction. Total investment
cost (Z) is expressed as follows.

Minimize Z = f + a(P) + nfS(p) (7

V. OPTIMIZATION OF DCFC STATION CAPACITY AND
NUMBER OF PORTS

There is an inherent trade-off in cost vs. customer satis-
faction. With increased competition among station operators,
customer satisfaction becomes more important. Keeping costs
low can mean sacrificing customer satisfaction, however it is
necessary for the long term and for financial sustainability of
any given station operator. In the case of a charging station,
customer satisfaction can be measured via waiting time during

peak hours.

The  trade-off between  total investment  cost
calculated using an example cost function and
average waiting times during peak hours (W,) is

depicted in Figure 9a. The example cost function is
Z = —0.6699P?+1919.4565 P+n(—0.4145p>+520.7421p),
which approximates the costs reported in [27] for the case
without solar panel or battery storage investment. The actual
observations for every (n,p) combination are depicted by
the blue diamonds and acquired using the developed DCFC
model explained in Section III. The “expected” orange circles
in the same figure are the estimates calculated via equation
(6). The expected values are calculated for each even p
value in the interval [48,72] kW, to display the trade-off
in more detail. It is seen in the figure that the actual and
expected values are very close together, and they both show
a “frontier” in the quest to minimize both Z and W, (for
quality, or, customer satisfaction).

Figure 9b displays the efficient frontier consisting of select
“expected” points from Figure 9a. More specifically, the effi-
cient frontier contains only such solutions that can be ordered
and then connected with line segments without leaving any
solution, i.e., point, to the bottom-left side of any line segment.
This definition also ensures that, the line segments are ordered
from steepest to slightest when the points are ordered from left
to right.

The decision maker can use the trade-off information con-
veyed in Figures 9a and 9b to select a solution in a number
of ways. Firstly, a new objective function in the form of
Q = Z + AW, can be formulated. In this structure, X is the
relative penalty associated with increasing W, by a minute
compared to increasing Z by $1,000,000. For each value of
A, a point on the efficient frontier is optimal, i.e., minimizes
this objective function. Table IV shows which efficient solution
is optimal for what values of A. Note that A intervals overlap,
hence for some A values there are two optimal solutions.

g

g 9 ’ ¢ Actual @ Expected

o 40F o .
=

g=! °

= [

= 20| *s Se. .
eb ¢ ..‘0 °e o

< Ligasy

S | | | \ LK TYYY

0.9 1 1.1 12 13 14 15 1.6

Z, Total investment cost ($ Millions)

(a)

=

g

o 40 —
£

g

2 90+ _
g

<

0 | |
= 1 1.2 1.4 1.6
Z, Total investment cost ($ Millions)
(b)

Figure 9: (a) Trade-off between Z and W, and (b) Efficient
frontier.
Table IV: Optimal efficient solution for slope (\) values

A Z W,

<0.003769 0921 46534
>0.003769 AND <0.005179  0.953  37.895
>0.005179 AND <0.007090  1.007  27.412
>0.007090 AND <0.007389  1.042  22.495
>0.007389 AND <0.012596  1.091  15.877
>0.012596 AND <0.024882  1.172  9.473
>0.024882 AND <0.031049 1211 7918
>0.031049 AND <0.036985 1248  6.698
>0.036985 AND <0.042517 1285  5.696
>0.042517 AND <0.047588  1.322  4.844
>0.047588 AND <0.052212 1357  4.099
>0.052212 AND <0.056434 1392 3436
>0.056434 AND <0.060304 1426  2.837
>0.060304 AND <0.063869  1.459 2290
>0.063869 AND <0.067167 1491  1.786
>0.067167 AND <0.070227 1522 1318
>0.070227 AND <0.073069 1553  0.883

>0.073069 1582 0476

Secondly, the decision maker may restrict either Z or W,
value via a new constraint and minimize the other (W, or Z)
among the remaining feasible efficient solutions. For example,
a budget constraint may place an upper limit Z as depicted in
Fig. 10a. If Z < 1.3 is imposed as shown in the figure, then
(Z =1.285,W,; = 5.696) emerges as the optimal solution.
Similarly, customer expectations may impose an upper limit
on W, as shown in Fig. 10b. For W, < 10 shown in the figure,
(Z =1.172,W, = 9.473) is the resulting optimal solution.

The decision maker can also simply make his or her decision
by simply observing the trade-off shown in Figure 9a. As
long as the chosen solution is not dominated by another
solution, i.e., there is no other solution with both smaller
P and smaller W, then the chosen solution can be a good
choice even if it is not on the efficient frontier. For example,
(Z = 1.128, W, = 13.194) may appear very attractive to the
decision maker in his/her evaluation even if it’s slightly on the
upper-right side of the efficient frontier. Multi-criteria decision
making is complex even for only two criteria. We refer the
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Figure 10: Minimizing (a) W, for constrained P and (b)
Minimizing P for constrained W,.

reader to [28] for further reading on the approaches presented
here and more.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we developed a DCFC station model and
analyzed three different DCFC stations using charging and mo-
bility data acquired from EVI-Pro. The model ran a thorough
analysis on DCFC station operation to understand statistical
metrics such as peak demand power, customer service quality,
and port utilization. While the increased station power capacity
and number of ports result in a higher peak demand power, it
is very dependent on EV charge acceptance.

Further, increasing port number increases customer QoS but
decreases port utilization. As an example, an 1,800 kW, 12-
port DCFC resulted in a 33.7% peak loading and 30.8% port
utilization. The probability of waiting more than five minutes
in the queue at this station is at worst 0.95% during a day. We
analyzed this relationship in greater detail with the use of the
queueing theory and data analytics, and obtained a series of
closed-form mathematical expressions to estimate queue time.
We further explored the optimization of DCFC station power
in a bi-objective model through the trade-off between cost and
customer satisfaction. We showed increasing the number of
ports for a given DCFC station power decreases waiting time.

Queueing theory is very useful in estimating waiting times,
however it is also limiting due to its inherent mathematical
complexity. In our present analysis, we focused our attention
to homogeneous electric vehicle populations. Extension of
the present work to heterogeneous populations emerges as a
potential future research direction. Optimization of a DCFC
station is complicated by factors such as space limitations,
the current charge technology and the uncertainty regarding
both the demand and technology development. For example,
designing optimal control policies for a limited-capacity (P)

station to serve a heterogeneous population of vehicles needs
to be addressed.

Another possible future research direction is to integrate
this analytical framework with empirical findings regarding
customer behavior in order to optimize station design for the
whole ecosystem. For example, customers may be impatient,
i.e., they may show balking and/or reneging behaviors, which
can be captured in the same framework. The extent of changes
in the model under such impatience can be explored in a
future extension of this study. Also, some customers may be
concerned with the total (waiting plus charging) time in the
system, more so than the waiting time alone. Such a change
in the cost vs. QoS trade-off is expected to shift the optimal
solution towards fewer faster ports. A more complex system
design incorporating multi-level prioritization of ports and/or
customers, possibly with different prices may be studied to
quantify the effects as well as to jointly optimize for multiple
stakeholders at the same time.
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