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The Magnetized Liner Inertial Fusion (MagLIF) concept is
being pursued on Z and has produced DD yields as high as 3
x 1012.*
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3 Main areas of concern: Laser Coupling, High Z Mix, Liner

Instabilities
Poor Implosion /
laser High Z mix stagnation
Coupling instabilities
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Contrast these 3 degradation mechanisms within the same model
and start to compare some of the typical observables

In reality it is likely all 3 are in play to some degree
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For these comparisons we model a 4mm tall section, neglecting end
losses using GORGON MHD Code
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For ideal Maglif 1D implosion, this range of preheat energies has a

Neutron Yield

significant effect on neutron yield

For an ideal 1D implosion 175J — 500J represents
> order of magnitude change in yield
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Comparable burn widths recovered for all 3 degradation

mechanisms
DD Yield on all 3 cases is 4.6x1012
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Axial Position [mm]

Self emission imaging stagnation diameters are comparable
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between different degradation mechanisms
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Mechanism for short burn width and narrow emission image
significantly different between two extremes (low preheat / stable
vs higher preheat unstable)

1D low preheat

-0.6ns +1ns +1.4ns

3D disruption
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Liner rho-r a strong function of time through stagnation
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Emission weighted fuel density higher for high uniformity
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End losses will modify this,
as will changes to the
amount of cold / dense fuel
that is retained against liner
wall (influenced by preheat
deposition profile)
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Temperature and density gradients exist through stagnated fuel

volume
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Time integrated emission quantities comparing fuel to Be iron
contaminant

Iron impurity in Be liner is being used to diagnose stagnation conditions
(Eric Harding Invited talk)
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For clean fuel unstable liner stagnation, iron emission samples higher density lower
temperature material
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In this case, iron emission may be associated with later time

disruption
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For Be mix uniform stagnation iron emission and fuel
continuum still sample different temperatures due to
temperature density gradients

For detailed discussion see S.B. Hansen, et. al. , PoP (2015)

Time integrated emission weighted temperatures
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Summary:

It’s likely that some combination of reduced preheat / mix and
instabilities are at play.

= Different mechanisms degrading Maglif performance can
result in similar observables.

= |mproved measurements, with targeted experiments will help
is better balance the combination of mechanisms used in our
calculations.

= Better determining dominant problems will determine
directions taken to make progress
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Backup




Neutron yield still scales favorably with preheat energy.

500 J/em 1kJ/icm Yield vs Preheat Energy
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Yield still scales with increasing
preheat energy, but magnitude

Negligible change in stagnation structure lowered from 1D equivalent
from increasing preheat energy




If implosion instabilities are significantly degrading yield then driving faster
Implosions at higher charge voltage may not help, and driving slower
implosions may not hurt.

Neutron Pulses

If performance gains rely
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Continuum spectra reconstructed from
stagnation simulation

For unstable stagnation with Time and spatially integrated continuum
moderate preheat energy Spectra.
(500J) producing low 1012 For this calculation the time integrated burn
neutrons averaged ion temperature was 3.5keV
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Azimuthal liner structure is not effectively decelerated
against compressed fuel.
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