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Problem Statement

We seek to: 

 Develop an efficient algorithm for multiscale structural reliability 
prediction for applications where ductile crack nucleation is the 
mechanism of interest

 Stitch existing multiscale methods and constitutive models in a 
manner to make multiscale reliability calculations tractable

We will:

 Utilize Stochastic Reduced Order Models (SROMs) to efficiently 
transfer uncertainty across length scales

 In this presentation primarily focus on the implications of 
multiscale coupling on the propagation of meso-scale material 
uncertainty

 Additionally, discuss implications of the construction of the meso-
scale finite element model



Outline

 Problem motivation

 Overall fracture prediction approach overview

 High fidelity framework and modeling details

 Modeling considerations studied here:
 Multiscale coupling impacts

 Meso-scale meshing (grain aligned element edges)

 Conclusions
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Why do multiscale? Because structural reliability is dependent on 
random microstructure (among other sources of randomness)

Engineering length 
scale (meters)

4randomly distributed brittle particles embedded in randomly oriented, anisotropic matrix

Microstructural length scale (m)

Row of bolt holes 
on lower wing skin

100 m

Structural feature (mm) – stress 
concentration or “hot-spot”

EBSD data shows 
randomly oriented 
grains

brittle particle



One multiscale calculation is necessary but not sufficient

High level goal: tractably propagate fine-scale uncertainty through multiscale calculations
Why does Sandia care? Fracture is local and random, e.g., microstructure, and 
system/component reliability depends on phenomena occurring a various length scales. 

Capturing the tail of the 
cumulative failure

requires many MC samples.

Our work aims to make this 
computationally tractable. 99.5% confidence

Multiscale calculation
(XXLarge)

Microstucture scale
(≥10s millions of DOFs)

Engineering scale
(millions of DOFs)

OUR
CHALLENGE
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Hot-spot selection & prioritization

MCS of engineering-scale 
response via SROM-surrogateuncertain data

*SROM

prior distribution

Low-fidelity Probability of Failure

Schematic of our novel hierarchical approach

Low 
fidelity

update

Multiscale calculationP ' (L | ai )

prior distribution of  
conditional failure

posterior distribution of 
conditional failure

Higher 
fidelity 

prediction

L

P’’

L

PF

P '' (L | ai )

L

P’

PF (L)  P(L | ai )P(ai )
i

hotspots



For hotspot i, iterate. 
Repeat for all hotspots. 

i++

Higher 
fidelity

**we assume hot-spots are independent for now 6



Hot-spot selection & prioritization

MCS of engineering-scale 
response via SROM-surrogateuncertain data

*SROM

prior distribution

Low-fidelity Probability of Failure

Schematic of our novel hierarchical approach
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This presentation’s work focuses on this 
portion of the hierarchical approach



Engineering Scale Model

Material
• AL-6061 
• Hill Plasticity
Model Details
• Implicit time solution

4 
mm

5 
mm

0.8 mm



Engineering Scale Model

Material
• AL-6061 
• Hill Plasticity
Model Details
• Implicit time solution
• Symmetry 

0.4 mm

�� = 0

x

y

z�� = 0
�� = −�(�)

�� = �(�)

Mesh Details
• 8-Node Hex
• ~500k elements
• ~560k nodes



Switching Scales

The Meso-scale 
Model



Meso-scale Model

Meso-scale Domain
• Crystrallographic

Matrix
• Brittle Inclusion



Meso-scale Model

Meso-scale Domain
• Crystrallographic

Matrix
• Brittle Inclusion



Brittle second phase – void nucleation

 Embed an ellipsoidal particle, 5 x 1.8 m

 Coherent mesh at particle/matrix 
interface

 1 morphology (grain geometry) w/ ~27 
grains

 10 statistical samples of grain 
orientations 

 Grain orientation statistics to match 
measured experimental data

 Assumed elastic mechanical properties 
for particle (pure iron)

 E = 211 GPa,  = 0.29 

 Strength 540 MPa 

 Assumed perfect and rigid particle/matrix 
interface bond 
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Multiscale model considerations

Wish to study the impact of:

 Multiscale coupling

 Meso-scale model meshing with respect to grains

On the propagation of uncertainty in grain material orientation 
with respect to:

 Brittle inclusion average stress

 Brittle inclusion maximum stress
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Coupling approaches

15

Submodeling (one-way coupling)

MPC Coupling, Concurrent multiscale modeling (two-way coupling) 



Coupling approaches
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Submodeling (one-way coupling)

MPC Coupling, Concurrent multiscale modeling (two-way coupling) 

• No homogenization
• Directly embed meso-scale model 

into location of interest

• No homogenization
• Map computed displacements from 

engineering scale model as Dirichlet
boundary conditions on the extents of the 
meso-scale model



Coupling approaches
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Submodeling (one-way coupling)

MPC Coupling, Concurrent multiscale modeling (two-way coupling) 

Moderately Expensive:
Compute once for each 
unique engineering scale 
model

Moderately Expensive:
Compute for each UQ 
random sample

Very Expensive:
Compute for each UQ 
random sample



Watch mean, first-principal stress in the particle
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Assuming elastic and brittle, 
monitor the mean first-principal 
stress in the particle. 

Maximum principal stress contour plot for s123 
(showing two cross-sections)

RT

N



Coupling Comparison
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Grain orientations have spatial correlation

�

� ± �



Meshing approaches

Simpler (Not grain aligned) approach: 

 Conformal mesh at volume extents and ellipsoid inclusion

 Element boundaries will not align with grains (jagged grain boundary)
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Meshing approaches

More expensive (Grain aligned) approach:

 Use meshing tool (Sculpt) to provide a hexahedral mesh that aligns with ellipsoid 
and grain boundaries

 Sculpt is an overlay-grid or mesh-first method

 Sculpt does not exactly align nodes with geometries (differences in ellipsoid size 
and shape are visible) 21



Inclusion geometry differences

 Sculpt will not precisely adhere to geometry

 Small features (such as inclusion) can be poorly resolved

 Use 5x larger inclusion in following comparison

 Also extract sculpt inclusion geometry and mesh with tetrahedral 
elements for comparison (jagged grain boundaries) 
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Meshing consideration results
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x�� = 540 ���



Meshing consideration results
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x�� = 540 ���

Tetetrahedral mesh 
that does not 
conform to grain 
boundaries



Meshing consideration results
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x�� = 540 ���

Tetetrahedral mesh 
that does not 
conform to grain 
boundaries

Hexahedral mesh 
(Sculpt) that does 
conform to grain 
boundaries



Meshing consideration results
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x�� = 540 ���

Tetetrahedral mesh 
that does not 
conform to grain 
boundaries

Hexahedral mesh 
(Sculpt) that does 
conform to grain 
boundaries

Tetetrahedral mesh that 
does not conform to grain 
boundaries, constructed 
from Sculpt inclusion 
geometry



Meshing consideration results
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Meshing consideration results
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x�� = 540 ���

Seems to suggest that grain 
boundary smoothness is not 
important to predicting the 
“ultimate” stress in the void-
nucleating particle 



Conclusions

 At a minimum submodeling appears necessary to estimate 
mean failure behavior at meso-scale

 With a high fidelity constitutive model at the engineering 
scale, submodeling holds promise for this work 

 Concurrent (two-way) coupling may be necessary to 
accurately propagate higher moments (standard deviation) of 
the distribution of mean strains at failure 

 Grain boundary smoothness (aligned element edges) is not 
important to predicting the “ultimate” stress in the void 
nucleating particle 
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ADDITIONAL MATERIAL
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Coupling Comparison
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Grain orientations have no spatial correlation



Grain orientation spatial correlation 
impact
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Prescribed traction Submodeling

MPC Coupled



Inclusion Material Model 
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Computed stress in the particle
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We sculpted the mesh and we overlayed tets on a mesh with the sculpted particle

Caveat: for convenience 
(sculpt) the particle is 5x 
larger than it should be.



Computed stress nearby the particle
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Computed stress in the particle
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