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Problem Statement )

We seek to:

= Develop an efficient algorithm for multiscale structural reliability
prediction for applications where ductile crack nucleation is the
mechanism of interest

= Stitch existing multiscale methods and constitutive models in a
manner to make multiscale reliability calculations tractable

We will:

= Utilize Stochastic Reduced Order Models (SROMs) to efficiently
transfer uncertainty across length scales

= |n this presentation primarily focus on the implications of
multiscale coupling on the propagation of meso-scale material
uncertainty

= Additionally, discuss implications of the construction of the meso-

scale finite element model
e



Outline ) 2=,

= Problem motivation

= Qverall fracture prediction approach overview
= High fidelity framework and modeling details
= Modeling considerations studied here:

= Multiscale coupling impacts
= Meso-scale meshing (grain aligned element edges)

= Conclusions




Why do multiscale? Because structural reliability is dependent on )
H Laboratories
random microstructure (among other sources of randomness)

http://www.northropgrumman.com
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One multiscale calculation is necessary but not sufficient )
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High level goal: tractably propagate fine-scale uncertainty through multiscale calculations

Why does Sandia care? Fracture is local and random, e.g., microstructure, and

system/component reliability depends on phenomena occurring a various length scales.
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Schematic of our novel hierarchical approach
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Schematic of our novel hierarchical approach) &=

This presentation’s work focuses on this
portion of the hierarchical approach
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Model Details
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Model Details

* Implicit time solution
* Symmetry
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Switching Scales .

The Meso-scale

Model




Meso-scale Model ) 2=
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Brittle second phase — void nucleation ) e,

= Embed an ellipsoidal particle, 5 x 1.8 um

= Coherent mesh at particle/matrix
interface

= 1 morphology (grain geometry) w/ ~27
grains

= 10 statistical samples of grain
orientations

= Grain orientation statistics to match
measured experimental data

= Assumed elastic mechanical properties
for particle (pure iron)

= E=211GPa, v=0.29
= Strength 540 MPa

= Assumed perfect and rigid particle/matrix
interface bond

Cross-section through major-axis of ellipsoid
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Multiscale model considerations i

Wish to study the impact of:
= Multiscale coupling

= Meso-scale model meshing with respect to grains

On the propagation of uncertainty in grain material orientation
with respect to:

= Brittle inclusion average stress

= Brittle inclusion maximum stress




Coupling approaches ) B,

Submodeling (one-way coupling)




Coupling approaches

Submodeling (one-way coupling)

* No homogenization

« Map computed displacements from
engineering scale model as Dirichlet
boundary conditions on the extents of the

meso-scale model

MPC Coupling, Concurrent multiscale modeling (two-way coupling)

* No homogenization
* Directly embed meso-scale model
into location of interest
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Coupling approaches

Submodeling (one-way coupling)

Moderately Expensive:
Compute once for each
unique engineering scale
model

MPC Coupling, Concurrent multiscale modeling (two-way coupling)

Moderately Expensive:
Compute for each UQ
random sample

Very Expensive:
Compute for each UQ
random sample

L7/



Watch mean, first-principal stress in the particle ()&=,

Assuming elastic anf:I britt.le, _ Maximum principal stress contour plot for s123
monitor the mean first-principal (showing two cross-sections)

stress in the particle.
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Coupling Comparison UL

Grain orientations have spatial correlation
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Meshing approaches (D}

Simpler (Not grain aligned) approach:
= Conformal mesh at volume extents and ellipsoid inclusion

= Element boundaries will not align with grains (jagged grain boundary)

20
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Meshing approaches

vikBlockColors

More expensive (Grain aligned) approach:

= Use meshing tool (Sculpt) to provide a hexahedral mesh that aligns with ellipsoid
and grain boundaries

= Sculpt is an overlay-grid or mesh-first method

= Sculpt does not exactly align nodes with geometries (differences in ellipsoid size

and shape are visible) 21
I ——————



Inclusion geometry differences .

ooooooooooooo

e

=  Sculpt will not precisely adhere to geometry
= Small features (such as inclusion) can be poorly resolved
= Use 5x larger inclusion in following comparison

= Also extract sculpt inclusion geometry and mesh with tetrahedral
elements for comparison (jagged grain boundaries)

22
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Meshing consideration results ) S,
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Meshing consideration results ) S,

Tetetrahedral mesh
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Meshing consideration results ) S,

Tetetrahedral mesh
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Meshing consideration results ) S,

Tetetrahedral mesh
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Meshing consideration results 1
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Meshing consideration results 1
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Conclusions ) 2=

= At a minimum submodeling appears necessary to estimate
mean failure behavior at meso-scale

= With a high fidelity constitutive model at the engineering
scale, submodeling holds promise for this work

= Concurrent (two-way) coupling may be necessary to
accurately propagate higher moments (standard deviation) of
the distribution of mean strains at failure

= @Grain boundary smoothness (aligned element edges) is not
important to predicting the “ultimate” stress in the void
nucleating particle
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ADDITIONAL MATERIAL
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Coupling Comparison UL

Grain orientations have no spatial correlation
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Grain orientation spatial correlation ...
Impact
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Inclusion Material Model ) 2=
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Computed stress in the particle .

We sculpted the mesh and we overlayed tets on a mesh with the sculpted particle

Caveat: for convenience
(sculpt) the particle is 5x
larger than it should be.
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Computed stress nearby the particle @Es.
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