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Introduction

• Motivation
• Data assimilation for high resolution numerical models.

• Objective
• Develop scalable parallel algorithms for sequential data

assimilation.
Scalability: Solve n-times larger problem using n-times more processors/cores without substantially

increasing the execution time.

• Methodology
• Exploit scalable intrusive polynomial chaos expansion-based

non-overlapping domain decomposition for distributed
implementation of data assimilation algorithms.



Bayesian Estimation using Nonlinear Filtering

• Model Equation

uk+1 = ψk (uk , fk ,qk) −− Forecast Step

• Measurement Equation

dk = hk (uk , εk) −− Assimilation Step

Sensors



Domain Decomposition Method for Stochastic PDEs
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Domain Decomposition Method for Stochastic PDEs

• Galerkin projection

A1
II . . . 0 A1

I ΓR1

.

.

.
. . .

.

.

.

.

.

.
0 . . . Ans

II
Ans

IΓ
Rns

RT
1 A

1
Γ I . . . RT

ns
Ans

Γ I

ns∑
s=1

RT
s A

s
ΓΓRs




U1
I

.

.

.
Uns
I
UΓ

 =



F1
I

.

.

.
Fns

I
ns∑
s=1

RT
s F

s
Γ


,

where

[As
αβ]jk =

L∑
i=0

〈ΨiΨjΨk〉As
αβ,i , F s

α,k = 〈Ψk fsα〉.
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The Extended Interface Problem

• The Extended Schur Complement System

SUΓ = GΓ .

S =
ns∑
s=1

RT
s [As

ΓΓ −As
ΓI (As

II )
−1As

IΓ ]Rs .

• Develope parallel iterative algorithms.
• Formulate scalable preconditioners.
• Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.



Preconditioned Conjugate Gradient Method (PCGM)

S UΓ = GΓ .

M−1S UΓ =M−1GΓ .

• The preconditioner (M−1) is a good approximation to (S−1).

• The condition number of (M−1S) is much smaller than (S).



Parallel Implementation

1. UΓ0:=0

2. Gather r0 :=
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s=1

RT
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s
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3. Scatter r0

4. GatherZ0 :=
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−1
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5. P0 := Z0

6. ρ0 := (r0,Z0)

7. For j = 0, 1, · · · , until convergence Do

8. Scatter Pj

9. Gather

Qj :=

ns∑
s=1

RT
s SsRsPj

10. ρtmp := (Pj ,Qj )

11. α := ρj/ρtmp

12. UΓj+1
:= UΓj

+ αPj

13. rj+1 := rj − αQj

14. Scatter rj+1

15. Gather

Zj+1 :=
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s=1
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16. ρj+1 := (rj+1,Zj+1)

17. βj := ρj+1/ρj

18. Pj+1 = Pj + βjZj+1

19. EndDo
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One-Level Preconditioners for Stochastic PDEs

• Extended Lumped Preconditioner
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Two-Level Domain Decomposition Methods for SPDEs

• Condition Number Bound of Deterministic System

• Stiffness matrix of elliptic PDE

κ(A) ≤ C
1

h2

• Schur complement matrix

κ(S) ≤ C
1

hH
• One-level preconditioner
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(1 + log

H

h
)

2

• Two-level preconditioner
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H

h
)

2



Two-Level Domain Decomposition Methods for SPDEs

• Partitioning the interface nodes into remaining (�) and corner(•) nodes
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Probabilistic Balancing Domain Decomposition with Constraints
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDEs
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a) Neumann-Neumann with Coarse grid, b) Primal-Primal,c) Dual-Primal Operator.

Investigated numerical and parallel scalabilities:
Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A., CMAME, 2013



PCGM Iterations
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Numerical Experiments : NNC/BDDC

• Stationary diffusion equation with a Dirichlet boundary
condition.

−∇ ·
(
cd(x, θ) ∇U(x, θ)

)
= F (x), Ω×W,

U(x, θ) = 0, δΩ×W,

• Random diffusion coefficient cd modelled as a non-Gaussian
stochastic process (here lognormal), obtained from a Gaussian
process with mean µ, variance σ2 and exponential covariance
function C (on a 2D domain).

C (x1, y1; x2, y2) = σ2 e−|x2−x1|/b1−|y2−y1|/b2 , (2)

For all simulations we use, σ = 0.3 and b1 = b2 = 1.0



Numerical Scalability With Respect to Number of Random Variables:

NNC/BDDC
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With the fixed problem size per subdomain (N ∗ P ≈ 60000).
N ≈ 52, 000, fixed mesh resolution and P is number of PCE terms
using third order expansion.



Scalability With Respect To Number of Random Variables: NNC/BDDC
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Parallel Scalability (Strong): NNC/BDDC
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Non-Intrusive Spectral Projection using Sparse Grid

• Independent evaluation of the PCE coefficients of solution
process,

ûk =
1

< Ψ2
k >

∫
Ω

u(θ)Ψk(ξ)dξ.

The integral in the numerator can be solved by using sparse
grid quadrature rule.

• Smolyak’s quadrature rule for a d dimensional function f at l

level using univariate quadrature Q
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l in recursive form

Q
(d)
l f =

(
l∑

i=0

(Q
(1)
l −Q

(1)
l−1)⊗Qd−1

l−i+1

)
f



Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive
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Matlab simulations with coarse mesh (N ≈ 150) for RVs, 2 and 5.

Relative error = ‖ui H−ui h‖
‖ui H‖

, where h = 3, 4, ...,H and i = 1, 2, ...,P
In intrusive h = p and in non-intrusive h = l .



Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive
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Scalability with Number of Stochastic Dimensions:

Intrusive Vs Non-Intrusive (Sparse Grid)
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Bayesian Estimation using Nonlinear Filtering
• Model Equation

uk+1 = ψk (uk , fk ,qk) −− Forecast Step

• Measurement Equation

dk = hk (uk , εk) −− Assimilation Step

Sensors



Stationary Stochastic Diffusion Problem

−∇ · (c(x, θ) ∇u(x, θ)) = f (x) in D × Ω ,

• FEM mesh: 100,241 elements and 50,118 nodes

• Domain Decomposition

(a) (b)

• Diffusion coefficient c modeled as a log-normal stochastic
process and 20-term PC expansions for both c and u.

• Linear system of order 1,002,360.



Parallel Data Assimilation: Output Stochastic Features

Mean concentration Standard deviation



Diffusion: Prior PCE Coefficients
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Diffusion: Experiment with Four Sensors



Parallel Data Assimilation: Polynomial Chaos-Based Kalman

Filter (Saad and Ghanem, 2009)

• State Vector Representation
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• Analysis/Update Step (Saad and Ghanem, 2009)
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Parallel Data Assimilation: Analysis Step - Distributed

Implementation

• Spatial decomposition of the state vector
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Parallel Data Assimilation
• Analysis Step - Distributed Implementation
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Parallel Data Assimilation: Data Assimilation

Actual concentration Prior Estimate Posterior Estimate



Parallel Data Assimilation: Data Assimilation

Prior Standard Deviation Posterior Standard Deviation



Diffusion: Posterior PCE Coefficients - 4 Sensors

ua0 ua1 ua2 ua3 ua4

ua5 ua6 ua7 ua8 ua9

ua10 ua11 ua12 ua13 ua14

ua15 ua16 ua17 ua18 ua19

ua20 ua21 ua22 ua23

Figure: Data assimilation in stationary stochastic diffusion problem -
Experiment 2: Posterior PCE coefficients.



Parallel Scalability
For a fixed problem size and number of measurements:
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Parallel Scalability

For a fixed problem size per subdomain/core:
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Parallel Scalability
For a fixed number of measurements per subdomain/core:
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C = I + BDf ′
(
Df BDf ′ + DBD

)−1 (
D− Df

)



Two-level DDM solver & Update

Table: Forward Time (No of measurements = 2048)

No of dof’s (×105) NP=76 NP=100 NP=140 NP=176

2.01 117.1 63.0 38.4 30.0
5.02 1390.0 617.2 282.8 172.9
9.92 - 4023.7 1660.8 900.7
15.0 - - 5031.6 2867.23

Table: N = 5.02× 105, No of measurements = 1024)

Execution Time NP=76 NP=100 NP=140 NP=176

FT 1390.0 617.2 282.8 172.9
UT 16.48 16.51 16.73 17.02
TT 1406.5 633.7 299.5 189.92



Two-level DDM solver & Update

Table: N = 5.02× 105, No of measurements = 2048)

Execution Time NP=76 NP=100 NP=140 NP=176

FT 1390.0 617.2 282.8 172.9
UT 122.3 122.98 124.3 125.08
TT 1512.38 740.1 407.7 297.9

Table: N = 5.02× 105, No of measurements = 4096)

Execution Time NP=76 NP=100 NP=140 NP=176

FT 1390.0 617.2 282.8 172.9
UT 970.9 971.0 972.5 974.3
TT 2360.9 1588.2 1258.3 1147.2



PCKF Update

• The PCKF coefficients are updated using

Aa = Af + K
(
D−HAf

)
• Where the Kalman gain is

K = AfB
[
HAf

]T([
HAf

]
B
[
HAf

]T
+ DBmD

T

)−1

• The costly step of the update step is the inversion of matrix in
the Kalman gain. The size of this matrix is m ×m, where m
is the number of measurements.

• Instead of inverting the matrix, a linear system is solved

Aa = Af + AfBDf T
(
DfBDf T + DBmD

T
)−1 (

D−Df
)

︸ ︷︷ ︸
Z(

DBmD
T + DfBDf T

)
Z = D−Df



Sherman-Morrison Solver

• For independent measurement

DBmD
T = A0

is a diagonal matrix. Use of SM is advantageous in this case

• Using the following relations

DfB = U, Df = V

The left hand side matrix can be expressed as

A =
(
DBmD

T + DfBDf T
)

=

(
A0 +

N∑
i=1

uiv
T
i

)
• Sherman-Morrison formula is recursively used to solve the

underlying linear system

(A0 + uvT)−1 = A−1
0 −

A−1
0 uvTA−1

0

1.0 + vTA−1
0 u



Sherman-Morrison based PCKF Update

Algorithm 1 Parallel Sherman-Morrison based PCKF Update

1: All Gather: Df = HΓA
f

Γ +
ns∑
s=1

Hs
IA

f s
I

2: A0 = DBmD
T

3: for i = 1 to N do (Process work on different columns)

4: Solve

(
A0 +

N∑
i=1

uiv
T
i

)
zi = di where di is the i th column

of D−Df

5: ci = BDf Tzi
6: end for
7: Gather and scatter columns of C across all processors
8: (Each processor) Update the local PCE coefficients: Aas

I =
Af s

I (I + C)
9: (Head node) Update the interface PCE coefficients: Aa

Γ =
Af

Γ(I + C)



Sherman-Morrison based PCKF Update

Algorithm 2 Sherman-Morrison based solver

1: Solve

(
A0 +

N∑
i=1

uiv
T
i

)
x = b

2: Solve A0x0 = b
3: Solve A0y0,k = uk for k = 1, . . . ,N
4: for i=1 to N-1 do

5: xi = xi−1 −
vT
i xi−1

1.0 + vT
i yi−1,i

yi−1,i

6: for k=i+1 to N do

7: yi ,k = yi−1,k −
vT
i yi−1,k

1.0 + vT
i yi−1,i

yi−1,i

8: end for
9: end for

10: xN = xN−1 −
vT
NxN−1

1.0 + vT
NyN−1,N

yN−1,N



Sherman-Morrison based PCKF Update

• The computation of the N vectors of yi−1,i does not depend
on the right hand side.

• For subsequent right-hand sides, a efficient version of the
solver can be employed provided.

Algorithm 3 Simplified Sherman-Morrison based solver

1: Solve

(
A0 +

N∑
i=1

uiv
T
i

)
x = bi

2: Solve A0x0 = b
3: for i=1 to N do

4: xi = xi−1 −
vT
i xi−1

1.0 + vT
i yi−1,i

yi−1,i

5: end for



Timing

• 176 subdomains, 19602 nodes, 39209 elements
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Timing

• Problem size: 19602 nodes, 39209 elements
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Timing

• Problem size: 19602 nodes, 39209 elements, 6400
measurements
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Sherman-Morrison based PCKF Update

• Doesn’t scale well because of communication

• Need another approach to solve the underlying system



Preconditioned Conjugate Gradient Method (PCGM)

• Future work : using PCGM to solve the underlying linear
system. Compared to the Sherman-Morrison approach, it will
provide better scalability.

• Linear problem can be rewritten as

ns∑
s=1

RT
s

(
Df

sBDf
s
T

+ DsBmD
T
s

)
Rs︸ ︷︷ ︸

S

Z =
ns∑
s=1

RT
s

(
Ds −Df

s

)
︸ ︷︷ ︸

G

M−1SZ =M−1G

• Use of localization to get preconditioner.

• Each column of Z is solved independently.

M−1Szi =M−1g i



Preconditioned Conjugate Gradient Method (PCGM)

1: zi ,0 := 0

2: Gather r0 :=
ns∑
s=1

RT
s g

s
i

3: Scatter r0

4: Gather Z0 :=
ns∑
s=1

RT
s M−1

s Rsr0

5: P0 := Z0

6: p0 := (r0,Z0)
7: for j = 0,1,. . . ,until convergence

do
8: Scatter Pj
9: Gather Qj :=

ns∑
s=1

RT
s SsRsPj

10: ptmp := (Pj ,Qj)
11: α := pj/ptmp

12: zi ,j+1 := zi ,j + αPj
13: rj+1 := rj − αQj

14: Scatter rj+1

15: Gather Zj+1 :=
ns∑
s=1

RT
s M−1

s Rsrj+1

16: pj+1 := (rj+1,Zj+1)
17: βj := pj+1/pj
18: Pj+1 := Pj + βjZj+1

19: end for



Conclusion

• Development of parallel PCKF that exploits available
Two-level domain decomposition algorithms for SPDEs.

• Distributed implementation and scalability studies of the
parallel PCKF using a stationary stochastic diffusion problem.
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