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Introduction

e Motivation
e Data assimilation for high resolution numerical models.

e Objective
e Develop scalable parallel algorithms for sequential data
assimilation.

Scalability: Solve n-times larger problem using n-times more processors/cores without substantially

increasing the execution time.

e Methodology
e Exploit scalable intrusive polynomial chaos expansion-based
non-overlapping domain decomposition for distributed
implementation of data assimilation algorithms.



Bayesian Estimation using Nonlinear Filtering
e Model Equation

Uil = Py (uk, fr,q,) — — Forecast Step
e Measurement Equation
di = hy (ug, e)

—— Assimilation Step
Sensors




Domain Decomposition Method for Stochastic PDFEs

(Forecast Step)

e Spatial decomposition

| &) airo [ 116 )

e Polynomial Chaos expansion
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Domain Decomposition Method for Stochastic PDFEs

e Galerkin projection

A 0 A}I—_Rl ” J_—Il
0 A';’f . A,";ﬁz,,s ufns = . f',ns
rRIAY, . mLam S rRIAnr | U dr S RIF
s=1 s=1
where
L
[ASslik = Z(Wf“’jWOAZﬁ,f v Fak = (Vo).
i=0

Sarkar, A. Benabbou, N. and Ghanem, R., IJNME, 2009.



The Extended Interface Problem
e The Extended Schur Complement System

SUr =Gr.
S = ZRI[ASFF — AR (A7) T AR,
s=1

o Develope parallel iterative algorithms.
e Formulate scalable preconditioners.
e Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.




Preconditioned Conjugate Gradient Method (PCGM)

SUr=gr.

MIS Ur = MG

e The preconditioner (M™1) is a good approximation to (S71).
e The condition number of (M™1S) is much smaller than (S).



Parallel Implementation

Ury:=o

Ns
Gather vy := Z RsTgf_

s=1
Scatter ry

ns
GatherZy := Z RZM;IRSVO

=1
Po =2
po = (r0; Z0)
Forj=0,1,--- , until convergence Do
Scatter P
Gather

ns
Q; =Y RISR.P;

s=1

10.
11.
12.

16.

18.
19.

ptmp = (P}, Qj)

a = pj/pimp

M’:Hl = Z/{/}, + aPj
1= = ag;
Scatter v,

Gather

ns
T =1
Zj1 =Y RIMI ' Rerjy

s=1

pj+1 = (fix1, Zjy1)
Bj = pjt1/pj

Pjr1 = Pj + BjZj11
EndDo



Parallel Implementation

MI'O::O

Ns
Gather rg = Z ’R;rg,s-

s=1
Scatter rg

ns
GatherZy := Y RIMIIRsro

s=1
Po =2
po = (r0, Z0)
For j=0,1,--- , until convergence Do
Scatter P;
Gather

Ns
Q; =Y RISR.P;

s=1

10.
11.
12.
15.
1.

16.
17.
18.
19.

Ptmp = ('PJA QJ)

a = pj/ptmp
14/171 = Z/{I'J + (\Pj
tp1 = — aQ;

Scatter vy

Gather
ns
. Ty, —1
Zjy1 = ZRS Mg "Rt
s=1
pj+1 = (41, Zjy1)

3] = Pj+ 1///’j
'Pﬂ,l = 'PJ + L‘fJ Zj+1
EndDo



One-Level Preconditioners for Stochastic PDEs
e Extended Lumped Preconditioner
Ns

le = ZRST[A?F]_IRS-

s=1
e Extended Weighted Lumped Preconditioner

ns
MavlL - ZRZ—DsT[-AfT]_lpsRs-
s=1
e Extended Neumann-Neumann Preconditioner

ns
Muy =Y RID]S;'DiRs.
s=1
e Preconditioner effect
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Two-Level Domain Decomposition Methods for SPDEs

e Condition Number Bound of Deterministic System

®  Stiffness matrix of elliptic PDE

® Schur complement matrix

®  One-level preconditioner

K(M~

® Two-level preconditioner

K(M1S) < C(1+ log )

2

1 H
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< P .
S)<c 2(l—i-logh)
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Two-Level Domain Decomposition Methods for SPDEs

® Partitioning the interface nodes into remaining (M) and corner(®) nodes




Probabilistic Balancing Domain Decomposition with Constraints

A A Az B . 0
A, A, Az B: x Fs
ng ng ns Z/[ rs = ns
YoBTAy Y BT D BTALB: || U Y BT
s=1 s=1 s=1 s=1

MNNC—ZRTD RESS] Y RIDsRs + R [Fee] ' Ro,
s=1

Ro= > B:T(RS — S5 [S51 RODIRs.
s=1

Fee =) BT (Si — SI8517185)Bz,

s=1
L

Sop = Al — AL [AS T AT, [Alslic = D (VWA

i=0



Probabilistic Dual Primal Domain Decomposition

Al A ALBE 0
AS. AS A5 BS BT _7-"S
ns r;— ns r; n r;:_ c r uli ]__rs
s s s s s S 12s
Z Bc ‘Ac/' Z Bc ‘Acr Z Bc Acch 0 u’ Js sT
s=1 s=1 s=1 uC Z Bc
ns A s=1
s
0 SoB; 0 0 0
s=1

(F_rr + ﬁrc['Ecc]ilﬁcr)/\ = C7r - ﬁrc['Ecc]ilac,




Two-Level Domain Decomposition Methods for SPDEs

Ns
M= HETISE T HE + HY (S Ho,
s=1
[ [ [ 5177 T #o [ 1517T
roR |57 | LBR -sSITTR)DR | L B(S - s[s]Tis)B
v | [s]7! | yElsls] o Yy Bs - ss] s
5 (s17t | parsus)Ts L B(S - SIS s)B

a) Neumann-Neumann with Coarse grid, b) Primal-Primal,c) Dual-Primal Operator.
Investigated numerical and parallel scalabilities:
Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A., CMAME, 2013
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Numerical Experiments : NNC/BDDC

e Stationary diffusion equation with a Dirichlet boundary
condition.
-V ( cq(x,0) VU(x,0) ) = F(x), Qx W,
U(x,0) 0, 0 x W,

e Random diffusion coefficient ¢4 modelled as a non-Gaussian
stochastic process (here lognormal), obtained from a Gaussian
process with mean i, variance o2 and exponential covariance
function C (on a 2D domain).

C(Xl,Y1;X27Y2) = 02 e_|X2_X1‘/b1_|YZ_}’1‘/b2, (2)

For all simulations we use, 0 = 0.3 and by = b, = 1.0



Numerical Scalability With Respect to Number of Random Variables:
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With the fixed problem size per subdomain (N x P =~ 60000).
N =~ 52,000, fixed mesh resolution and P is number of PCE terms
using third order expansion.



Scalability With Respect To Number of Random Variables: NNC/BDDC

1000
o
~ "20RVs
~
_ < (1771 PCE)
~
800 - - N
@ 7
o P
) P
K7 ~
o _ @ 15RvVs (816 PCE)
E .
S 600 e i
o -
[$] 7
Ve
e
7
© 10RVs (286 PCE)
400t 7 g
7/
& 5RVs (56 PCE)

48 246 704 1520
Number of subdomains (cores)

With the fixed problem size per subdomain (N x P =~ 60000).
N ~ 52,000, fixed mesh resolution and P is number of PCE terms
using third order expansion.



Parallel Scalability (Strong): NNC/BDDC
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Non-Intrusive Spectral Projection using Sparse Grid

e Independent evaluation of the PCE coefficients of solution

process,
1

b= —>—
<VZ >

/ u(0) W (€)de.
Q

The integral in the numerator can be solved by using sparse
grid quadrature rule.

e Smolyak’s quadrature rule for a d dimensional function f at /
level using univariate quadrature Qsl) in recursive form

f = (Z(Q(l (1) Q/ :+1>



Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive
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Relative error =

luig|

In intrusive h = p and in non-intrusive h = /.

, where h=3,4,...Hand i=1,2,.... P



Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive

5 RVs, u2
102 i
— —&—nisp
— _ —+—intrusive
T T B
£ i '\—\,\7\\ o —4
510°F — 1
c
=
)
=
]
o
=
- 3
S 104 - ]
I 10
10° ;
3 4

o

Level of quadrature(l) / Order of expansion (p)

For the case of 5 random variables, error in PCE coefficient ({1

Relative error = ””’”
In intrusive h = p an

ulh”

S Nl
cfln non-intrusive h = I

, Where h = 3,4,.

2)
LHand i=1,2, ..,

P



Scalability with Number of Stochastic Dimensions:

Intrusive Vs Non-Intrusive (Sparse Grid)
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Bayesian Estimation using Nonlinear Filtering
e Model Equation

uii1 = ¥, (ug, fr,q,) — — Forecast Step
e Measurement Equation

di = hy (ug, €)

—— Assimilation Step

Sensors




Stationary Stochastic Diffusion Problem

=V - (c(x,0) Vu(x,0)) = f(x) in DxQ,

e FEM mesh: 100,241 elements and 50,118 nodes
e Domain Decomposition

(a) (b)

e Diffusion coefficient ¢ modeled as a log-normal stochastic
process and 20-term PC expansions for both ¢ and u.

e Linear system of order 1,002,360.



Parallel Data Assimilation: Output Stochastic Features
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Diffusion: Prior PCE Coefficients
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Diffusion: Experiment with Four Sensors
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Parallel Data Assimilation: Polynomial Chaos-Based Kalman

Filter (Saad and Ghanem, 2009)
e State Vector Representation

e Analysis/Update Step (Saad and Ghanem, 2009)

A = Af L PH (HP{H/ 4 r)71 (]DJ - HAf)



Parallel Data Assimilation: Analysis Step - Distributed

Implementation

e Spatial decomposition of the state vector

N .
u(@)=>" : v (0) -
i=0 ™
1i
Ur,i

e Decomposition of the state ensemble matrix

[+7],
1 1 1
Uo U o Uy ; b
Y SO (]
1,0 At N I
A = _ .
ns ns P ns f Ns
Yo Wi N A

uro Uy cccouULN [Af]
r



Parallel Data Assimilation
e Analysis Step - Distributed Implementation

A=A 1 PH (HPfH/ + r) -t (]D - HAf)

/ ’ -1
=a" [I +BD" (DfBDf + JDB]DJ) (]DJ - Df)

=afc

e Compute the forecast observation matrix Df = HAf in
parallel

[ [T ] e ],
B BT P, - SR B,

e Perform ensemble update in parallel

1 1
Interior nodes, Subdomain1 — [Aa],1 {A ] [A }I c
- . = C= .
Interior nodes, Subdomain ng — [Aa];’S Af™ [Af}js C
Global boundary nodes — [A%] f f
], [+



Parallel Data Assimilation: Data Assimilation
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Parallel Data Assimilation: Data Assimilation
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Diffusion: Posterior PCE Coefficients - 4 Sensors
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Parallel Scalability

For a fixed problem size and number of measurements:
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Parallel Scalability

For a fixed problem size per subdomain/core:

10} -=-32 measurements
—A- 128 measurements
—®-512 measurements
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Parallel Scalability

For a fixed number of measurements per subdomain/core:
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Two-level DDM solver & Update

Table: Forward Time (No of measurements = 2048)

No of dof’s (x10°) NP=76 NP=100 NP=140 NP=176

2.01 1171 63.0 38.4 30.0
5.02 1390.0 617.2 282.8 172.9
9.92 - 4023.7 1660.8 900.7
15.0 - - 5031.6  2867.23

Table: N = 5.02 x 10°, No of measurements = 1024)

Execution Time NP=76 NP=100 NP=140 NP=176

FT 1390.0 617.2 282.8 172.9
uT 16.48 16.51 16.73 17.02
TT 1406.5 633.7 299.5 189.92




Two-level DDM solver & Update

Table: N = 5.02 x 10°, No of measurements = 2048)

Execution Time NP=76 NP=100 NP=140 NP=176

FT 1390.0 617.2 282.8 172.9
uT 122.3 122.98 124.3 125.08
TT 1512.38 740.1 407.7 297.9

Table: N = 5.02 x 10°, No of measurements = 4096)

Execution Time NP=76 NP=100 NP=140 NP=176

FT 1390.0 617.2 282.8 172.9
uTt 970.9 971.0 9725 974.3
TT 2360.9  1588.2 1258.3 1147.2




PCKF Update
The PCKF coefficients are updated using

Aa:Af+K(D—HAf)

Where the Kalman gain is
T T -1
K—AB [HAf} ([HA’C} B [HA'C} n DBmDT)

The costly step of the update step is the inversion of matrix in
the Kalman gain. The size of this matrix is m x m, where m
is the number of measurements.

Instead of inverting the matrix, a linear system is solved

—1
A= AT L ATBD'' (DfBDfT 4 DBmDT) (D _ Df)

7
<DBmDT n DfBDfT) Z-D-Df



Sherman-Morrison Solver
For independent measurement
DB, DT = A,

is a diagonal matrix. Use of SM is advantageous in this case
Using the following relations
D'B=U, D=V

The left hand side matrix can be expressed as
. N
A= (DB,,,DT +D'BD’ ) - (AO +3° u,-V,-T>
i=1

Sherman-Morrison formula is recursively used to solve the
underlying linear system

—1. T -1
Ay 'uv A

Ag+uvl)t=A7t- 20 — "0
(Ao ) ©  10+vTA;lu



Sherman-Morrison based PCKFE Update

Algorithm 1 Parallel Sherman-Morrison based PCKF Update

ns
1: All Gather: Df = Hr A + 5 HAT)
s=1
2: Ap =DB,,DT
3: for i = 1 to N do (Process work on different columns)
N
4: Solve (Ao +> u,-v,-T> z; = d; where d; is the ith column
i=1

1=

of D — Df
5: C; = BDfTZ,'
6: end for
7. Gather and scatter columns of C across all processors
8: (Each processor) Update the local PCE coefficients: A% =

A1+ C)
9: (Head node) Update the interface PCE coefficients: A% =
Af(I+C)




Sherman-Morrison based PCKFE Update

Algorithm 2 Sherman-Morrison based solver

1:

N
Solve (Ao + 3 u,-v,-T) x=Db
i=1

2: Solve Agxg =b

10:

: Solve Agyg =uk for k=1,...,N

for i=1 to N-1 do

V%1
1.0 + ViTyl'—].,I'
for k=i+1 to N do

Xj=Xj-1— Yi-1,i

-
Vi VYi—1,k

y. :y._ N " A
ik i—1,k LO*‘VIYLJJ

Yi-1,i

end for

end for .
VNXN-1

].O + VI7\I—YN—1,N

XN = XN-1— YNn-1,N




Sherman-Morrison based PCKFE Update

e The computation of the N vectors of y;_; ; does not depend
on the right hand side.

e For subsequent right-hand sides, a efficient version of the
solver can be employed provided.

Algorithm 3 Simplified Sherman-Morrison based solver

—_

N

. Solve <Ao + > u,-v,-T> x = b;
i=1

. Solve Agxg =b

3: for i=1to N do

N

-
Vi Xj-1

4: Xi=Xj1— ———=——
M
1.0+v y; 1

Yi-1,i

5. end for




Timing
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Timing

e Problem size: 19602 nodes, 39209 elements
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Timing
e Problem size: 19602 nodes, 39209 elements, 6400
measurements
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Sherman-Morrison based PCKFE Update

e Doesn’t scale well because of communication

e Need another approach to solve the underlying system



Preconditioned Conjugate Gradient Method (PCGM)

e Future work : using PCGM to solve the underlying linear
system. Compared to the Sherman-Morrison approach, it will
provide better scalability.

e Linear problem can be rewritten as

Ns ns
A (D_QBD’S‘T + DSB,,,DST) A=Y A (Ds - D§)
s=1

s=1

S G
MISZ = M1G

e Use of localization to get preconditioner.

e Each column of Z is solved independently.

M8z = Mg,



Preconditioned Conjugate Gradient Method (PCGM)

- 11: a:=p;j/p
2. Gather rg:= Y Zrg? )j / Ptmp
s=1 s =1 12: Zjj+1 = Zij + O/Pj
3: Scatter rg ; 13- rji1 =1 — aQ
4: Gather Zp := Y ZX M %o 14 Scatter rj;1
s=1 15: Gather  Z;j4 =
5. Po = 2o oo .
6: po := (ro, Z0) 231%5 M Hsrja
. . s=
7: (fj(::J =0,1,..., until convergence . pii1 = (er’ Zj+1)
Scatter P: 172 B = pia/p
Cah o 1B P =P+ GiZin
Gather  Q; = 19: end for

S RIS RSP
1

s=




Conclusion

e Development of parallel PCKF that exploits available
Two-level domain decomposition algorithms for SPDEs.

e Distributed implementation and scalability studies of the
parallel PCKF using a stationary stochastic diffusion problem.
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