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To meet the SunShot goal of Levelized
cost of energy (LCOE) 60/kWh by
2020, next generation power towers will
operate at temperatures > 600 °C in
order to take advantage of increased
efficiencies of high-temperature
operation. Current receiver coatings
such as Pyromark 2500, while highly
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absorptant, suffer from high emittance and have been reported to
degrade during operation at T > 600 °C. Advanced solar selective
absorber (SSA) coatings are required that have a solar efficiency, q,
surpassing that of Pyromar 2500, are stable at > 600 °C in air, have
high thermal conductivity, and are nonvolatile.

VALUEPROPOSITION
Formulations of mixed-metal oxides, such as spinels (AB204) and
perovskites (AB03), are promising candidates for next-gen receiver
coatings. They are stable at high-temperatures, oxidation resistant, can
be easily deposited via techniques such as thermal spray, and are
amenable to cation doping and substitution to chemically tailor their
properties. Refractory metal silicides are another class of materials that
display inherently high absorptance and low emittance in multilayer SSA
coatings. Both families are reported herein.
An increase in the thermal efficiency of SSA coatings by 4% at 650 °C,
and 7% at 800 °C, can potentially reduce the LCOE by an estimated

0.25 OlkWh.

OBJECTIVES

Optimize,
evaluate, and
characterize
coatings

• Optimize spinel and
thermal spray
formulations

•Evaluate refractory
metal compounds

• Develop surface
modification
techniques to enhance
solar selectivity

• Incorporate cost and
durability into LCOE-
like metric that can
compare coatings
across-the-board
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testing

• Performance
optimization of
coatings supported by
isothermal testing at
temperature

• Perform tests of
candidate selective
absorbers applied to
tubes and/or plates on
sun (furnace and/or
tower)

• Evaluate durability of
candidates as a
function of temperature
and heating cycles

 .T.EAM
Lam Banh
James Pacheco
Cheryl Ghanbari
David Adams
David Saiz
Danae Davis
Andrew Hunt

Marlene Knight
Bonnie McKenzie
Landon Davis
Pylin Sarobol

NREL

Robert Tirawat

Refine
coatings and
final on-sun

testing

• Refine coatings based
on optical
performance and
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• Final on-sun tests of
most promising
selective coatings
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RESULTS

Levelized Cost of Coating (LCOC)

Solar Selectivity, rise,
asQ eaT4

Q
as = solar absorptance
Q= irradiance on the receiver
E = thermal emittance
CJ = Stefan-Boltzmann constant
T = surface temperature (K)
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Total annualized coating costs
Initial coating cost/life of plant + Recoating costs/
recoating interval + Cost of additional (or fewer)
heliostats to yield baseline power

Annual thermal energy absorbed (new) - Lost
energy absorbed due to degradation - Lost energy
absorbed due to recoating down time (annualized)

Solar selectivity, rjsel, evaluates the optical properties of a material, which impacts the
thermal energy absorbed. LCOC also incorporates degradation rate, material costs,

and reapplication costs resulting in a more comprehensive cost estimate.
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NREL: Solar furnace test stand 

• Simultaneous measurement of

multiple samples (direct comparison)

• Uniform illumination of samples

• Minimal "cross-talk" between samples

• T -700 °C at 500 kW/m2

• Delivers 650 kW/m2 over 4"x4" area

ONO
tT1 11

• MN
111111111111111111

(Top) Thermal sprayed
LSM coupons
(Bottom) Cr203 sample
after laser-treatment
(top left and bottom right
corners)
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SNL: Solar furnace test stand 

• Spot size: 6 inches

• Peak irradiance: 6 MW m-2

• Average irradiance: 5 MW m-2

• Operational hours/day: 6

• Power consumption: < 1 kW

• Air cooled

SNL: Solar simulator

• Spot size: 1 inch

• Peak Irradiance:1.3 MW/m2

• Average Irradiance: 0.9 MW/m2

- Operational: 24/7

• Power consumption: < 1 kW

• Automatic, robotic sample holder

for multiple sample testing

i•Inrmal Spray LSM (SNL)
• High-surface area coating technique
• Ability to coat in the field
• Novel laser treatment of surface improves optical
properties without changing composition or phase of
coating (Patent pending)

• a and q competitive with Pyromark, but E is still high
(> 0.85)

• Crystallographic phase and microstructure remain
stable after isothermal aging 240 h at 800 °C in air

• Maintains optical properties after 150 cvcles on-sun
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Optical properties of LSM vs. Pyromark at 700 °C (left) isothermal and
(right) cycling on solar furnace (600 kW m-2 / 0 kW m-2 )
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SEM of surface-modified LSM before (top) and after
(bottom) isothermal aging, 700 °C/ 480 h
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With the current cost assumptions
and performance data, there is a
-10% chance that LSM will yield a
marginal LCOC less than the
baseline LCOC of Pyromark 2500.
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Little change in XRD (top) or
diffuse reflectance (bottom) upon
aging (700 °C)

Physical Vapor Deposition (NREL)
• TaSi2-based multilayer stack shows promise as SSA coating
• Stack efficiency as designed exceeds that of Pyromark
• Stack Design is air stable at T<500 °C
• 1 pm A1203 barrier mitigates substrate interference of TaSi2 crystallization
• Parameterized stack design components and characterized contribution to final efficiency
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New TaSi2 design showed better performance
than Pyromark across full irradiance spectrum at
700 °C (above and right)
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LCOC shows benefit with annual
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Cation diffusion between Ni-alloy
substrate and coating requires
deposition of a barrier layer.

Pyromark
• Deposition parameters of Pyromark 2500 were investigated in order to identify factors that
contribute most to coating performance

• Design of Experiment executed; many of the coatings delaminated during curing (top right)
• Coatings that survive the curing process generally survive isothermal aging at 700 °C / 96 h
with no change in optical properties

• Analyses point toward the following optimized deposition
parameters to maximize likelihood of intact coatings with
most favorable
- Grit blasted (rough) substrate surface
- Small paint thickness (25 - 30 pm)
- Slow curing rate (5 °C/min)
- Curing temperaturP near 650 °C

• However, when exposed to rapid cycling at 600 kW/m2 / 700
°C on solar simulator, coating properties degrade quickly;
results are preliminary and the mechanism of degradation
has not yet been determined (bottom right)
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• File IP to protect our technology and make licensing available to interested industrial partners
• Aaron C. Hall and David P. Adams, "High Durability Solar Absorptive Coating and Methods
for Making Same." Filed 26-Feb-15, Appl. #14/632,838 (SNL)

• C. E. Kennedy "High Temperature Solar Selective Coatings," Patent # 8893711, Awarded
11/25/2014. (NREL)

• Partner with key players through CRADA and FOAs (e.g. SBV, TCF) to maximize deployment
opportunity

• Develop techno-economic analysis to accurately determine the effect of integrating new SSA
coatings into a CSP plant

• Encourage stakeholders to utilize LCOC tool to evaluate costs of various SSA coatings
throughout industry using a common metric
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