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Background & Problem Results

Many engineering design problems can be formulated in the framework of partial 1D Diffusion Problem:
differential equation (PDE) constrained optimization. Often there are multiple High-Fidelity: Low-Fidelity: Uiptimis6tian Froilemi:
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There are numerous potential choices for navigating the hierarchy of discretization
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levels and model forms. This research attempts to take advantage of the close High Fidelity 63 23
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Algorithm 1 Multilevel-Multifidelity Optimization Transonic Airfoil Problem: (Calculations performed using SU2)

procedure MLMFOPT
> Initialize optimization at a lower fidelity and/or level

Baseline airfoil: NACA 0012, M, = 0.8, AoA = 1°

Partially solve: ZC%K’J) = arg min,, (K, J) (g _ _ _
t _y L Pg (K,J)f @ Optimization problem: High-fidelity: RANS-SA
et k}ll i j:rJ[_ e (x parameterizes 38 Hicks-Henne = Fine-grid: 319,859 cells (C-grid)
repeat bump functions) = Coarse-grid: 140,768 cells (C-grid)
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Zni1 = MFOPT(1, z,, f1D(2)) L Low-fidelity: Euler
o Comvergence minjmize  Cp(u(z)) * Fine-grid: 32,626 cells (unstructured grid)
end procedure subject to  ¢(@,u(z)) =0 = Coarse-grid: 6,131 cells (unstructured grid)
The approach builds off of the multigrid optimization ideas of Lewis & Nash [1]. Euler, fine grd, Cp = 0.0168 RANS-SA, coarse grid, Cp = 0.0127
Algorithm 1 is the outer optimization. Algorithms 2 & 3 are nested recursive (Baseline) (pre-optimized)

algorithms and are very similar in structure to the Lewis & Nash multigrid method. At
each fidelity level, Algorithm 3 takes advantage of multiple discretization levels to
accelerate convergence at a single fidelity. Algorithm 2 uses the multilevel
optimization to accelerate convergence to the highest fidelity.
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Corrections are applied to the lower fidelity and coarser discretization models to ‘ High-Fidelity - 11
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make them up to 2"-order consistent with the high-fidelity fine-grid model. This

correction function is listed in Algorithm 4 and is based on Eldred et al. [2]

= 1%-order corrections guarantee that Algorithms 2 & 3 provide descent directions -

= The linesearch in Algorithms 2 & 3 ensure provable convergence. The method
reverts to the underlying optimization method at highest-fidelity and discretization

If the sub-models are not informative. ConCI USiOnS & FUtu re Work
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