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Background & Problem
Many engineering design problems can be formulated in the framework of partial
differential equation (PDE) constrained optimization. Often there are multiple
discretization levels and related model forms available.

Research Question:
How do we exploit the lower cost of coarse-grid and reduced fidelity models to
speed up convergence of the fine-grid, high-fidelity problem?
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Approach
There are numerous potential choices for navigating the hierarchy of discretization
levels and model forms. This research attempts to take advantage of the close
relationship between different discretizations of the same model.

Algorithm 1 Multilevel-Multifidelity Optimization

procedure MLMFOPT
> Initialize optimization at a lower fidelity and/or level

Partially solve: x il'c'j) = arg minx f (KA (x))

xn+i — Pk,1 PK,J

k=K-1 j=J-1

repeat
xn = xn+1

Xn±i = MFOPT(1, xn,
until convergence
return xn+1

end procedure

(K,J)
n

f (1,1) (x))

The approach builds off of the multigrid optimization ideas of Lewis & Nash [1].
Algorithm 1 is the outer optimization. Algorithms 2 & 3 are nested recursive
algorithms and are very similar in structure to the Lewis & Nash multigrid method. At
each fidelity level, Algorithm 3 takes advantage of multiple discretization levels to
accelerate convergence at a single fidelity. Algorithm 2 uses the multilevel
optimization to accelerate convergence to the highest fidelity.

Algorithm 2 Multifidelity Optimization

procedure MFOPT(k, 4'1), fCokFiRl.)(x))
if k = Nfid. then

MLOPT(k, 1, x0k'1),

return x
(k,1)
1

else
Partially solve: '1) = MLOPT(k, 1, '1)

xk,+1,1) 
Rk ,1 [X k '1)1

e ) CORRECTION(4'1), Rk , 1 , fgc,:ri.) (x), (k+11)f ,(x))

x 

+.1,1)(x\

lziT1,1)
MFOPT(k +1, xYz+1'1), aih,.1'1)(x))

6 — Pk,1 
Hk+1,1) x k-k1,1)1

LINESEARCH(4'1),
(

return x2
k,1)

end if
end procedure

f(1,',:.1)(x))

e)

i'Po';i1)(x))

Algorit hm 3 Multilevel Optimization

procedure MLOPT(k, j, 4k•3), fccoka)(x))
if j = Nlevel then

x(1k'j) = arg minx

return acYv'3)
else

Partially solve: x k'j) = arg minx

x1
k,j+1) [x(lk,j)1

(x\) CORRECTION(4'1), fCoki:P (X), f(k'i+1)(x))
xk'j+1) = MLOPT(k, j +1, x k'3+1), ail..+1)(x))
e 
—
pk, [4,j+1) x k,j+1)1

c' 3) = LINESE ARCH(x(ik ,

return x k'3)
end if

end procedure

fg'.;,.?)(x))

fPoW)(x), e)

Corrections are applied to the lower fidelity and coarser discretization models to
make them up to 2nd-order consistent with the high-fidelity fine-grid model. This
correction function is listed in Algorithm 4 and is based on Eldred et al. [2]
• 1st-order corrections guarantee that Algorithms 2 & 3 provide descent directions
• The linesearch in Algorithms 2 & 3 ensure provable convergence. The method

reverts to the underlying optimization method at highest-fidelity and discretization
if the sub-models are not informative.

Algorithm 4 Apply up to 2nd-order corrections
procedure CORRECTION(xc, R, fei(x), fr,o(x))

A0, A1, A2, B0, B1, B2 = 0
if (correction order > 0) then

AO = fhi(xc) flo(Rx c),

end if
if (correction order > 1) then

A1 = R [v f hi(x c)] — fio(Rxc),

end if
if (correction order > 2) then

A2 = R [V2fhi(xe)] RT

B fhi(xc) 
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flo (Rxc) + 
2 
3
fhi(sc) 

flo(Rxc)Vflo(Rxc)VfiTo(Rxe)

1  [V fio(Rxc) (RV fhi(x c))T + RV fhi(xe)V,fro(Rxe)]

f?o(Rx c)
end if
ceM = Ao AT (^" — Rx 0) + (±. — Rx c)T A2 Rxc)

13 = Bo + BT — Rx c) ("±. — Rxc)T B2 (x — Rx c)

if additive correction then
-y = 1

else if multiplicative correction then
-y = 0

else if combined correction then
fhi(xp)—flo(xp)0(xp) 

flo(xp)-Poe(xp)—fi0(xp)Mxp)

end if

return f = Y (f loM + c(fl) + (1 — fio (±)
end procedure

Results
1D Diffusion Problem:
High-Fidelity:

d adu)
= — f , x E (0, 1)

dx dx

u(0) = u(1) = 0

a = 2 + cos(27x) + 0.4 sin(67x)

Discretization:
• 2nd-order finite differences
• Fine grid: N1 = 100
• Coarse grid: N2 = 50

Low-Fidelity:

d

dx

Prolongation / Restriction:
• 2nd-degree Lagrange interpolation
• R = cPT

Number of function evaluations:

du
a
dx 

f, x E (0, 1)

u(0) = u(1) = 0

a = 2 + cos(27x)

1 fidelity and 1 level 1 fidelity and 2 levels

Fine Fine Coarse

High-Fidelity 229 High-Fidelity 112 146

2 fidelities and 2 levels

Fine Coarse

High-Fidelity 65 82
Low-Fidelity 26 29

Optimization Problem:

rninnnize (u(f) — u*)2dx

subject to c(f,u(f)) = 0

u* = sin2(27x)

ODE solution at initial guess:
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Transonic Airfoil Problem: (Calculations performed using SU2)
Baseline airfoil: NACA 0012, = 0.8, AoA = 1°

Optimization problem:
(x parameterizes 38 Hicks-Henne
bump functions)

minimize C D (u(x))

subject to c(x, u(x)) = 0

Euler, fine grid, CD = 0.0168
(Baseline)

RANS-SA, coarse grid, CD
(optimized)

0.0111

Mach
1.367e+00

1.0255

I0.68368

0.34184

0.000e+00

0.9

High-fidelity: RANS-SA
• Fine-grid: 319,859 cells (C-grid)
• Coarse-grid: 140,768 cells (C-grid)
Low-fidelity: Euler
• Fine-grid: 32,626 cells (unstructured grid)
• Coarse-grid: 6,131 cells (unstructured grid)

RANS-SA, coarse grid, CD = 0.0127
(pre-optimized)

Mach
1.367e+00

_1.0255

I0.68368

0.34184

0.000e+00

Function evaluations

Fine Coarse

High-Fidelity - 11
Low-Fidelity 23

Conclusions & Future Work
An up to second-order consistent multilevel-multifidelity optimization scheme was
presented. This optimization scheme was applied to a 1D diffusion problem and
transonic airfoil optimization. Both problems converged leveraging lower-fidelity
and/or coarser discretization models.

Future work will compare trust regions to line searches and incorporate general
constraints.

References:
[1] Lewis, Robert Michael, and Stephen G. Nash. "Model problems for the multigrid optimization of systems

governed by differential equations." SIAM Journal on Scientific Computing 26.6 (2005): 1811-1837.

[2] Eldred, M. S., et al. "Second-order corrections for surrogate-based optimization with model hierarchies."
Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY,
Aug. 2004.

II OY
10101

01 (

)1010

31101

IIIA .V iftm giv
I I AT 441

National Nuclear Security Administration

U.S. DEPARTMENT OF

ENERGY
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-AC04-94AL85000.

SAND 2010-xxxP

Sandia
National
Laboratories

SAND2016-4097C


