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() . Dislocation Plasticity in BCC Metals
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M=, Multi-scale Modeling of BCC Metals
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() &= Dislocation Kink-Pair Theory

Low T / High o High T/ Low o Peierls Potential

Dislocation Line

Line Tension Model Elastic Interaction Model

* O - 12 * | 0 T 2
aTY)=T, | 1| —— aY)=Tg| 1=
nr= ( (Tcmj ] )=t ( Tcmj

2H,
kyln(y,/7)

T.(y)=

Best-fit material parameters

Material Yo (s 2H, (eV) 1% (MPa) 1°, (MPa)
Mo 3.75x10° 1.27 1156 835
Ta 2.99x10° 0.85 406 320
w 3.71x1010 2.06 2035 1038

Nb 1.14x108 0.68 576 402




@&, Calibration / Validation of KP Theory
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Measured 7" are accurately reproduced by the El and LT models
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FEM code developed at Sandia National Laboratories (JAS-3D)
24 {110}<111> slip systems
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@&, More Details on Crystal Plasticity FEA

S S

Cauchy stress resolved on each of 24 slip systems: 7=P.:0 P = %(m®s+s®m)

Non-Schmid stress: 7,,=P,:0 P.=cm®t+c,s®t+c,s®s+c,t@t+cm@Om

AR P Slip resistance (“hardness”): g= max(’L’Cr — Tns,0)+ T obs
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Slip rate on each system: Y =V¥,|—| sign(t)

Plastic velocity gradient: L =7(s®m)

: F, =exp(LpAt)Fp
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() i Single Crystal CP-FEM Predictions
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CP-FEM model accurately reproduced yield stresses of [149] single crystals




() s Polycrystal CP-FEM Predictions
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Measured yield stresses of BCC polycrystals lie between the bounds predicted by
CP-FEM models on extreme single crystal orientation.



() s Polycrystal CP-FEM Predictions
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Measured yield stresses of BCC polycrystals lie between the bounds predicted by
CP-FEM models on extreme single crystal orientation.



(@) i Continuum Constitutive Models

« Johnson and Cook (JC) model (Johnson and Cook, 1983, 1985)
o) =A(1+Clng)(1-T™)

 Zerilli-Armstrong (ZA) model (Zerilli and Armstrong, 1987)

0 =Cy+C, exp(-C;T +C,T Iné)

« Mechanical Threshold Stress (MTS) model (Follansbee, 1988)
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Continuum Constitutive Model Calibration
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Simulations of
Taylor Cylinder Impact Tests
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7.6 mm
< > Revised initial velocity based on Shuh Initial Mesh
Rong’s experimental measurements.

245,053
hex elements

146 m/s
(previously 175 m/s)

1.mm Frictionless

500,000 3
hex elements |

+ Lagrangian
* Initial temperature = 298 K



@&, Simulations of Ta Taylor Cylinder Impact

38.1 x 7.62 mm Impact Simulation Results Experiment
(.30 caliber)
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M=, Validation of Ta Taylor Cylinder Impact
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L= V =146 m/s vs. 175 m/s
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Taking a “Step Back™
Simple Tension of Single Crystal Ta




Sandia

oo Strain fields: HR-DIC vs. CP-FEM (fixed BC)
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) i, Simulation of Ta single crystal

Ta CP-FEM simulations

Uniaxial tension up to 30%

Strain rate = 2 x 107* s7!

Euler angles = (94.272°, 35.24°, 308.81°)
Material parameters fit to Ta oligocrystals

1.3x10° hexahedral finite elements (tapered specimen)
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(M) i Misorientations
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() .. Deformed texture (mid z, fixed BC)
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@&, Initial crystal orientations (mid-z plane)
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(@) . Tensile response

< Dislocation density-based hardening
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Simulated Compression of
Single Crystal Ta Cylinders




() . Biaxial yield surfaces of single crystals

[111] crystal




M&E=. Quasi-static compression of cylinder

30% compression
Strain rate = 103 s
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) i, Footprints of single crystals
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() .. Aspect ratios (=D

major/ minor)
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() =, Summary

= Developed T and € dependent flow rule based on dislocation kink-pair
theory for Mo, Ta, W and Nb.

" Predicted T and € dependent o, using CP-FEM model agree well with
experimental data.

=  MTS model accurately reproduced T and € dependent o, of BCC polycrystals.

= CP-FEM predictions of Ta oligocrystals showed good agreement with
measured surface strain fields (HR-DIC) and deformed textures (EBSD).

= Proposed computational method provides a convenient and direct link from
the fundamental dislocation physics to the continuum-scale plastic
deformation of BCC metals at the grain scale.



Supplementary Slides:
Validation on Ta Multicrystals
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Experimental Setup
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« Tantalum oligocrystals with mostly columnar 2D grain
structure eliminate unknown subsurface grain
morphology.

» In-situ load frame developed at Sandia

 HR-DIC (surface strain fields) and EBSD (crystal
orientations) measurements at load inside SEM
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Tantalum Oligocrystal Specimens
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15 grains
(1,426,650 elements)

Specimen 1

Simulations of Ta Oligocrystals
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Hardening parameters fit to measured stress-
strain data.
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[, Strain Field Analysis
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(a) HR-DIC measurements (b) CP-FEM predictions

Measured and predicted strain fields agree well quantitatively.




(@) i Texture Predictions

Specimen 1 (6.8%) Specimen 2 (19.2%) Specimen 3 (10.0%)

[111] [111) [111)

100
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IPF contour plots indicate very good agreement between model and experiment.




(@) i Failure Predictions

Ta oligocrystal specimen 2 at 19.2% deformation

.

 Simulated €.

(side view) Simulated € . (top view)

Failure location agrees with the location of the highest ¢ . from the simulation




