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A Seed Placement Strategy for Conforming Voronoi Meshing
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Abstract

We show how to place a set of seed points such that
a given piecewise linear complex is the union of some
faces in the resulting Voronoi diagram. The seeds are
placed on sufficiently small spheres centered at input
vertices and are arranged into little circles around each
half-edge where every seed is mirrored across the as-
sociated triangle. The Voronoi faces common to the
seeds of such arrangements yield a mesh conforming to
the input complex. If the input contains sharp angles,
then additional seeds are needed, analogous to nonob-
tuse refinement. Finally, we propose local optimizations
to reduce the number of seeds and output facets.

1 Introduction

In many applications, it is required to capture the geom-
etry of some domain of interest, e.g., for the purposes of
engineering design and simulations. When the input is
a sufficiently dense sample of points from the boundary,
surface reconstruction algorithms can produce a good
approximation of the surface [1]. On the other hand,
volume decompositions with theoretical guarantees can
be obtained using tetrahedral cells. However, there has
been a growing interest in polyhedral cells, which are
known to be more efficient at filling the space with fewer
cells and can offer certain advantages in terms of numer-
ical stability. Utilizing the Voronoi cells of some interior
sample of points has been considered, but ensuring that
cells conform naturally to the surface, i.e., without clip-
ping, remains challenging [6]. Similar to the study of
conforming tetrahedral meshing [7, 8, 5], we study the
analogous question in the polyhedral case. For back-
ground and applications of representing and approxi-
mating geometries by Voronoi cells, we refer the reader
to [3, 9] and the references therein.

Given a piecewise linear complex (PLC) C, we seek
a reconstruction of C, or rather a refinement of it, by
Voronoi faces such that each input face is the union of
a number of output faces. Depending on the geometry
of C, the number of Voronoi cells may be large, so those
results are mostly of theoretical interest.
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In Section 2, we show how to obtain a Voronoi mesh
conforming to an input PLC. We rely on certain spheri-
cal neighborhoods being empty and assume we can place
seeds arbitrarily close to input vertices. In Section 3,
we show that seeds can be placed at a non-zero dis-
tance from vertices and that allowing overlapping sphere
neighborhoods can help reduce the number of seeds
needed. Finally, in Section 4, we describe refinement
procedures to enforce the required empty neighborhood
condition.

2 Basic Seed Placement Strategy

Allowing the seeds S to be placed arbitrarily close to fea-
tures of C, we develop the basis of the proposed strategy
in 2.1. Then, sufficient conditions for such a strategy to
work are derived in 2.2. We prove in 2.3 that a subset
of Vor(S) yields a mesh that conforms to C.

2.1 Overview

We place seeds near input faces, cospherical around ver-
tices, cocircular around edges, and mirrored across tri-
angles. We examine face types in sequence and antici-
pate sufficient conditions for correctness.

2.1.1 Placement for Vertices

A vertex v in Vor(S) is equidistant to at least four seeds
in S which are closest to it, and are not cocircular. To
ensure every vertex vi ∈ C is a vertex in Vor(S), we
define a sphere Si of radius εv centered at vi, and place
at least four seeds on it. Using a sufficiently small εv,
no other seeds lie inside Si.

2.1.2 Placement for Edges

All points in the interior of an edge e in Vor(S) are
equidistant to at least three seeds in S, forming a circle
perpendicular to and centered at the line supporting
e. Each eij = (vi, vj) ∈ C can be reconstructed as two
edges in V or(S). Define two circles Cij and Cji of radius
εe on spheres Si and Sj , perpendicular to and centered
at eij . Three or more seeds on each circle are used to
reconstruct the edge. For sufficiently small εv and εe, no
other seeds on Si or Sj are closer. Additional conditions,
e.g., angle bounds, are required to ensure that no other
seed is closer to any point on eij .
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2.1.3 Placement for Triangles

All points in the interior of a Voronoi facet f are equidis-
tant to the two seeds closest to f , such that the plane
supporting the facet is the bisector between these seeds.
For each triangle 4ijk ∈ C, each edge circle provides
one mirrored pair of seeds at height h above and below
4ijk. The value of h depends on the dihedral angle at
the edge and is chosen to ensure that the seed pairs from
the two adjacent triangles do not overlap. Additional
conditions, e.g., obtuse dihedral angles, help ensure that
no other seed is closer to any point on 4ijk.

2.1.4 Recovering the PLC

For a vertex vi with fewer than two edges, add extra
seeds on Si so there are at least four. All seeds on Si
get a vertex label `vi . Circle Cij contributes one pair of
seeds for each triangle incident on eij ; for edges with
fewer than two triangles, add extra cocircular seeds so
there are at least three. All seeds on Cij get an edge label
`eij . Finally, all seeds mirrored across facet 4ijk get a

facet label `fijk. A labeled seed witnesses the associated
input face. Denote the witnesses of face f by Sf .

The refinement of C is the witnessed faces of Vor(S)
shared between the appropriate number of seeds with
matching labels. Denote these faces as VoRef(C) ⊂
Vor(S), where “subset” is as a complex. By construc-
tion, Sf refines f , ∀f ∈ C. In Section 4, we show that
non-manifold PLCs can be recovered using a more ag-
gressive strategy requiring extra seeds.

2.2 Definitions and Preliminaries

Denote the input complex by C = (V, E ,F), where V is
a set of vertices in R3, E a set of edges and F a set of
triangles. Note that C may contain isolated vertices not
incident on any edges and isolated edges not incident on
any triangles.

For x ∈ R3, let N0(x) be the closest points in V to x.
Define κ0(x) := ‖x− v‖, with v ∈ N0(x), and let Sx be
the sphere centered at x with radius κ0(x). Similarly,
define N(.) using S, and Nf (.) and κf (.) using Sf .

For edge eij , let mij be the midpoint and Sij the
diametric-sphere, i.e., the sphere with eij as a diameter.
For 4ijk, let Sijk be the smallest enclosing sphere and
cijk its center. Let (a, b) denote ab \ {a, b}.

The basic strategy described in 2.1 requires the input
to satisfy a condition like the following:

Definition 1 (Closeness) ∀x ∈ eij , N0(x) ⊆ {vi, vj}
if eij is isolated, and ∀x ∈ 4ijk, N0(x) ⊆ {vi, vj , vk}.

In 2.3, we prove that the basic strategy described
in 2.1 can refine PLCs satisfying closeness. We use the
following definition to characterize vertices close enough
to spoil the closeness condition.

Definition 2 (ball neighborhood) For an edge eij it
is the diametric-sphere Sij, and for a triangle 4ijk the
union of the smallest enclosing Sijk with {Sij , Sjk, Sik}.

Lemma 3 4ijk has an empty ball neighborhood iff
4ijk satisfies the closeness condition.

Proof. (⇒) WLOG take x ∈ 4ijk such that vi is the
nearest vertex in 4ijk to x. Letting Sip be the sphere

centered at p with radius ‖vi−p‖, it is clear that if Six is
empty, N0(x) = vi and closeness holds. Take y = −→vix ∩
cijkmij and observe that Six ⊂ Siy. Let Cij be the circle
Sijk∩Sij centered at mij . For any z ∈ Cij we may write
‖mij − z‖ = ‖mij − vi‖. As Cij ⊥ 4ijk, ymij ⊥ mijz
and we get ‖y − z‖2 = ‖mij − z‖2 + ‖y − mij‖2 =
‖vi −mij‖2 + ‖y −mij‖2 = ‖vi − y‖2. Hence, z ⊂ Siy
implying Cij ⊂ Siy. Recalling that y ∈ cijkmij we get

Six ⊂ Siy ⊂ Sijk ∪ Sij , which is empty by assumption.
(⇐) If ∃va ∈ C such that va ∈ Sijk ∪ Sij and a /∈

{i, j, k} then, either va ∈ N0(mij) or va ∈ N0(cijk). �

At first glance, empty ball neighborhoods appear
rather restrictive. However, for planar triangulations,
nonobtuseness is sufficient to guarantee it, which can
be enforced by nonobtuse refinement [4].

For non-planar triangulations, nonobtuseness is not
sufficient, and we must also consider the distance to
non-incident vertices. We start in Section 4.1 by show-
ing that for many common triangulations, empty ball
neighborhoods can be guaranteed without much refine-
ment. Then, in Section 4.2 we proceed to outline a
more aggressive variant of the strategy, reminiscent of
nonobtuse refinement [4], that ensures correct output
regardless of input angles and distances. Hence, any
PLC can be refined.

2.3 Placement under Closeness with εv → 0

We analyze the basic strategy in 2.1 for refining an in-
put PLC C when the closeness condition (Definition 1) is
satisfied. Throughout this analysis, we take εv, εe → 0.
Figure 1, illustrates the different ways in which the seeds
in S refine a nonobtuse triangle. In 3.1, we show it is fea-
sible for non-zero radii εv, εe > 0 within a constant fac-
tor of the smallest geometric distances and angle sines.

Claim 4 ∀vi ∈ C, vi ⊂ Vor(S).

Proof. As εv → 0, N(vi) ⊂ Si. �

Claim 5 ∀eij ∈ C, {mij} ∪ {vimij , vjmij} ⊂ Vor(S).

Proof. WLOG take x ∈ (vi, vj) such that vi ∈ N0(x).
As εv → 0, N(x) ⊂ Cij , so x lies on a Voronoi edge. As
εv → 0, N(mij) ⊂ Cij ∪ Cji so mij is a vertex. �

For 4ijk, let βi be the first intersection of the
ray starting at vi and bisecting its angle with any of
{cijkmij , cijkmik, cijkmjk}.
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(a) |AB| = |BC| = |AC|. (b) |AB| < |BC| < |AC|. (c) |AB| < |BC| = |AC|. (d) |AB| = |BC| < |AC|.

Figure 1: Case analysis for refining a triangle into six facets, triangles and quads, based on the relative length of
AB. Voronoi edges (thick) lie on angle and edge-perpendicular bisectors (thin). Many edges are collinear.

Claim 6 ∀4ijk ∈ C, we have {cijk, βi, βj , βk} ∪
{cijkmij , cijkmik, cijkmjk, viβi, vjβj , vkβk} ⊂ Vor(S).

Proof. As εv → 0, N(cijk) ⊂ Si ∪ Sj ∪ Sk. WLOG
taking x ∈ (cijk,mij), N(x) ⊂ Cij ∪ Cji ∪ Cik ∪ Cjk as
εv → 0 so cijkmij is covered by a sequence of collinear
Voronoi edges. Similarly, as εv → 0, N(βi) ⊂ Cij∪Cji∪
Cik ∪ Cjk and taking x ∈ (vi, βi), N(x) ∈ Cij ∪ Cik so
viβi appears exactly in Vor(S).

Let β′i and β′j be the intersections between the line
supporting cijkmij and the rays bisecting the angles at
vi and vj , respectively. We define an ordering on −−−−→mijcijk
such that x1 < x2 if ‖mij − x‖ < ‖mij − x2‖. WLOG,
let β′i ≤ β′j . We have the following cases; see Figure 1.

case |{e}| case |{e}|
β′i = β′j = cijk 1 β′i < cijk < β′j 2
β′i < β′j = cijk 2 cijk = β′i < β′j 1
β′i = β′j < cijk 2 cijk < β′i = β′j 1
β′i < β′j < cijk 3 cijk < β′i < β′j 1

�

Claim 7 Each 4ijk ∈ C appears as 6 facets in Vor(S).

Proof. ∀x ∈ 4ijk, N(x) ⊂ Cij ∪Cji∪Cjk∪Ckj ∪Cik∪
Cki. The mirrored pair of seeds on each of the six circles
contributes a Voronoi facet aligned with 4ijk. �

Corollary 8 Letting v, e and f be the number of ver-
tices, edges and facets in C, the basic placement strategy
in 2.1 generates at most v + 3e + 4f vertices, at most
2e+ 9f edges and exactly 6f facets in VoRef(C).

Theorem 9 Given a PLC C satisfying the closeness
condition, C = VoRef(C).

Proof. (C ⊂ VoRef(C)) Claims 4, 5 and 7 establish that
all vertices, edges and facets of C belong to Vor(S). By
examining the arguments made above, it is clear that
∀x ∈ C, x lies on some face in Vor(S) common to the
appropriate number of correctly labeled seeds in S.

(VoRef(C) ⊂ C) Assume for contradiction that ∃x ∈
VoRef(C) such that x /∈ C. By definition of VoRef(C),
x lies on some face in Vor(S) common to at least two
seeds with matching labels. But, as x /∈ C, no seeds in
S would be labeled to retain it. �

3 Placement under Closeness with Non-zero Radii

Recall that per 2.1, all seeds in S were labeled with the
associated face to serve as witnesses upon recovering
the PLC from Vor(S). When εv, εe → 0, ball neigh-
borhoods free of input vertices were sufficient. Using
non-zero radii, the natural analog is to require witnessed
neighborhoods free of bad seeds. In this section, we also
assume C satisfies the closeness condition.

One way to think of the witnessed neighborhood for
4ijk is to take a clone of its ball neighborhood endowed
with the vertex spheres {Si, Sj , Sk} with εv set initially
to 0. Then, as εv and εe increase to a non-zero value, the
vertex spheres grow while the cloned ball neighborhood
starts to shrink as the spheres centered at any x ∈ 4ijk
need only touch the nearest witness in Sijk rather than
the original vertices {vi, vj , vk}. As Sf refines f , the
witnessed neighborhood is the union of spheres centered
at the vertices v ⊂ VoRef(f) with radius equal to κf (v).

If a seed s was not given an appropriate label for some
x, we say s is a non-witness for x. If a non-witness seed
s ∈ S is closer to x than its witnesses, then Vor(S) fails
to conform to C. The following definition characterizes
problematic placements for non-zero radii.

Definition 10 (Encroached Faces) If a non-witness
seed s ∈ S \ Sf lies in the witnessed neighborhood of f ,
we say that s encroaches on f .

3.1 Non-overlapping Radii

The basic strategy in 2.1 was described for sphere radii
εv and circle radii εe approaching zero. Here we show
these radii can be non-zero.
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If C is a planar triangulation, the basic strategy does
not create encroachments. The radius of Si can be in
the range [0, λi) where λi = min(i,j)∈C‖vivj‖/2. This
ensures vertex balls do not overlap, and only the faces
and edges incident on vi intersect Si. For finite radii
edge circles, let αi be the minimum angle at vi, then
Cij can have a radius in the range [0, ri sin αi

2 ) for all
edges (i, j) ∈ C. Again, this ensures that edge circles
do not intersect, and only triangles incident on an edge
intersect its circles. Although for non-zero radii each
face is not partitioned as nicely as in 2.3, Corollary 8
and Theorem 9 still hold.

If C is non-planar, it may contain non-incident ele-
ments that come arbitrarily close together. Denote the
minimum distance between any two non-incident fea-
tures by δv. Set all sphere radii to εv = δv/3 > 0 [7].
Recalling that seeds lie on spheres of radius εv around
input vertices, define the clearance at a point x on some
face f ∈ C as cl(x) = κ0(x) − κf (x). A sufficient con-
dition for encroachment-free witnessed neighborhoods
can be stated as cl(x) ≥ εv ∀x ∈ f . The basic strat-
egy achieves this when εe → 0. For εe > 0, we amend
the strategy and allow a slightly smaller upper bound.
Consider a shrunken ball neighborhood that only ex-
tends to the seeds generated on the spheres around the
vertices of the face; call this the (εv, εe)-neighborhood
of f . We add extra seeds to provide a safe lower bound
on clearance.

Recall that all points eij are protected by seeds on
Cij ∪ Cji. We ensure a similar protection for all points
on a triangles 4ijk. Fixing Si, consider the two great
circles going through the pairs of seeds generated on
Cij and Cik for eij and eik, respectively, and perpen-
dicular to 4ijk. Let hi be the smaller of the heights
of those seed pairs. We add extra seed pairs on Si
with uniform spacing between the two great circles at
height hi. The spacing is chosen to ensure cl(x) ≥
min{cl(mij), cl(mik), cl(mjk)}∀x in the interior of4ijk,
and the number of extra seeds is finite as εe > 0.

Fixing a face f ∈ C and a non-incident vertex vi, let
p be the closest point on Si to the (εv, 0)-neighborhood
of f and note that ∀x ∈ f , ‖x − p‖ ≥ κ0(x) − εv. For
εe > 0, the (εv, εe)-neighborhood might contain p and
intersect Si in a circle Cif . We show that any seeds on
Si lie outside Cif and do not encroach. Consider edge
eij incident on vi with witnesses on Cij . We have two
cases: (1) p ∈ eij . As the radius of Cif is at most εe,
Cij lies outside the (εv, εe)-neighborhood. (2) p /∈ eij .
Let p′ be the closest point of f ’s (εv, εe)-neighborhood
to p, and let q = Si ∩ eij . Define δe as the minimum
‖p′ − q‖ for any such points p, q. Then, we require εe ≤
δe/3. To account for edges incident on the same vertex,
let αmin be the minimum angle between two incident
features of C and define α∗ = min{αmin, π/10}. We set
εe = min{δe/3, εv · sin (α∗/3)} > 0.

The preceding discussion establishes the following
statement.

Theorem 11 Any PLC satisfying the closeness condi-
tion admits a finite refinement for some εv, εe > 0. If
the PLC is planar, the refinement has linear size.

Note that while δv is an intrinsic feature of the input
PLC, δe apparently arises due to this specific approach.
To yield larger δe, one may attempt refinement to fur-
ther reduce ball neighborhoods, e.g., by regular subdi-
vision. It would be interesting to enable larger non-zero
radii that only depend on intrinsic input properties and
derive a bound on the output size.

3.2 Fewer Steiner Points in 2D by Overlapping Radii

The primitives in 2.1 created non-overlapping vertex
spheres and edge circles, and introduced many seeds on
them. In particular, it generates twelve seeds for each
triangle, with one pair for each half-edge. For adjacent
edges around a vertex, if we can make edge circles larger
so that they overlap, then we may use their two inter-
section points as the two necessary seeds for both edges,
and generate only six seeds per triangle. Observe that
the segment between such intersection points is perpen-
dicular to the facet.

For vertices sharing an edge, if we make vertex
spheres large enough to overlap, we may use the same
seed pair for both endpoints of the edge, and again gen-
erate only six seeds per triangle. In the extreme, if we
can perform both, this results in just one seed pair for
all three edges of a triangle. We leave the study of these
two additional variants as future work and only consider
sharing seeds between edge circles around vertices.

Figure 2a shows schematically the basic setup for this
scenario. For a given vertex v, we order the n edges
in counter-clockwise order, and identify faces with the
right edge. Let ck denote the center of the circle for
edge ek and `k = ‖v − ck‖. Each edge ek gets two seed
pairs that we denote by s1(k) (right) and s2(k) (left). If
R is the radius of the sphere around vertex v, then the
only restriction we have here is that `k < R ∀k.

ci+1

ci

`i

`i+1

s2(i)s1(i+ 1)

vi

ei

ei+1

(a) Basic strategy: two seed
pairs per vertex of a face.

ci+1

ci

`i
`i+1

vi

θ2(i)θ1(i+ 1)

s(fi)
ei

ei+1

(b) Overlapping circles: one
seed pair shared by two edges.

Figure 2: Reducing the number of seeds per face.
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We show how to use just three seed pairs per face
by allowing circles of consecutive edges to share a pair.
Figure 2b shows schematically the new situation. For a
given vertex v, we now generate just one seed pair for
each face fi, denoted by s(fi) in the figure. By project-

ing that seed pair onto the face,
−−−−→
v s(fi) partitions the

angle between ei and ei+1 as θ2(i)+θ1(i+1), where θ1(k)
and θ2(k) denote the right and left angles around edge
ek. Observe that now {`k} are no longer independent.

`i+1 =
cos θ1(i+ 1)

cos θ2(i)
· `i. (1)

WLOG, fixing `1 we find that:

`1 =

Å
cos θ1(1)

cos θ2(n)
× · · · × cos θ1(2)

cos θ2(1)

ã
`1. (2)

Rearranging, we get the additional requirement that∏n
i=1

cos θ1(i)
cos θ2(i)

= 1.

One easy way to satisfy Equation 2 is to enforce that
seed pairs are placed above and below angle bisectors.
This immediately sets all ratios in the product to 1.
However, letting γi denote ‖v−s(fi)‖, we need to ensure
no prefix product results in some γi > R. Note that γi
are related by a similar product of cosine ratios and
that such products telescope. In particular, γmin and
γmax correspond to θmin and θmax. Moreover, they are
related by the following relation:

γmin cos
θmin

2
= γmax cos

θmax
2

. (3)

If the triangulation is nonobtuse, we know that θmin ≤
θmax ≤ π

2 and the cosine is monotonically increas-
ing. As we require γmax < R, we can bound θmin ≥
2 cos−1 R√

2γmin
. An explicit bound is readily available

if γmin is expressed as a constant fraction of R. For
example, requiring γmin ≥ R

2 yields θmin ≥ 17.87◦.

4 Refinement for Closeness

In the previous section, the closeness condition was es-
sential to the the refinement strategies and analyses we
presented. In this section, we show how to enforce such
condition for an arbitrary input PLC.

4.1 Flat Complexes

We show that any PLC with flat dihedral angles can be
refined, by showing that it can be refined into one satis-
fying the closeness condition. For clarity we will call the
standard dihedral angle between two triangles sharing
an edge the edge-dihedral. We define the vertex-dihedral
for a triangle 4123 and a vertex v4 as the minimum
edge-dihedral between 4123 and one of the three tri-
angles 4124,4143, and 4423. Obtuse edge- and vertex-
dihedrals imply that v4 lies outside S123, the smallest
enclosing sphere of 4123.

Definition 12 (Flat Complex) A PLC is flat if all
edge- and vertex-dihedrals between adjacent faces are
obtuse, where two faces are adjacent if they have a non-
empty intersection.

Lemma 13 Any flat PLC can be refined into one with
empty ball neighborhoods.

Proof. First, refine to obtain nonobtuse triangles [4].
Second, iteratively refine every edge into two and every
triangle into four through regular subdivision, stopping
when all ball neighborhoods are empty. This will termi-
nate because ball-neighborhoods shrink through subdi-
vision, so eventually the only vertices v close enough to
intersect a ball neighborhood of face f , are such that the
original triangles containing v and f are the same or ad-
jacent. Any such v on an adjacent face f ′ must lie out-
side the edge-diameter sphere of the common edge with
f by the nonobtuseness of f ′. Then, flatness ensures v
lies outside the smallest enclosing sphere of f . �

Recall [1] that an ε-lfs sampling of a surface M is a
set of points P on M such that ∀x ∈ M, ∃p ∈ P such
that ‖xp‖ ≤ ε · lfs(x), where lfs denotes the local feature
size defined as the distance from x to the medial axis
of M. It is well-known that a triangulation of an ε-lfs
sampling, for a small enough ε, provides flat angles [1, 2].
Further, triangle edge lengths are small compared to the
local feature size, so no regular subdivision in the proof
of Lemma 13 is needed.

Theorem 14 Any flat PLC can be refined. A nonob-
tuse triangulation with vertices from an ε-lfs sampling
can be refined into a linear number of faces.

4.2 Witness Refinement

We show that any PLC can be refined, even if dihedrals
are not flat and the complex is non-manifold. The rea-
son is that we can place extra witness seeds for each
face, so they are the closest seeds for any face point. As
before, seeds are mirrored pairs for triangles, and cocir-
cular for edges. The method is analogous to nonobtuse
triangle refinement [4], however we do not need to ex-
plicitly maintain a triangular cell complex.

Extra witness seeds. We split an encroached face with
extra seeds, which shrinks its witnessed neighborhood.
In general, if a seed s encroaches on a face f , then we
split f near the point closest to s but outside any ver-
tex sphere or original edge circle. For example, for a
triangle with an adjacent edge making an acute vertex-
dihedral, the seeds on the edge circle may encroach on
the triangle. We split the triangle at the shared vertex’s
ball radius, mirrored through the triangle point closest
to the edge; see Figure 3b.
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(a) Extra seeds (blue)
splitting an edge oppo-
site an obtuse edge-edge
angle, and propagating.

x x x

v v

t t
e

e

(b) Top view (left) and side view (right),
of triangle t and edge e with a sharp
vertex-dihedral at v. Edge circle seeds
encroach and induce a seed pair x on t.

Figure 3: Seed refinement on encroached faces. Edge-
refinement would produce more Voronoi faces.

Note that the seeds introduced for a split may then
encroach on a different face, which then requires further
splits; see Figure 3a. We may have propagating paths,
as in nonobtuse refinement [4], leading to splitting a face
multiple times. Fortunately, there is a range of locations
where a split will remove the encroachment. Limiting
nonobtuse propagation paths is a lengthy analysis [4],
and we leave a similar analysis for polynomial-size seed
splitting of non-manifold complexes for future work.

However, we show that a finite refinement is achiev-
able, by spacing seeds based on the geometry, with no
propagation paths needed. Let all vertex balls have the
same radius εv and all edge circles the same radius εe.
Thus radii are non-zero but vertex spheres are non-
overlapping, and edge circles are non-overlapping; see
Section 3.1 for the details. For ease of exposition, let
all subsequent extra seeds be infinitely close to the face
they witness. Split all edges outside vertex balls into
segments of length at most εe/2. Form maximal pack-
ings of εt = εe sin(α/2)/2 radius spheres inside triangles,
but outside the vertex spheres and εe-radius spheres
around each split edge seed. Thus the closest seed to any
face point is a witness seed. See Ebeida and Mitchell [6]
for a similar construction.

Theorem 15 Any PLC admits a finite refinement, in-
cluding non-manifold triangulations.

5 Conclusion

We showed how to generate a set of seed points such that
the faces of the resulting Voronoi diagram conform to an
arbitrary piecewise linear complex. The proposed seed
placement strategies require certain neighborhoods to
be empty of input vertices and can be ensured by a pro-
cess similar to nonobtuse refinement of triangulations.
The number of output faces depends on the complex’s
geometric and topological properties.

It would be interesting to generate an all-
quadrilateral refinement. Without the optimizations,
for scalene nonobtuse triangles the Voronoi faces are
quadrilateral. The Voronoi cells that refine the input
have “degenerate” position, being co-spherical and co-
circular. It is unclear if this degeneracy allows further
optimizations to reduce the number of Steiner points.

We leave open the problem of producing a polynomial
bound on the number of seeds needed for non-planar
triangulations. An analysis similar to Bishop [4] should
suffice, but a path may cross an edge or triangle more
times than in the planar triangulation case, and any
polynomial bounds will likely be larger.
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