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MULTIFIDELITY IN UQ
MOTIVATION

I Hierarchies of models are ubiquitous in engineering practice

I For centuries we relied on simplified models, then computers arrived...

I Can low-fidelity models still find a place in nowadays computational analysis? Perhaps in UQ...
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A LITTLE BIT MORE CONTEXT
DISCRETIZATION VS MODEL FIDELITY

Multi-fidelity: several description levels available

I Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)

I Numerical methods (high/low order, Euler/RANS/LES, etc...)

I Numerical discretization (fine/coarse mesh...)

I Quality of statistics (long/short time history for turbulent flow...)

Common features:

I Increasing the model level/fidelity the quality of the solution improves (numerical
solution closer to the truth)

I Increasing the level/fidelity the numerical cost also increases

� Even if it’s always possible to mix discretization levels and model fidelities,
exploiting their particular structure can be more advantageous...
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UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION – WHY SAMPLING METHODS?

UQ context at a glance:

I High-dimensionality, non-linearity and discontinuities

I Rich physics and many discretization levels/models available

Natural candidate:

I Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

I Drawback: Slow convergence O(N−1/2)→ many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

I Simplified (low-fidelity) models are inaccurate but cheap
� low-variance estimates

I High-fidelity models are costly, but accurate
� low-bias estimates

I Regularity or structures of the solution can be also leveraged to compress its
representation on high-dimensional spaces
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MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the expected value of QM = G(XM) where

I M is (related to) the number of spatial degrees of freedom

I E [QM]
M→∞−−−−→ E [Q] for some RV Q : Ω→ R

Monte Carlo:

Q̂MC
M,N

def
=

1
N

N∑
i=1

Q(i)
M ,

two sources of error:

I Sampling error: replacing the expected value by a (finite) sample average

I Spatial discretization: finite resolution implies QM ≈ Q

Looking at the Mean Square Error:

E
[
(Q̂MC

M,N − E [Q])2
]

= N−1Var (QM) + (E [QM − Q])2

Accurate estimation ⇒ Large number of samples at high (spatial) resolution
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CONTROL VARIATE
PIVOTAL ROLE

A Control Variate MC estimator (function G with E [G] known)

Q̂MCCV
N = Q̂MC

N − β
(

ĜMC
N − E [G]

)
Properties:

I Unbiased, i.e. E
[
Q̂MCCV

N

]
= E

[
Q̂MC

N

]
I argmin

β
Var

(
Q̂MCCV

N

)
→ β = −ρ

Var1/2 (Q)

Var1/2 (G)

I Pearson’s ρ =
Cov (Q,G)

Var1/2 (Q)Var1/2 (G)
where |ρ| < 1

Var
(

Q̂MCCV
N

)
= Var

(
Q̂MC

N

) (
1− ρ2

)

Q: How does the control variate approach enter in our picture?
A: By means of the (geometrical) MLMC and multifidelity strategy

0 Single resolution level
� Cheap lower fidelity (Multifidelity)

1 Applying it recursively
� Spatial discretization (Multilevel)

2 Applying it recursively across resolutions/model forms
� Spatial discretization and cheap lower fidelity (Multilevel-Multifidelity)
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Multifidelity
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MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let’s modify the high-fidelity QoI, QHF
M , to decrease its variance

Q̂HF,CV
M,N = Q̂HF

M,N + α
(

Q̂LF
M,N − E

[
QLF

M

])
.

In practical situations

I the term E
[
QLF

M
]

is unknown (low fidelity 6= analytic function)

I we use an additional and independent set ∆LF = rNHF

E
[
QLF

M

]
'

1
(1 + r)NHF

(1+r)NHF∑
i=1

QLF,(i)
M .

Finally the variance is

Var
(

Q̂HF,CV
M,N

)
= Var

(
Q̂HF

M

)(
1−

r
1 + r

ρ2
HL

)
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(geometrical) Multilevel
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GEOMETRICAL MLMC
ACCELERATING THE MONTE CARLO METHOD WITH MULTILEVEL STRATEGIES

Multilevel MC: Sampling from several approximations QM of Q (Multigrid...)

Ingredients:

I {M` : ` = 0, . . . ,L} with M0 < M1 < · · · < ML
def
= M

I Estimation of E [QM] by means of correction w.r.t. the next lower level

Y`
def
= QM`−QM`−1

linearity−−−−−→ E [QM] = E
[
QM0

]
+

L∑
`=1

E
[
QM` − QM`−1

]
=

L∑
`=0

E [Y`]

I Multilevel Monte Carlo estimator

Q̂ML
M

def
=

L∑
`=0

ŶMC
`,N`

=
L∑
`=0

1
N`

N∑̀
i=1

(
Q(i)

M`
− Q(i)

M`−1

)
I The Mean Square Error is

E
[
(Q̂ML

M − E [Q])2
]

=
L∑
`=0

N−1
` Var (Y`) + (E [QM − Q])2

Note If QM → Q (in a mean square sense), then Var (Y`)
`→∞−−−−→ 0
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GEOMETRICAL MLMC
DESIGNING A MLMC SIMULATION: COST ESTIMATION

Let us consider the numerical cost of the estimator

C(Q̂ML
M ) =

L∑
`=0

N`C`

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

C(Q̂ML
M ) =

L∑
`=0

N`C`

L∑
`=0

N−1
` Var (Y`) = ε2/2


Lagrange multiplier−−−−−−−−−−−−→ N` =

2
ε2

[ L∑
k=0

(Var (Yk) Ck)1/2

]√
Var (Y`)
C`

Var
(

Q̂ML
M

)
=

L∑
`=0

N−1
` Var (Y`) .
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Multilevel-Multifidelity (MLMF)
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MULTILEVEL-MULTIFIDELITY APPROACH
COMBINATION OF DISCRETIZATION AND MODEL FORM

I OUTER SHELL – Multi-level

E
[
QHF

M

]
=

LHF∑
l=0

E
[
YHF
`

]
=

LHF∑
l=0

ŶHF
`

I INNER BLOCK – Multi-fidelity (i.e. control variate on each level)

YHF,?
` = ŶHF

` + α`

(
ŶLF
` − E

[
YLF
`

])

Final properties of the estimator

Q̂MLMF
M =

LHF∑
l=0

[
ŶHF
` + α`

(
ŶLF
` − E

[
YLF
`

])]
and

Var
(

Q̂MLMF
M

)
=

LHF∑
l=0

(
1

NHF
`

Var
(

YHF
`

)(
1−

r`
1 + r`

ρ2
`

))
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MULTILEVEL-MULTIFIDELITY
OPTIMAL ALLOCATION ACROSS DISCRETIZATION AND MODEL FORMS

I Target accuracy for the estimator: ε

I Cost per level is now Ceq
`

= CHF
` + CLF

` (1 + r`)

I the (constrained) optimization problem is

argmin
NHF
`
,r`,λ

(L), where L =

LHF∑
`=0

NHF
` C

eq
`

+ λ

LHF∑
`=0

1

NHF
`

Var
(

YHF
`

)
Λ`(r`)− ε

2
/2


I Λ`(r`) = 1− ρ2

`

r`
1 + r`

After the first iteration the algorithm can adjust the number of samples on the HF or LF side depending on the
correlation properties discovered on flight

After the minimization (NLF
` = NHF

` + ∆LF
` = NHF

` (1 + r`))

r?` = −1 +

√√√√√ ρ2
`

1− ρ2
`

w`, where w` = CHF
` /CLF

`

NHF,?
`

=
2

ε2

 LHF∑
k=0

Var
(

YHF
`

)
CHF
`

1− ρ2
`

1/2

Λ`


√√√√√(1− ρ2

`

)Var
(

YHF
`

)
CHF
`
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Sparse PC regression
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POLYNOMIAL CHAOS
BASIS SELECTION AND EXPANSION

Polynomial Chaos methods represent a function f (ξ) ∈ L2(p(ξ)) as an expansion of
orthogonal polynomials

f (ξ) ≈ f̂ (ξ) =
P∑

k=1

βkΨk(ξ), ξ = (ξ1, ..., ξd).

where Ψk(ξ) = φα1 (ξ1) . . . φαd (ξd) are tensor product of orthonormal polynomials
which are orthogonal to p(ξ).

A truncation needs to be chosen. For instance, a total degree basis can be selected as

A = {||α|| ≤ n0} where card(A) = P =
(n0 + d)!

n0!d!

� This basis grown exponentially with the dimension d
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POLYNOMIAL CHAOS
SPARSE REPRESENTATION AND OMP

I A very flexible (and common) approach to find the coefficients βk is the regression
I Regression-based PC methods solve the linear system

Ψβ = b, where RN 3 b =
{

f (ξ(1), . . . , f (ξ(N))
}T

I Due to the exponential growth of the basis, Ψ ∈ RN×P, very often the system is
under-determined, i.e. N << P

I In the presence of under-determined systems minimizing the residual w.r.t. the `2
norm typically produces poor solutions

I Compressed sensing methods have been demonstrated to be superior in this
situation. These methods try to identify the coefficients βk with the largest
megnitude and enforce as many elements as possible to be zero

Some compressed sampling approaches are
I Basis Pursuit
I Basis Pursuit DeNoising
I Orthogonal Matching Pursuit (OMP)
I Least Angle Regression (LARS)

In particular we use in this numerical investigation OMP:

β = argmin||β||`0 s.t. ||Ψβ − b|| ≤ ε
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Function Train regression
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FUNCTIONAL TENSOR TRAIN (IN A NUTSHELL)
MAIN IDEA

I MAIN GOAL: we would like to represent a function in a tensor product basis...

I ...tensor product basis has pd unknowns

I A viable approach is to seek for a low-rank representation of the coefficient tensor

I In 2D optimal low-rank decomposition is the SVD...

I ...in high dimensions optimal low-rank decomposition does not exist

I We will use the tensor-train decomposition to obtain O(dnr2) unknowns
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MODEL FORMAT: TENSOR-TRAIN
FROM TENSOR-TRAIN (OSELEDETS, 2010) TO THE CONTINUOUS FUNCTIONAL TENSOR-TRAIN (GORODETSKY et al, 2015)

I TT decomposition provides compression multiway arrays
I Existence of best approximation guaranteed
I Storage scales linearly with dimension and polynomially with rank

I TT-ranks are related to the ranks of reshapings of a tensor

rk ≤ rankf(i1, . . . , ik︸ ︷︷ ︸
i≤k

; ik+1, . . . , id︸ ︷︷ ︸
i>k

)

I Approximate multivariate functions instead of multiway arrays
I Adapt to local and global structure
I Efficient, flexible, and adaptive approximation format
I Evaluation through products of matrix-valued functions

f(x1, x2, . . . , xd) =

r0∑
i0=1

r1∑
i1=1

· · ·
rd∑

id=1
f
(i0i1)
1 (x1)f

(i1 i2)
2 (x2) . . . f

(id−1 id)

d (xd)

= F1(x1)F2(x2) . . .Fd(xd)
f (11)
k (xk) · f (1rk)

k (xk)
...

. . .
...

f
(rk−11)

k (xk) · f
(rk−1rk)

k (xk)


︸ ︷︷ ︸

Fk(xk)
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ADVANTAGES OF THE FT FORMAT
TENSOR-TRAIN VS FUNCTIONAL TENSOR-TRAIN

f (x1, x2, . . . , xd) = F1(x1)Fk(xk) . . .Fd(xd)


f (11)
k (xk) · f (1rk)

k (xk)
...

. . .
...

f
(rk−11)

k (xk) · f
(rk−1rk)

k (xk)


︸ ︷︷ ︸

Fk(xk)

I Nonlinear parameterizations: can capture local effects
I Sparse representations:

I Example: Rank-2 additive function

f (x1, . . . , xd) = f1(x1) + · · ·+ fd(xd)

I FT format:

f (x1, x2, . . . , xd) = [f1(x1) 1]

[
1 0

f2(x2) 1

]
· · ·
[

1
fd(xd)

]
I TT storage requirement: 4p(d− 2) floats
I FT storage requirement: d(p + 3)− 4 floats
I In the limit, FT requires almost 4 times less storage
I Difference is more striking for higher order interactions
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RANK ADAPTATION
ON-LINE PROCEDURE TO SELECT THE OPTIMAL RANK

I Use FT rounding and CV
I Increase ranks until either

I Rounding lowers all ranks
→ data not informative enough

I CV error increases
→ avoid overfitting

I Rounding threshold is a parameter
I Similar to regularization
I Relation to other approaches?

I Train model through a LS or other
supervised learning objective function
e.g., huber loss, hinge loss, etc.

I We have developed ALS and
all-at-once optimization algorithms

I Have used BFGS as well as stochastic
gradient descent

I In the result that follow will use
All-at-once optimization with least
squares loss
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LOW-RANK VS. SPARSE COMPARISONS

Pros:
1. No dimensional dependent enumeration

2. Linear scaling with dimension

3. Captures high-order effects

Cons:
1. Requires rank estimation

Pros:
1. Adapted to decaying spectrums

2. Mature and robust algorithms

Cons:
1. Enumeration of basis functions

2. Curse Of Dimensionality for fixed order
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FUNCTIONAL TENSOR TRAIN AND POLYNOMIAL CHAOS
SPARSITY AND LOW-RANK

Test functions – OMP Vs FT
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NUMERICAL INVESTIGATION
DESCRIPTION OF THE APPROACH

I Set of several test functions available in literature (multifidelity UQ)
I Array of 1000 repetitions with the following features

I Number of coarse evaluations {200, 400, 600}
I Number of ∆ evaluations {10, 20, 40, 80, 160}
I Polynomial degree ranging from 0 to 6 with step of 1

I Dataset problems (fixed set of realizations across levels/resolutions)
I Aero-thermo-structural nozzle analysis
I Cardiovascular problem

Main steps of the analysis

1 All the polynomial orders are compared and the one corresponding to the smaller
estimator variability is selected

2 The effect of the number of ∆ evaluations is studied

3 Expected values distributions are compared, for MLMC, MLPCE and MLFT.

Additional outcome

I The variance of each estimator can be studied for each separate level

I The variance decays per level can be studied for all the estimators
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Synthetic Problems
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SYNTHETIC PROBLEMS
FUNCTION DEFINITION AND INVESTIGATION STRATEGY

I Currin et al. (1988) – Exponential function

f(ξ) =

[
1− exp

(
−

1

2ξ2

)]
2300ξ3

1 + 1900ξ2
1 + 2092ξ1 + 60

100ξ3 + 500ξ2
1 + 4ξ1 + 20

flow(ξ) =
1

4
[f(ξ1 + 0.05, ξ2 + 0.05) + f(ξ1 + 0.05,max (0, ξ2 − 0.05)]

+
1

4
[f(ξ1 − 0.05, ξ2 + 0.05) + f(ξ1 − 0.05,max (0, ξ2 − 0.05)]

I Park (1991) – F1

f(ξ) =
ξ1

2

√√√√1 +
(
ξ2 + ξ2

3

) ξ4

ξ2
1

 + (ξ1 + 3ξ4) exp (1 + sin (ξ3))

flow(ξ) =

[
1 +

sin (ξ1)

10

]
f(ξ)− 2ξ1 + ξ

2
2 + ξ

2
3 + 0.5

I Park (1991) – F2

f(ξ) =
2

3
exp (ξ1 + ξ2)− ξ4 sin (ξ3) + ξ3

flow(ξ) = 1.2 f(ξ)− 1

I Short Column (Eldred 2012 and Berchier 2016)

f(ξ) = 1−
4M

bh2Y
−
( P

bhY

)2

flow(ξ) = 1−
4P

bh2Y
−
( P

bhY

)2
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SYNTHETIC PROBLEMS
CURRIN – DEGREE AND HIGH-FIDELITY EFFECT

CURRIN

Nlow = 600, Nhigh = 160
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f(ξ) =

[
1 − exp

(
−

1

2ξ2

)]
2300ξ3

1 + 1900ξ2
1 + 2092ξ1 + 60

100ξ3 + 500ξ2
1 + 4ξ1 + 20

flow(ξ) =
1

4

[
f(ξ1 + 0.05, ξ2 + 0.05) + f(ξ1 + 0.05,max

(
0, ξ2 − 0.05

)]
+

1

4

[
f(ξ1 − 0.05, ξ2 + 0.05) + f(ξ1 − 0.05,max

(
0, ξ2 − 0.05

)]
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SYNTHETIC PROBLEMS
CURRIN – EXPECTED VALUES DISTRIBUTION

CURRIN

Nlow = 600, Nhigh = 80, degree = 6
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SYNTHETIC PROBLEMS
PARK 1 – DEGREE AND HIGH-FIDELITY EFFECT

PARK 1

Nlow = 600, Nhigh=160

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 9.4

 9.6

 9.8

deg 0 deg 1 deg 2 deg 3 deg 4 deg 5 deg 6

E
x
p

e
c
te

d
 v

a
lu

e

High-fidelity simulations

Park 1 function -- 600 Low-fidelity -- 160 Highfidelity

MC
FT
PC

Nlow = 600, degree=4

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

10 20 40 80 160

E
x
p

e
c
te

d
 v

a
lu

e

High-fidelity simulations

Park 1 function -- 600 Low-fidelity -- 4 degree

MC
FT
PC

f (ξ) =
ξ1

2

[√
1 +

(
ξ2 + ξ2

3
) ξ4

ξ2
1

]
+ (ξ1 + 3ξ4) exp (1 + sin (ξ3))

flow(ξ) =

[
1 +

sin (ξ1)

10

]
f (ξ)− 2ξ1 + ξ2

2 + ξ2
3 + 0.5

Sampling, Polynomial Chaos and Functional Tensor Train Multilevel/Multifidelity Strategies for Forward UQ 24/45



Motivation (hints of the) Theory Numerical examples Conclusion

SYNTHETIC PROBLEMS
PARK 1 – EXPECTED VALUES DISTRIBUTION
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SYNTHETIC PROBLEMS
PARK 2 – DEGREE AND HIGH-FIDELITY EFFECT

PARK 2
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SYNTHETIC PROBLEMS
PARK 2 – EXPECTED VALUES DISTRIBUTION
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SYNTHETIC PROBLEMS
SHORT COLUMN – DEGREE AND HIGH-FIDELITY EFFECT
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SYNTHETIC PROBLEMS
SHORT COLUMN – EXPECTED VALUES DISTRIBUTION
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SYNTHETIC PROBLEMS
(PARTIAL) SUMMARY

I Main goal is to collect evidence regarding the behaviors of the different
approaches for different problems

I We do not want to select the ’best method’, we know we will need all of them

I Non smooth transition is evident for both FT and PC

I Transition related to singular values (FT) or sparsity (PC)

I MC more ’reliable’ for low samples allocations

I ML/FT after the transition converge to the exact results (expected for smooth
problems)
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Application Problems
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Nozzle flow – Aero-Thermo-Structure interaction
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AERO-THERMO-STRUCTURAL ANALYSIS
NOZZLE THRUST – COMPUTATIONAL SETTING
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AERO-THERMO-STRUCTURAL ANALYSIS
UQ CASE DESCRIPTION

I 2D RANS model realizations with SU2
I Thermo-Structural FEM solver
I 102 uniform random parameters for representing the manufacture uncertainties

Relative Cost
Coarse 0.38

∆ 1.0

TABLE: Computational cost per realization.

FIGURE: Example of Euler computations for different nozzle geometries.
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APPLICATION PROBLEMS
NOZZLE – DEGREE AND HIGH-FIDELITY EFFECT
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Cardiovascular flow – Flow/Structure interaction
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CARDIOVASCULAR FLOW INTRODUCTION
COURTESY OF C. FLEETER (STANFORD), PROF. D. SCHIAVAZZI (NOTRE DAME) AND PROF. A. MARDSEN (STANFORD)
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CARDIOVASCULAR FLOW INTRODUCTION
COMPUTATIONAL SETTING AND UQ SETUP

I We considered 9 uncertain BC parameters
(i.e. resistances)

I Steady inlet flow (5 L/min)
I 20 QoIs:

I Flows and pressures at the branches outlets
I Min and Max wall shear stress

Sampling, Polynomial Chaos and Functional Tensor Train Multilevel/Multifidelity Strategies for Forward UQ 35/45



Motivation (hints of the) Theory Numerical examples Conclusion

APPLICATION PROBLEMS
CARDIOVASCULAR SYSTEM – DEGREE AND HIGH-FIDELITY EFFECT
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APPLICATION PROBLEMS
CARDIOVASCULAR SYSTEM – EXPECTED VALUES DISTRIBUTION
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Looking forward
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MULTILEVEL STRATEGY
OPTIMAL SAMPLES ALLOCATION FOR MLMC VS MLPCE/FT

I MLMC samples allocation is obtained by using the following relationship (exact)
between the variance of the estimator and the variance of the QoI

Var
(

Ŷ`
)

=
Var (Y`)

N`
I The final samples allocation is

N` =
2
ε2

[ L∑
k=0

(Var (Yk) Ck)1/2

]√
Var (Y`)
C`

,

I By assuming a similar relationship for PCE in a previous work we added two free
parameters γ and κ

Var
(

Ŷ`
)

=
Var (Y`)
γNk

`

I The optimal samples allocation in this case is

N` =
k

√√√√∑L
q=0

k+1
√
Ck

qVar (Yq)

γε2/2
k+1
√

Var (Y`) C`
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MULTILEVEL STRATEGY
CURRIN – VARIANCE RATIO AND DECAY
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MC (Delta)
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PC (Delta)

MLMC
MLFT
MLPC

γ κ
Low ∆ Low ∆

MC 0.997 8.47E− 01 1.005 1.03E + 00
FT 2.737 7.97E− 02 1.224 2.11E + 00
PC 34.040 1.26E− 06 1.446 4.59E + 00

TABLE: Fitted values for γ and κ per level
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MULTILEVEL STRATEGY
PARK 2 – VARIANCE RATIO AND DECAY
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γ κ
Low ∆ Low ∆

MC 1.13E + 00 1.43E + 00 9.78E− 01 9.17E− 01
FT 3.61E + 03 5.33E− 03 1.90E + 00 4.44E + 00
PC 5.82E + 04 6.59E− 11 1.70E + 00 8.65E + 00

TABLE: Fitted values for γ and κ per level
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MULTILEVEL STRATEGY
SHORT COLUMN – VARIANCE RATIO AND DECAY
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Low ∆ Low ∆

MC 0.572 1.275 1.120 0.959
FT 33.024 97.752 0.848 0.759
PC 0.247 0.321 1.463 1.538

TABLE: Fitted values for γ and κ per level
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MULTILEVEL STRATEGY
OPTIMAL SAMPLES ALLOCATION: WORK IN PROGRESS

I All the results obtained in this numerical investigation suggest that we should use
γ` and κ`

Var
(

Ŷ`
)

=
Var (Y`)
γ`N`κ`

I The optimal samples allocation in this case is

N` =
κ`+1

√√√√√∑L
q=0

κ`

κq
NqCq

γ`ε2/2
κ`+1
√

Var (Y`) C`

I The optimization problem is now more complex and requires non-linear iterations
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CONCLUDING REMARKS
WORK STILL IN PROGRESS

Summary

I Multifidelity, Multilevel and multilevel-multifidelity sampling estimators

I Key feature: Optimal allocation across all resolutions/models

I Extension of the multilevel/multifidelity idea to PC and FT

I Preliminary set of comparisons between MLMC, MLPC and MLFT

Work in progress

I Optimal allocation for MLMC/MLMF cannot be obtained in close form...
... much more challenging to do so for PC and FT

I Iterative procedure for the ’optimization’ of degree, rank number of samples at each level

I Variance estimation (for linear regression) is very challenging without cross-validation

I Variance estimation is even more challenging for non-linear regression

Acknowledgements

I Nozzle case: Rick Fenrich, Dr. Victorien Menier and Prof. Juan Alonso (Stanford)

I Cardiovascular case: Casey Fleeter, Prof. Daniele Schiavazzi (ND) and Prof. Alison Mardsen (Stanford)

ML Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617.

MLMF G. Geraci, M.S. Eldred & G. Iaccarino, A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace
applications 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum, (AIAA 2017-1951)

MLPCE M.S. Eldred, G. Geraci & J.D. Jakeman, Multilevel Monte-Carlo Hybrids Exploiting Multifidelity Modeling and Sparse Polynomial
Chaos, SIAM Conference on Uncertainty Quantification, 2016

FT A.A. Gorodetsky, S. Karaman, Y.M. Marzouk, Function-Train: a continuous analogue of the tensor-train decomposition
(Submitted). Available on arXiv:1510.09088v2

Sampling, Polynomial Chaos and Functional Tensor Train Multilevel/Multifidelity Strategies for Forward UQ 44/45



Motivation (hints of the) Theory Numerical examples Conclusion

THANKS!

Sandia National Laboratories is a multimission laboratory managed and operated by National

Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energys National Nuclear Security Administration

under contract DE-NA-0003525.

Sampling, Polynomial Chaos and Functional Tensor Train Multilevel/Multifidelity Strategies for Forward UQ 44/45



Motivation (hints of the) Theory Numerical examples Conclusion

Sampling, Polynomial Chaos and Functional Tensor Train Multilevel/Multifidelity Strategies for Forward UQ 44/45



Motivation (hints of the) Theory Numerical examples Conclusion

FUNCTIONAL TENSOR TRAIN (IN A NUTSHELL)
MAIN IDEA – DISCRETE VS CONTINUOUS REPRESENTATIONS

Example: Compression of a bivariate function

I Singular Value Decomposition (SVD) is a sum of (outer) products of vectors
I Functional SVD (fSVD) is the sum of products of univariate functions
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FUNCTIONAL TENSOR TRAIN (IN A NUTSHELL)
CHOOSING A MORE EFFICIENT REPRESENTATION

Example: Compression of a bivariate function (CUR/skeleton decomposition)

I SVD is expensive, it requires O(N2) evaluations

I SVD can be replaced with another (suboptimal) factorization

I CUR decomposition used columns and rows directly from the original matrix

I Theorem: If a rank r fSVD exists then a rank r CUR also exists
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