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MULTIFIDELITY IN UQ
MOTIVATION

» Hierarchies of models are ubiquitous in engineering practice
» For centuries we relied on simplified models, then computers arrived...

» Can low-fidelity models still find a place in nowadays computational analysis? Perhaps in UQ...
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Motivation (hints of the) Theor Numerical examples

A LITTLE BIT MORE CONTEXT
DISCRETIZATION VS MODEL FIDELITY

Multi-fidelity: several description levels available
» Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)
» Numerical methods (high/low order, Euler/RANS/LES, etc...)
» Numerical discretization (fine/coarse mesh...)

» Quality of statistics (long/short time history for turbulent flow...)

Common features:

> Increasing the model level/fidelity the quality of the solution improves (numerical
solution closer to the truth)

» Increasing the level/fidelity the numerical cost also increases

Even if it's always possible to mix discretization levels and model fidelities,
exploiting their particular structure can be more advantageous...
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(hints of the) Theory

PLAN OF THE TALK
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NUMERICAL EXAMPLES

CONCLUSION
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(hints of the) Theory

UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION — WHY SAMPLING METHODS?

UQ context at a glance:
» High-dimensionality, non-linearity and discontinuities

» Rich physics and many discretization levels/models available

Natural candidate:

» Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

» Drawback: Slow convergence O(N~—1/2) — many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

» Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

» High-fidelity models are costly, but accurate
» low-bias estimates

» Regularity or structures of the solution can be also leveraged to compress its
representation on high-dimensional spaces
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(hints of the) Theory

MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the expected value of @y = G(Xps) where

» M is (related to) the number of spatial degrees of freedom

M— oo

> E[Qy] —— E[Q] for some RV @ : 2 — R

Monte Carlo:

Quc, def 1 ZQO)

two sources of error:
» Sampling error: replacing the expected value by a (finite) sample average

» Spatial discretization: finite resolution implies @y ~ @

Looking at the Mean Square Error:

E [(@4% —E[Q))?] = N~'Var (Qu) + (E[Qu — Q)
Accurate estimation = Large number of samples at high (spatial) resolution
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(hints of the) Theory

CONTROL VARIATE
PIVOTAL ROLE

A Control Variate MC estimator (function G with E [G] known)
AMCCV AMC AMC
N =aNC - 8 (&N -Ela)
Properties:
> Unbiased, ie. E [QFCCY] = E [@)°]

. Varl/2 (@)
> in Vi ccv =—p— Y

arg[;mn o (Q% ) =8 P Yarl/? (@)
Cov (@, G)

» Pearson'sp= ————
? Varl/2 (Q) Varl/2 (G)

where [p| < 1

var (V) = var () (1~ ) |
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(hints of the) Theory

CONTROL VARIATE
PIVOTAL ROLE

A Control Variate MC estimator (function G with E [G] known)

AMCCV AMC AMC
N =aNC - 8 (&N -Ela)
Properties:

> Unbiased, i.e. E [Q%CCV] =E {Q%C}

R varl/2 (@)
> in Ve ccv __
arg[;mn “ (Q% ) -8 P Narl/2 G)
Cov (Q, G)

» Pearson's p = —————————
? Varl/2 (Q) Varl/2 (G)

where [p| < 1

var (V) = var () (1~ ) |

Q: How does the control variate approach enter in our picture?
A: By means of the (geometrical) MLMC and multifidelity strategy

0 Single resolution level
» Cheap lower fidelity (Multifidelity)

1 Applying it recursively
» Spatial discretization (Multilevel)

2 Applying it recursively across resolutions/model forms
» Spatial discretization and cheap lower fidelity (Multilevel-Multifidelity)
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(hints of the) The

Multifidelity
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(hints of the) Theory

MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity Qol, QHF to decrease its variance

QHRCY _ QMN+04<QJIC4F,N*]E [QZI‘}F])
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(hints of the) Theory

MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity Qol, QIP‘I,[F to decrease its variance

QHRCY _ QMN+04<QJIC4F,N*]E [QZI‘}F])

In practical situations
> the term E [QJITJF] is unknown (low fidelity # analytic function)

> we use an additional and independent set AF = zNHF

(14r)NTF

N 1 LF, (i)
E [Q)f] ~ e ; Q.

Finally the variance is

(QHF CV) = Var (QAP}F> (1 - %lezﬂ)

Sampling, Polynomial Chaos and Functional Tensor Train Multilevel /Multifidelity Strategies for Forward UQ 7/45



(hints of the) The

(geometrical) Multilevel
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(hints of the) Theory

GEOMETRICAL MLMC
ACCELERATING THE MONTE CARLO METHOD WITH MULTILEVEL STRATEGIES

Multilevel MC: Sampling from several approximations @y of @ (Multigrid...)

Ingredients:

> {M,:0=0,....L} with Mg <M; < - <M, ¥ M

» Estimation of E [@] by means of correction w.r.t. the next lower level

. . L L
Ye ¥ Qu,—Qu,, T ElQu] = E [Quy |+ E [@u, — Qu,_, | = DBV
=1 £=0

v

Multilevel Monte Carlo estimator

L
QUL def ZN/ Z Z (Qm ;2)[71)

£=0

» The Mean Square Error is

E[@f -E@)*] = SN, Var (Vo) + (51Qu - @)

£=0

Note If @y — @ (in a mean square sense), then Var (Y,) e N
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(hints of the) Theory

GEOMETRICAL MLMC
DESIGNING A MLMC SIMULATION: COST ESTIMATION

Let us consider the numerical cost of the estimator

L
C(Q) =D Nty
=0

Determining the ideal number of samples per level (i.e. minimum cost at fixed

variance)
R L
@) = SNt : v
=0 L Itipli 2 Var
agrange multiplier Ne == Z (Var (Yk)ck)1/2 ( 4
L Sl et Ce
> N, War (Y,) = €%/2
£=0
. L
Var (Q%L) = ZN[IVar (Yy).
£=0
9/45
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(hints of the) The

Multilevel-Multifidelity (MLMF)
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(hints of the) Theory

MULTILEVEL-MULTIFIDELITY APPROACH
COMBINATION OF DISCRETIZATION AND MODEL FORM

» OUTER SHELL — Multi-level

Lyp Lyr

E[QiF] = > B [yi¥] = >y
=0 =0
» INNER BLOCK — Multi-fidelity (i.e. control variate on each level)

Y = T 4o (VF B [¥H])

Final properties of the estimator

AMLMF _ Jx HF vLF _ m LF
oy = 32 (12 (375 1)
=0

and

~ Ly 1 Ty .
Var (Q%LMF> = Z <NHFVar (YEF) (1 B J:” Pf))

=0 L
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(hints of the) Theory

MULTILEVEL-MULTIFIDELITY
OPTIMAL ALLOCATION ACROSS DISCRETIZATION AND MODEL FORMS

» Target accuracy for the estimator: &
» Cost per level is now Czq = C?F + C%‘F (1+ryp)

» the (constrained) optimization problem is

Lyurp Lyr |
argmin (L), where L = Z N?Fczq + A Z WVM (Y?F) Ap(ry) — 52/2
NHF rp X £=0 =)
e
> Aglre) = 1—pil+r
[

After the first iteration the algorithm can adjust the number of samples on the HF or LF side depending on the
correlation properties discovered on flight

After the minimization (NII,‘F = N};IF + A%F = N};IF(l +7))

1/2
2 | Lop (var (viF) cfif /

2 _ 2
€ | k=0 1-r5
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(hints of the) The

Sparse PC regression
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(hints of the) Theory

POLYNOMIAL CHAOS
BASIS SELECTION AND EXPANSION

Polynomial Chaos methods represent a function f(€) € L2(p(£)) as an expansion of
orthogonal polynomials

P
F&) =F(&) = Br¥r€), &= (&1 a)-
k=1
where U (&) = ¢a;(&1) - - - da,(Eq) are tensor product of orthonormal polynomials
which are orthogonal to p(&).
A truncation needs to be chosen. For instance, a total degree basis can be selected as

_ (no+d)!

A={||a]| <n¢} where card(A)=P
n()!d!

@ This basis grown exponentially with the dimension d
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(hints of the) Theory

PoLYNOMIAL CHAOS
SPARSE REPRESENTATION AND OMP

> A very flexible (and common) approach to find the coefficients 3}, is the regression
» Regression-based PC methods solve the linear system

¥B=Db, where RVsb= {f(g<1>, .. ,f(;g(N))}T

RNXP

» Due to the exponential growth of the basis, ¥ € , very often the system is

under-determined, i.e. N << P
> In the presence of under-determined systems minimizing the residual w.r.t. the ¢y
norm typically produces poor solutions

» Compressed sensing methods have been demonstrated to be superior in this
situation. These methods try to identify the coefficients 8, with the largest
megnitude and enforce as many elements as possible to be zero

Some compressed sampling approaches are
» Basis Pursuit
» Basis Pursuit DeNoising
» Orthogonal Matching Pursuit (OMP)
» Least Angle Regression (LARS)
In particular we use in this numerical investigation OMP:

B = argmin||B|lg, st [[¥B-b[<e
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(hints of the) The

Function Train regression
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(hints of the) Theory

FUNCTIONAL TENSOR TRAIN (IN A NUTSHELL)
MAIN IDEA

MAIN GOAL: we would like to represent a function in a tensor product basis...
...tensor product basis has p¢ unknowns

A viable approach is to seek for a low-rank representation of the coefficient tensor
In 2D optimal low-rank decomposition is the SVD...

...in high dimensions optimal low-rank decomposition does not exist

vy VY vV VY VY

We will use the tensor-train decomposition to obtain O(dnr?) unknowns
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(hints of the) Theory

MODEL FORMAT: TENSOR-TRAIN
FROM TENSOR-TRAIN (OSELEDETS, 2010) TO THE CONTINUOUS FUNCTIONAL TENSOR-TRAIN (GORODETSKY et al, 2015)

» TT decomposition provides compression multiway arrays
> Existence of best approximation guaranteed
» Storage scales linearly with dimension and polynomially with rank

TT-ranks are related to the ranks of reshapings of a tensor

v

rp, <rankf(iy, - ipsipgs -5 ig)
N———
i<k isk
Approximate multivariate functions instead of multiway arrays
Adapt to local and global structure
Efficient, flexible, and adaptive approximation format

Evaluation through products of matrlx valued functions

flag,xg, - xg) = Z Z Z ,c<‘0 Dy )f<L1l2)(x ). (d 1ia) *0)
ig=1lij=1  ig=1

= Fy(x1) Falxg) . . . Fglag)

vvyVvyy

f]fll) (xk) . fk(lrk)(xk)

— .1 - _ :
@ A )

Fr ()
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(hints of the) Theory

ADVANTAGES OF THE FT FORMAT
TENSOR-TRAIN VS FUNCTIONAL TENSOR-TRAIN

[Pl T A
flx1,%2,. .., xq) = F1(x1) Fr(ar) - . . Falxa) fk(rk_l.l)(xk) " fk(rk_l;k)(xk)
Fr ()

» Nonlinear parameterizations: can capture local effects
» Sparse representations:
» Example: Rank-2 additive function

fler, .. xq) = filen) + -+ fa(xq)
> FT format:

flx1, %9, ..., %) = [f(x1) 1] [ fz(iz) (1) } [ fd(icd) ]

TT storage requirement: 4p(d — 2) floats

FT storage requirement: d(p + 3) — 4 floats

In the limit, FT requires almost 4 times less storage
Difference is more striking for higher order interactions

vyvyvyy
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Motivation (hints of the) Theory Numerical examples

RANK ADAPTATION
ON-LINE PROCEDURE TO SELECT THE OPTIMAL RANK

Tnitialize
m=r=1
cv(ranks)

Use FT rounding and CV

» Increase ranks until either
» Rounding lowers all ranks
— data not informative enough —
» CV error increases
— avoid overfitting
» Rounding threshold is a parameter

» Similar to regularization
» Relation to other approaches?

» Train model through a LS or other
supervised learning objective function
e.g., huber loss, hinge loss, etc.

» We have developed ALS and
all-at-once optimization algorithms

» Have used BFGS as well as stochastic
gradient descent

» |In the result that follow will use $o ves
All-at-once optimization with least e lower?
squares loss
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(hints of the) Theory

LOW-RANK VS. SPARSE COMPARISONS

v B H W [ v @
¢ 1 E 5 E ¢ 0 .
s I D ED NN VS. G |
v I @ B E N v+ B EE B
N vy I EBE®
P B I I B A
Tensor-product, select rows/cols Order-limited, select any
Pros: Pros:
1. No dimensional dependent enumeration 1. Adapted to decaying spectrums
2. Linear scaling with dimension 2. Mature and robust algorithms
3. Captures high-order effects Cons:
Cons: 1. Enumeration of basis functions
1. Requires rank estimation 2. Curse Of Dimensionality for fixed order
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Motivation (hints of the) Theory

FUNCTIONAL TENSOR TRAIN AND POLYNOMIAL CHAOS
SPARSITY AND LOW-RANK

Test functions - OMP Vs FT

sin (312, =) OTL Circuit Function (6d)

§ ol ST o 5 |
w1 |
0" \ 4

N 1 T

—— 0L =
o S . e

Median Holative Squared Krror
Median Helative Squared Krror

00 20 300 00 500 100 20 500 00 500
Number of Evaluations Number of Evaluations

10 sin(mayzq) + 20(x3 — 0.5)2 + 10x4 + 5x5

e FTpoly

E e .\4_._1‘ = OMP-poly

g w0 \

g — \

L =l

: s

g

E \

foel k

H i

10" , . , \ |

W W @0 W0 50

Number of Evaluations
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Numerical examples

e NUMERICAL EXAMPLES
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Motivation (hints of the) Theor Numerical examples

NUMERICAL INVESTIGATION
DESCRIPTION OF THE APPROACH

> Set of several test functions available in literature (multifidelity UQ)
> Array of 1000 repetitions with the following features

> Number of coarse evaluations {200, 400, 600}
> Number of A evaluations {10, 20, 40, 80, 160}
» Polynomial degree ranging from 0 to 6 with step of 1

» Dataset problems (fixed set of realizations across levels/resolutions)

» Aero-thermo-structural nozzle analysis
» Cardiovascular problem

Main steps of the analysis

1 All the polynomial orders are compared and the one corresponding to the smaller
estimator variability is selected

2 The effect of the number of A evaluations is studied

3 Expected values distributions are compared, for MLMC, MLPCE and MLFT.

Additional outcome
» The variance of each estimator can be studied for each separate level

» The variance decays per level can be studied for all the estimators
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Synthetic Problems
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Numerical examples

SYNTHETIC PROBLEMS
FUNCTION DEFINITION AND INVESTIGATION STRATEGY

» Currin et al. (1988) — Exponential function

1 2300£3 + 1900£2 + 2092¢; + 60
f&) = [t—exp|—— ve L !
2¢, 100£3 + 500€2 + 4£1 + 20

1
frow (&) = 1 [f(&1 + 0.05, &5 + 0.05) + f(&1 + 0.05, max (0, & — 0.05)]

1
+ § [F(&1 — 0.05, 5 +0.05) +f (&1 — 0.05, max (0, & — 0.05)]

> Park (1991) - F1

f& == 1+(§2+53) + (&1 + 8¢4) exp (1 + sin (¢3))

sin (51)

fiow (6) = {1

> Park (1991) — F2

]f(s) 2 + €2+ €2 +05

2
f(&) = 3 exp (&1 + &) — €4sin (€3) + &3

fiow(§) = 1.2f(§) — 1
» Short Column (Eldred 2012 and Berchier 2016)

&) = f;ly (bhiY)Z
4P P \?
frow(€) =1 = o0 = (ﬁ)
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Expected value

SYNTHETIC PROBLEMS
CURRIN — DEGREE AND HIGH-FIDELITY EFFECT

CURRIN
Ny = 600, Npgp, = 160 Nigy = 600, degree=6
81 T T T T T T T 14
= T ‘ =
sl PC PC
79 - 1

I = 1
% | 1w c :
5 i
gLt 1
75| T i I T & H
deg 0 deg 1 deg2 deg3 deg 4 deg 5 deg 6 10 20 40 80 160
High-fidelity simulations High-fidelity simulations

1 2300551* + 190067 + 2092¢; + 60
f(&) = |1 —exp|—— )
2¢9 10063 + 50067 + 461 + 20
1
flow (§) = " [f(&1 4 0.05, €9 + 0.05) + f(&1 + 0.05, max (0, &g — 0.05)]

1
+ 3 [f(&1 — 0.05, &5 + 0.05) + f(&7 — 0.05, max (0, &g — 0.05)]
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Numerical examples

SYNTHETIC PROBLEMS
CURRIN — EXPECTED VALUES DISTRIBUTION

CURRIN
Nipw = 600, Nhigh = 80, degree = 6 Njy = 600, Nhighzlﬁov degree = 6
(600, 80) (600, 160)
| MLMC ! MLMC
01 | — MLFT 200 ] = MLFT
! MLPCE 1 MLPCE
: 175 ]
200 1 !
1 150 |
! |
I
150 4 ! 125
100
100 s
50
50
25
o . . . . 0l — . . : : . .
7.0 7.2 7.4 7.6 7.8 8.0 72 73 74 715 16 17 18 19

1 23003 + 1900€2 + 2092 60
f@:[lfexp(ii)] €7 + 19006 + 2092¢7 +
2¢q 100¢3 + 5005% + 467 + 20
1
fiow (&) = - [/(1 + 005, & +0.05) + (&g +0.05, max (0, & — 0.05)]
1
+ [f(€1 — 0.05, €9 + 0.05) + f(&1 — 0.05, max (0, &g — 0.05)]
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Numerical examples

SYNTHETIC PROBLEMS
PARK 1 — DEGREE AND HIGH-FIDELITY EFFECT

PARK 1
Nigw = 600, Nj,0,=160 Nyyw = 600, degree=4

Park 1 funcion - 600 Low.fidlity — 160 Highyidelity Park 1 function - 600 Low-fidelity ~ 4 degree
98 T T T T T T T 10— T T T
MC == =
o— He=
PC L . P
96 . i a8 . .
H : o6 [+ 1
94 L
94 1
sz 4
3 o 92 1
3 3o ]
8 esl -+ ~ -+ - | | ]
fj [ | i
86 4 il
86 - B
84 7] 84l N
L ' v L
sz : 1 szl - 1
. . . . . . . gt ol I . .
deg0 deg 1 deg2 deg3 deg 4 deg5 deg6 10 20 40 80 160
High-fidelty simulations High-fidelity simulations

a
2

&
&

]f(&) —26 +6+65+05

f(&) = 1+ (&2 +€2) 25 | + (€1 +3&) exp (1 + sin (&3))
sin (£1)

fioul€) = [1+ 5E1)

Sampling, Polynomial Chaos and Functional Tensor Train Multilevel /Multifidelity Strategies for Forward UQ 24 /45



Numerical examples

SYNTHETIC PROBLEMS
PARK 1 — EXPECTED VALUES DISTRIBUTION

PARK 1
Nigy = 600, Ny;e,, =40, degree = 4 Niow = 600, Np;e,=80, degree = 4
(600, 40) (600, 80)
! MLMC MLMC
7001 ] - MLFT 300 - MLFT
: MLPCE MLPCE
600 1 250
1
1
5009 ] 200
1
4004 !
150
300
100
200
100 50 l
o . . . : - 0l— . . r , . . : .
82 84 86 88 90 92 94 96 98 82 84 86 88 90 92 94 96 98
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Expected value

SYNTHETIC PROBLEMS
PARK 2 — DEGREE AND HIGH-FIDELITY EFFECT

PARK 2
Nigy = 600, Ny, =160

Park 2 function -- 600 Low-fidelity - 160 Highjdelity

Njow = 600, degree=4

Park 2 function -- 600 Low-fidelity - 4 degree

T T T o —

29 T T T T T T T
Me——
FT— FT——
(= PC
285 4
. ' 29 B
'
28 4 i
28 1
275 d
° '
H 5
27t || i | ] — | ~t14 B 27 A
g !
& :
265 | d
26 1
26 d
' . " 25 B
255 1 . . d
25 . . . . . . . el | 1 .
deg 0 deg 1 deg 2 deg4 deg5 deg6 10 20 40 80 160

High-fidelity simulations.

4¢3
fiow(§) =12f(§) -1

~

High-fidelity simulations

2
= g exp (€1 + &) — &48in (&3) + &3
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Numerical examples

SYNTHETIC PROBLEMS
PARK 2 — EXPECTED VALUES DISTRIBUTION

PARK 2
Ny, = 600, Nhigh=201 degree = 4 Ny, = 600, Nhigh=401 degree = 4
(600, 20) (600, 40)
i MLMC 1 MLMC
4009 1 - MLFT 800 - MLFT
: MLPCE MLPCE
350 | !
1
300 f 600
1
i 1
250 !
1
2001 ! 400
150
100 200
50
0- 0
25 2.6 2.7 2.8 2.9 255 260 265 270 275 280 285

F(&) = Zexp (61 + &) &asin (&) + &

ﬁow(g) = 12f(§) -1
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Expected value

SYNTHETIC PROBLEMS
SHORT COLUMN — DEGREE AND HIGH-FIDELITY EFFECT

SHORT COLUMN
Niow = 600, Npiq,=160 Ny = 600, degree=3

Short Golumn function - 600 Low-{delty - 160 Highidelty Short Golumn function - 600 Lowdelty 3 degree
008 T T T T T T T 015 ——— T - .
. ve'=—= R . =]
= : FT —
PC . PC
006 |- 1
ot - . 1
004 | : . d H
i X i i . .

i+
+
-
N i
i
A
N
Expected value
i
-

00s |- ,
oo ]
oot . . . . . . P , . .
deg 0 deg 1 deg 2 deg 3 deg 4 deg 5 deg 6 10 20 40 80 160
ighfdlty simulations Highfidlly simulations
M P \2
[ =1- —— - (—
bh2Y bhY
Tiow (&) il Py
5 =1 — — -
low bh2Y bhY
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SYNTHETIC PROBLEMS
SHORT COLUMN — EXPECTED VALUES DISTRIBUTION

SHORT COLUMN

Niow = 600, Np;o, =80, degree = 3 Nigw = 600, Nj;5, =160, degree = 3
(600, 80) (600, 160)
1 1
2004 | MLMC 400 | MLMC
| = MLFT H — MLFT
1 1
3504 1 MLPCE 350 H MLPCE
1 1
1 1
3004 1 300
250 250
2004 200
1501 150
1004 100
504 50
0- 0
0.00 0.02 0.04 0.06 0.08 0.10 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

M P \2
[ =1- —— - (—)
bRY

bh2Y
frow () =1 il Py
low™=) = bh2Y bhY
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Numerical examples

SYNTHETIC PROBLEMS
(PARTIAL) SUMMARY

» Main goal is to collect evidence regarding the behaviors of the different
approaches for different problems

» We do not want to select the 'best method’, we know we will need all of them
» Non smooth transition is evident for both FT and PC

» Transition related to singular values (FT) or sparsity (PC)

» MC more 'reliable’ for low samples allocations

» ML/FT after the transition converge to the exact results (expected for smooth
problems)
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Application Problems
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Nozzle flow — Aero-Thermo-Structure interaction
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Numerical examples

AERO-THERMO-STRUCTURAL ANALYSIS
NOZZLE THRUST — COMPUTATIONAL SETTING

l-D:;engil'fe model

Non-ideal nozzle aero
Axisymmetric Euler / RANS aero
Adaptive meshing

S
5 T | .

—
Mech load

imerior T —
Heatloag
-D Heat Transfer

1-D Conjugate Heat Transfer o

D(x)
a(x) = P(X)T(X)

Simplified hoop stresses K
K / \ Coarse FEM structural mud(y FEM structural model
Low-fidelity model Medium-fidelity model __ High-fidelity model
31/45
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AERO-THERMO-STRUCTURAL ANALYSIS
UQ CASE DESCRIPTION

» 2D RANS model realizations with SU2
» Thermo-Structural FEM solver
» 102 uniform random parameters for representing the manufacture uncertainties

Relative Cost
Coarse 0.38
A 1.0

TABLE: Computational cost per realization.

FIGURE: Example of Euler computations for different nozzle geometries.
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Numerical examples

APPLICATION PROBLEMS

Expected value

NOZZLE — DEGREE AND HIGH-FIDELITY EFFECT

Nozzle - 499 Coarse - degree 2

(499,118)

20850

20800 [

20750

20700 -

20650 [

20800 [

20850

ry—
T ==

PC

High-fidelity simulations

Neoarse = 499, degree=2

Ncoarse = 499, Npje, = 118, degree=2
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Cardiovascular flow — Flow/Structure interaction
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Numerical examples

CARDIOVASCULAR FLOW INTRODUCTION
COURTESY OF C. FLEETER (STANFORD), PROF. D. SCHIAVAZZI (NOTRE DAME) AND PROF. A. MARDSEN (STANFORD)
7. Simulation

6. Boundary Conditions

1.MRI 2.Pathlines 3. Segmentation 4. Solid 5. Mesh
:j 1
é
= \ \ \||/
B P
[
{525 y —
%3 Cost Effective Cost
for Solver | (1 simulation) | (No. 3D Simulations)
. N .
wf it 3D 96 hr 1
S g 1D 11.67 min 2E-3
Gl & e, 0D 5 sec 1.45E-5
&z g < Rucy FRocy e s
2 s
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3D Model
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Numerical examples

CARDIOVASCULAR FLOW INTRODUCTION
COMPUTATIONAL SETTING AND UQ SETUP

» We considered 9 uncertain BC parameters

(i.e. resistances) Solver | No. Simulations
» Steady inlet flow (5 L/min) 3D 100
» 20 Qols: 1D 2000
» Flows and pressures at the branches outlets oD 10 000

» Min and Max wall shear stress

Box Plot for Qol 14 (Pressure at Left Renal Artey)

JR—

95 -

90 -

Pressure [mmHg]

85

80 -

75 ¢ —_

0D Model 1D Model 30 Model
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Expected value

APPLICATION PROBLEMS

CARDIOVASCULAR SYSTEM — DEGREE AND HIGH-FIDELITY EFFECT

Cardiovascular system -~ 400 0D - 190 1D - 40 3D Cardiovascular system -~ 400 0D - 190 1D ~ degree 2
485 T T T Ve 49 T T T v
B I FT ==
R PC
T 485
a8t
a8
a75
475
, = % %— E . % —_
a7t ] L
465
ass
s
a6l 1 1
1 455
455 . . . 45 . . I
deg0 deg 1 deg 2 20 30 a0
High-fdelity simulations. High-fidelty simulations
N()D = 400, N1D=190, N3D=40 NOD = 400, N1D=190, degree=2
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Numerical examples

APPLICATION PROBLEMS
CARDIOVASCULAR SYSTEM — EXPECTED VALUES DISTRIBUTION

(400,190,30) (400,190,40)
70 T T T T T 70 T T T T T

N()D = 400, N1D=190, N3D=30, degree =2 N()D = 400v N1D=190, N3D=40, degree =2
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Looking forward
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Numerical examples

MULTILEVEL STRATEGY
OPTIMAL SAMPLES ALLOCATION FOR MLMC VS MLPCE/FT

» MLMC samples allocation is obtained by using the following relationship (exact)
between the variance of the estimator and the variance of the Qol

Var (f/z) = 7(1;\[(ng)

» The final samples allocation is

Var (Yy)

L
2
Ne= 5 | > (Var (Y) G)'/* o

k=0
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Motivation (hints of the) Theor Numerical examples

MULTILEVEL STRATEGY
OPTIMAL SAMPLES ALLOCATION FOR MLMC VS MLPCE/FT

» MLMC samples allocation is obtained by using the following relationship (exact)
between the variance of the estimator and the variance of the Qol

o ar (Ye)
Var (Y, ) =
(%) = =%,
» The final samples allocation is

L
2
Ne=— {Z(Vﬂr(Yk)Ck)l/z o

:| Var (Yy)
k=0

» By assuming a similar relationship for PCE in a previous work we added two free

parameters v and K
- Var (Y,
Var (Y£> = 70”(12@)
YNy

» The optimal samples allocation in this case is

L k+1/0k
k o "/ CqVar (Y.
Ny = 1| 2= 1Var (o) 4, Var (Y;) C

B ve?/2
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Numerical examples

MULTILEVEL STRATEGY
CURRIN — VARIANCE RATIO AND DECAY

Var (Y,) /Var (Yg) Var (Yg)
Variance Ratio -- Currin Variance -- Currin
6 1
10 - 10 MC (Low) =
FT (Low) === FT (Low) ——
PC (| (Lo

X ¥
=
]
SIote]
g
5B2s2
H
X ¥
¥
N
'
|
'
|
'
|
/
:
,
:

Variance Qol / Variance Estimator
=
N
\
v
x
Variance Estimator
S
e
4
=
o
o
.
x

1 -5
%o 102 10° 10 10 102 10°
N N
% K
’ H Low A [ Low A
MC 0.997 8.47E — 01 1.005 1.03E + 00
FT 2.737 7.97E — 02 1.224 2.11E + 00

PC 34.040 1.26E — 06 1.446 4.59E + 00

TABLE: Fitted values for v and « per level
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Numerical examples

Variance Qol / Variance Estimator

MULTILEVEL STRATEGY

PARK 2 — VARIANCE RATIO AND DECAY

Var (Yy) /Var (Yg) Var (Yg)
Variance Ratio -- Park 2 Variance -- Park 2
100 MC (Low) = 10% MC (Low) =——
g FT (Low) == [ (Y S T
10° ' pC (Low) 10% + PC (Low) .
.| MC(Delta) - = / MC (Delta) - = R
10% b FT (Delta) - » 4| FT(Delta) - =
PC (Delta) N 10 PC (Delta)
107 - 5 MLMC - -
NE g 105 MLFT - -
. . E MLPC
8
10 = £ . N
10* s N
108 108 \
— T e SN T
102 e 10°
10! 10710
10! 102 10% 10 102 10°
N N
K
Low A [ Low A
MC 1.13E + 00 1.43E + 00 9.78E — 01 9.17E — 01
FT 3.61E + 03 5.33E — 03 1.90E + 00 4.44E + 00
PC 5.82E + 04 6.59E — 11 1.70E + 00 8.65E + 00
TABLE: Fitted values for v and « per level
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Numerical examples

Variance Qol / Variance Estimator

MULTILEVEL STRATEGY

SHORT COLUMN — VARIANCE RATIO AND DECAY

Var (Yy) /Var (Yg) Var (Yg)
Variance Ratio -- Short Column Variance -- Short Column
10* 10 ;
MC (LOw) = MC (Low) = x
FT (Low) —— x FT (Low) === N
PC (Low) .- / P (Low) R
MC (Delta) - » MC (Delta) - » -
FT (Delta) - » - _ - = * FT (Delta) - % ~ - - - - 2 [
PC (Delta) * PC (Delig) -~
10° 50ty MLFT - -
E MLPC
/ : \
8
- g e
10° S g 10° e ING
- -~\\\\\‘~\-‘
10 107
10! 102 10% 10' 10 10°
N N
o K
Low A [ Low A
MC 0.572 1.275 1.120 0.959
FT 33.024 97.752 0.848 0.759
PC 0.247 0.321 1.463 1.538
TABLE: Fitted values for v and « per level

Sampling, Polynomial Chaos and Functional Tensor Train Multilevel /Multifidelity Strategies for Forward UQ

41/45



Numerical examples

MULTILEVEL STRATEGY
OPTIMAL SAMPLES ALLOCATION: WORK IN PROGRESS

» All the results obtained in this numerical investigation suggest that we should use

Ye and Ky
A Var (Yy)
Var Yg =
( ) YelN"™

» The optimal samples allocation in this case is

N,

7}{(1 metl Var (Yg) Cg

» The optimization problem is now more complex and requires non-linear iterations
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Conclusion

PLAN OF THE TALK

e CONCLUSION
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Conclusion

CONCLUDING REMARKS
WORK STILL IN PROGRESS

Summary
» Multifidelity, Multilevel and multilevel-multifidelity sampling estimators
» Key feature: Optimal allocation across all resolutions/models
» Extension of the multilevel/multifidelity idea to PC and FT
» Preliminary set of comparisons between MLMC, MLPC and MLFT

Work in progress

» Optimal allocation for MLMC/MLMF cannot be obtained in close form...
. much more challenging to do so for PC and FT

> lterative procedure for the 'optimization’ of degree, rank number of samples at each level
> Variance estimation (for linear regression) is very challenging without cross-validation

» Variance estimation is even more challenging for non-linear regression
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Conclusion

FUNCTIONAL TENSOR TRAIN (IN A NUTSHELL)
MAIN IDEA — DISCRETE VS CONTINUOUS REPRESENTATIONS

Example: Compression of a bivariate function

LN J 000 © 0000000000

®e [ O 00  00ee

([ ] ([ ] o9 ® 00000000 0
(N ] [ = J
(N ] o e
00 [ = J
® 0 [ ]
(N ] [ ]
( @ [}
[ ] 000

1
il
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» Singular Value Decomposition (SVD) is a sum of (outer) products of vectors
» Functional SVD (fSVD) is the sum of products of univariate functions
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Conclusion

FUNCTIONAL TENSOR TRAIN (IN A NUTSHELL)
CHOOSING A MORE EFFICIENT REPRESENTATION

Example: Compression of a bivariate function (CUR/skeleton decomposition)

(X1 1J

I oo

» SVD is expensive, it requires O(N?2) evaluations

» SVD can be replaced with another (suboptimal) factorization

» CUR decomposition used columns and rows directly from the original matrix
» Theorem: If a rank r fSVD exists then a rank r CUR also exists
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