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Why study nano-porous materials

... Reservoirs for unconventional

resources and EOR....
Much More Gas

A new report has found substantially larger natural gas reserves in the United States, in
part because of the development of gas shale beds across the country.

Caprock of subsurface
CO, storage... IPCC(2005)

Overview of Geological Storage Options e Procluced ol or gas
1 Depleted oil and gas reservoirs | o

2 Use of CO, in enhanced oil and gas recovery

3 Deep saline formations — (a) offshore (b) onshore
4 Use of CO, in enhanced coal bed methane recovery
5 Deep unmineable coal seams
6 Other suggested options (basalts, oil shales, cavities)
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More Motivation...

Plenty of pores at sub-micron scale

= Recent activities such as enhanced oil recovery, geological CO, storage,
exploration of unconventional resources highlight the significance of
nanopores

Advances in analytical capabilities with X-ray, electron, and ion beams
offer emerging tools for characterizing pore structures, mineralogy,
and reactions at the sub-micron scale

Multiscale imaging capabilities — integration of experimental and
numerical tools to probe the structure and properties of materials
across scales (e.g., core to nanometer scale)

What is appropriate sample volumes for pore scale analysis? Can a
small volume of materials for focused ion beam-SEM (FIB-SEM)
analysis be representative?

Digital 3D reconstruction of nano-porous materials over scales



Incremental Mercury
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Chalk Samples across Scales
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at depth 6202’
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Multi-Scale Imaging of Nano-porous Materials

Characterization of pore structures, compositional distribution, surface properties
(fluorescence microscopy, microCT, FIB-SEM, TEM, EDS)

Core  X-ray computed Focused lon Beam  Scanning Transmission

(2-5 cm) Tomography (CT) SEM Analysis Electron Microscopy
= i B 3 ) 10um @7 nm

, 3 um (~10 nm reg.)

Energy Dispersive AC-STEM
_ ~ Optical & confocal Spectroscopy for Nano-tomogram
Thin Section  Microscopy mineral analysis at ~1 nm

~2 cm



Dual focused ion beam-SEM (FIB-SEM) imaging

= Focused ion beam for cutting nanometer thin slices

= Scanning & transmission electron microscopy (SEM & TEM) for
high resolution imaging (~15 nm to ~ 1 nm)

= Elemental analysis with energy dispersive X-ray spectroscopy

Typical image at 15.6 nm resolution
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Haynesville Gas Shale

Backscattered Electron Image
of the milled section

Energy Dispersive X-ray
Spectroscopy
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STEM and EDS Analysis
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STEM and EDS Analysis

1478 300 nm
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Workflow for Digital Rock Physics

Flow and Slelle
Rock Multiscale Image Effective Wave
. . Transport : .
Sample imaging Process ) Elastic Propagation
Properties )
Properties

Segmentation Process | | 3D Digital Rock Construction | Quantitative Analysis

= Enhance = Binary or ternary pore
and fluid distribution
construction

contrasting

= Multiple Filtering

Medial Axis Analysis

Topological Analysis

5-way segmentation
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CT images: Courtesy of Mattew Ingraham (SNL)



3D Reconstruction of Chalk Sample

Image Analysis:

» Register stack
» Background subtraction & enhance contrast
* Filtering noises (median filter & FFT bandpass filter)

» Segment with thresholding (Adjustment w/ Otsu method)  Pore structure (white) in
14.7 (x) x 7.9 (y) x 15.0 (2)

micron data set

* Smoothing surfaces with dilation & erosion
* Interpolate in z for cubic voxels and re-segment
G |5 MICIONS =—————p

Yoon and Dewers, GRL 2013



Example of utilizing multiple filters

Raw images have
Uneven background

Uneven illumination & horizontal scan lines

Charging effect (bright white spots)

Small pores captured Large fractures captured  Connectivity recovered
= Background correction = Background correction = Combine two binary images
= FFT bandpass filter = Median filter = Dilate

= Median filter = Higher threshold value = Erode (twice)

= Threshold (e.g., Otsu method)



Simulation & Topological Analysis
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Pore Size Distribution
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At the pore size of ~ 80 nm (the decreasing point of kx and kz), cumulative volume fraction
is ~ 8% and the cumulative pore throat diameter distribution is ~ 60%

The decrease of porosity at a function of voxel resolution matches the loss of pore volume
fraction well and the decrease of surface area also follows the PDF of pore throat size

Surface area is strongly affected by the image resolution and is well correlated to the loss
of small pores and pore throats, highlighting the significance of nano-pore structures

obtained from FIB-SEM analysis



Multi-Scale Reconstruction

e Reconstruct 3-D pore structures and multi-scale pore networks

1)1E+1

o Yoon & Dewers (GRL, 2013) o«

e | —a—x | o FIB-SEM samples at ~10 pm

‘ e 4-6 regions can be selected based on
principal component analysis of thin
section image

e Multi-scale rocks can be reconstructed
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Original image
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Modeling at the Mesoscale

Multiphase Flow

Sierra Mechanics/CDFEM Lattice Boltzmann

initial

— = 056
¢ =566

Effective Thermal Conductivity of
Particle Dispersions

Jeremy Lechman, SNL Flow of “frac” fluid in

proppant-containing
fracture

B Yoon et al. SNL
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Prodanovic & Bryant 2006



Pore Scale Modeling of Reactive Transport

Research Details

— Simulated transient experimental results of CaCO; precipitation and
dissolution in a microfluidic pore network (shown in Figure)

— Improved understanding of the fundamental physico-chemical
processes of CaCO;, precipitation and dissolution at pore scale for

coupled reactive transport systems

Applications

— A functional form of reaction rates
as a function of system parameters
can be developed using pore-scale
model

— Results can be used as input for
continuum and/or mortar hybrid
modeling of more realistic
environmental conditions at larger
scales

CO,2 —> i .
(PH=~11) | 4 &« Pore

Ca™ —— CaCo,

Experimental image (top)
Simulated CaCO, dist. (middle)
Simulated pH distribution (bottom)

Yoon et al. (2012)



Conclusions

A significant improvement of multi-scale imaging capabilities with sub-micron
FIB-SEM techniques was achieved to accurately account for micro-structural
features

Permeability and specific surface area can be strongly affected by image
resolution, highlighting the importance of features at the sub-micron scale where
petrophysical and multiphase flow properties in carbonate rocks and mudstones
are dependent upon complex 3-D pore structure

For multiscale reconstruction, segmented 3-D FIB-SEM data at the SREV scale
can be directly mapped to a lower resolution 2-D thin section images or 3-D
micro-CT data

Textural properties at the SREV scale can then be used to reconstruct multi-
scale pore structure at the scale of practical interest using stochastic methods
(e.g., multiple-point simulation) or dual-scale pore network models
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Impact of Voxel Resolution

Two points statistics LB results
-e-Porosity —4Surface Area oTlx aTly «Tz okx -aky <kz

1.0 - 2.0 'y
4 ke
B 08 915
RN :
o
5 0.6 S i

T 1.0 (49

= =
g \‘* € 05
5 0.2 =
=2 \\‘\‘ =

0.0 J ) ; ; : : 0.0 ‘ ‘

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Voxel resolution (nm) Voxel resolution (nm)

The 15.6 nm data was averaged at 31.2 to 624 nm scales

Porosity decreases at > ~80 nm resolution

Specific surface area decreases exponentially with increasing resolution

kx and kz change gradually due to a microfracture, while ky changes sharply

Tortuosity in x&z directions does not change much, but z increases sharply as
nano-cracks are lost at higher resolutions

Permeability is a better indicator than tortuosity to determine the SREV scale
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Background: Mercury Injection Porosimetry (MIP)

*Widely used to characterize pore size
distributions (psd’s) and capillary
pressure functions

*Assumes non-wetting fluid (contact
angle 6 > 90 deg.) intrudes only under
pressure

*Derived PSD’s use Washburn
equation (P = -4ycos6/d, y is surface
tension) and “bundle of tubes” model

*When applied to rock pore topologies,
often biased towards smaller pores in
distribution (e.g. “ink bottle effect”)
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