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Motivation
• Biological toxins are often difficult to detect because of their high activity,

but low count.

• There is a real need to detect these in cases of suspected outbreaks,
than waiting to see if symptoms occur.

• Nanofluidic electrophoretic sensing methods make ideal sensors:

can be mass produced and used in the field

can pre-concentrate samples to increase sensitivity

are easily integrated with other sensors

offer some ability for customization

Experimental Setup

• In-situ polymerization creates pores.

• Experiment
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Mai, Miller and Hatch, ACS Nano 2012.

• probe mode: ratiometic pH-sensitive dye (SNARF) quantitatively measures
concentration and pH dynamics near membrane

Numerical Model
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Membrane Length 0.05
Resolved Simulation Length 1.55
Total Microchannel Length 41.55

Protein Sensin
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• Based on their sequence, proteins vary greatly in their charge profile,
and ability to unfold.

• A membrane with well-defined, nanometer size pores requires partial
unfolding for large proteins to pass.

• Voltage and solution makeup at both interfaces can be tuned to detect
protein toxins or cellular distress signals.

Concentration Polarization
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• Cations flow toward the cathode, but are rejected by the membrane.
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• Those remaining form the enrichment zone, where concentrations can
soar to 0(100x).

• The amount of CP is described by the Dukhin number (the ratio of
bulk to surface ion mobility) and the bulk diffusion of the co-ion.
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Time and Parameter Dependence
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H Dynamics) Conclusions
• pH dye is most sensitive at pH 7 so

we check the progression of the front

• ear-perfect fit requires adjusting
only the water splitting rate.

• The strong ionic environment of the
membrane catalyzes this process 10 x .

• Total current agrees qualitatively, but
few experimental data points.

• Total device length affects voltage at
the membrane.

• Net space-charge builds up on the pm
scale away from the channel (conduc
tion faster than reaction)

• The 105 V/cm field moves with the
charge front.

• violates electroneutrality, local equi
librium, and EDL theory (lambdaD
lnm)

• CP allows very nonlinear tuning of the electric field and buffer concentration
near an interface.

• Numerical modeling is required to capture these complex driving forces.

• H+ and OH— directly contribute r‘3% to net charge transport.

• Electrostatics is still the dominant driving force for protein unfolding at the
interface, but varies greatly with membrane charge and hydrolysis properties.

• These provide boundary conditions for molecular simulations.
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