SHANDIPS-2072 ¢
COMF-=bDA3] -~ |

A Theoretical Comparison of Evolutionary
Algorithms and Simulated Annealing®

William E. Hart
Applied and Numerical Mathematics Department
Sandia National Labs
P. O. Box 5800 - MS 1110
Albuquerque, NM 87185-1110

wehart@cs.sandia.gov

August 28, 1995

Abstract

This paper theoretically compares the performance of simulated annealing
and evolutionary algorithms. Our main result is that under mild conditions a
wide variety of evolutionary algorithms can be shown to have greater perfor-
mance than simulated annealing after a sufficiently large number of function
evaluations. This class of EAs includes variants of evolutionary strategie and
evolutionary programming, the canonical genetic algorithm, as well as a vari-
ety of genetic algorithms that have been applied to combinatorial optimization
problems. The proof of this result is based on a performance analysis of a very
general class of stochastic optimization algorithms, which has implications for
the performance of a variety of other optimization algorithms.

1 Introduction

This paper concerns the performance of algorithms that minimize an objective
function of the form f: S — R”, |S| < co. In particular, this paper concerns the
relative performance of evolutionary algorithms (EAs) and simulated annealing (SA).

SA and EAs are optimization methods that have been successfully applied to solve
combinatorial optimization problems [4, 9, 14, 23]. SA is inspired by an analogy with
statistical cooling in metallurgy, where the annealing phase is composed of a heating
phase followed by a phase of slow cooling. The resulting metal remains in a low-energy
structure. The stochastic process used by SA is similarly controlled by a temperature
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that is slowly cooled to guarantee that the final solution is at a near optimal solution.
EAs are inspired by computational models of natural evolution, in which a population
of individuals face selection pressure that eliminates individuals with low fitness from
the population in successive generations. In the context of global optimization, the
fitnesses of individuals is associated with the optimality of their solution in the search
space. Thus EAs use selective pressure among a population of solutions to identify
near optimal solutions.

Previously, comparisons between SA and EAs have been primarily confined to em-
pirical evaluations on test problems (e.g. [3, 12, 22]). The relative performance of SA
and EAs in these results is mixed, which suggests that SA and EAs may be relatively
superior on different classes of problems. Theoretical investigations into SA and EAs
have focused on the development of hybrid algorithms that employ techniques devel-
oped for both SA and EAs [18, 5]. These authors argue that the strengths of these
two classes of algorithms can be combined. However, their arguments to not provide
a basis for comparing the performance of SA and EAs themselves.

In this paper we theoretically analyze the relative performance of SA and EAs by
comparing their probability of finding an optimal (or near optimal) solution after a
given number of samples from a finite search space. In practice, the number of samples
is directly related to the cost of these algorithms because each sample corresponds to
a function evaluation and function evaluations for previously sampled solutions are
not typically stored for future use.

Our analysis of the performance of SAs relies on a recent result by Ferreira and
Zerovnik [7] that shows that under reasonable conditions the probability that SA
finds an optimal solution is bounded away from one by a slowly decreasing function.
A wide variety of EAs can be shown to have no such bound. Consequently, these EAs
can be shown to have better performance than SAs after a sufficiently large number
of iterations.

Our analysis of the performance of EAs relies on an analysis of a more general class
of stochastic optimization algorithms that we call Markovian search algorithms. These
algorithms use a Markov chain (with appropriate restrictions) to sample the search
space and simply keeping track of the best solution seen. We show that Markovian
search algorithms have better performance than SA and then describe how this result
can be refined to account for the different costs associated with the Markov chain
used to describe EAs.

This paper is organized as follows. Section 2 provides some background on EAs
and SA. Section 3 reviews the bounds on SA proven by Ferreira and Zerovnik [7].
Section 4 defines and analyzes the performance of Markovian search algorithms. Sec-
tion 5 refines this previous result to show that certain classes of EAs have better
performance than SA for sufficiently large n. Finally, we discuss some limitations of
these results and point to some natural extensions of this work.
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2 Background

2.1 A Canonical Evolutionary Algorithm

The population used by an EA consists of a N-tuple of solutions z; € S. Each
solution z;, called an individual of the population, is a feasible solution to the problem.
The value f(z;) is said to be the fitness of the solution. Let {z7,...,z%} be the N
individuals in a population at iteration n.

Figure 1 describes the steps of a canonical EA. While there are a number of
details that distinguish EAs, this canonical EA captures the principle features of these
algorithms. The exemplars of EAs are evolutionary programming (EP), evolutionary
strategie (ES) and genetic algorithms (GAs). The principle feature distinguishing
these EAs is the selection of operators used perform the evolutionary search as well as
the search domains to which these EAs are typically applied. For detailed descriptions
of these algorithms, see Fogel [8], Back and Schwefel [15], Goldberg [9] and Davis [4].

1 Select an initial population z° = {z9,...,2%}, 2% € S
2 Determine the values f(z?), 2? € z°

3 Repeat n=1,2,...

4 Perform selection

5 Perform crossover with probability x

6 Perform mutation with probability u

7 Determine the values f(z7), z7 € Z"

8 = =argming,. f(z?) and y = f(z})

9 Perform replacement

10 Until some stopping criterion is satisfied

Figure 1: Pseudo Code for Canonical Evolutionary Algorithms

With high probability, the selection algorithm chooses the solutions from the cur-
rent population with the lowest function values. Typically, the solutions with the
highest function values are chosen with a low, non-zero probability. Consequently, an
EA’s search is concentrated in regions with low function values, though regions with
high function values are still searched with low probability. Goldberg and Deb [10]
review a variety of selection algorithms commonly used in GAs.

Crossover and mutation are evolutionary operators that are used to construct
new solutions from the individuals chosen by the selection algorithm. The precise
character of these operators is not necessary for purposes of the present analysis.
Crossover is usually a binary operation that takes two individuals and generates one
or two individuals. Mutation is usually a unary operation that takes one individual
and generates another individual. For more details concerning these operators, see
the references for the EAs mentioned above.

The replacement algorithm determines which members of the previous population
are replaced by the individuals generated by the genetic operators. Often, the entire
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population or a randomly selected subset of the population is replaced by the new
individuals. In elitist EAs, the replacement algorithm insures that the best individual
in the previous population is kept in the current population if it is better than all of
the newly constructed individuals.

2.2 Simulated Annealing

We assume that SA uses a neighborhood operator N(s) to identify new solutions
in S. N(s) uses s to generate a solution in S according to a fixed distribution. Let
N (s) be the set of possible neighbors generated by s, and let 7N (s) be the probability
that N(s) generates s'.

Figure 2 describes the basic structure of SA. Given a temperature T', SA accepts
new solutions according to the Boltzmann criterion. Let s’ be a new solution gen-
erated from s using the neighborhood operator. If f(s’) < f(s) then s’ is accepted.
Otherwise, s’ is accepted with probability

P(T,s,s') = eF@-FNIT,

Consequently, the transition matrix (p;q (7)), for all s,s’ € S, at temperature T is:

pss(L)=1— ;ps,s:(T).

o If &' € N(s) then

[ Vs if f(s) < f(s")
pae(T) = { 7y (8)P(T,s,s') if f(s) > f(s')

o If &' ¢ N(s) then p, (T) = 0.

If T is annealed slowly enough, then it can be shown that the distribution of
states sampled by SA asymptotically converges to the Boltzmann distribution [14,
23]. However, this convergence result requires that equillibrium is acheived for each
temperature, which requires an infinite number of steps. Further, the temperature
must be lowered very slowly to insure convergence. In practice, the temperature is
reduced according to a temperature schedule, where m; steps are performed at each
temperature T3, ¢ > 1.

3 Review of Bounds on Simulated Annealing

In this section I review the analysis by Ferreira and Zerovnik [7] that bounds the
probability of success of SA on an arbitrary problem. Chiang and Chow [2] give
a related analysis that shows that the probability of reaching the optimal state is
1 — O(n™*), for some a > 0.
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Compute a random initial state s
n=0,z,=3s
Repeat : = 1,2,...
Repeat j =1,2,...,m;
Compute a neighbor s’ = N(s)
if (f(s") < f(s)) then
s=4g
if (f(s) < f(zn)) then
Ty, =8
n=n+1
endif
else
s = &' with probability p(T), s, s')
endif
EndRepeat
EndRepeat

Figure 2: Pseudo Code for Simulated Annealing

Let K be the set of states in S for which there is at least one downhill path of
transitions defined by the neighborhood operator V() that ends in a global minima.
Let R = |Ky|/|S|. Let ¢; be the minimum probability, at temperature T; and taken
over all states, that SA does not accept a state s’ such that f(s") > f(s). Formally,

q; = min, (1 - E ps,s’(Ti)) ’

sES s'EA,

where A, = {s' | f(s') > f(s)}.

Let S* = {s | f(s) < f(s"),Vs' € S}. Ferreira and Zerovnik [7] prove the following
lemma, which shows that performance of SA can be bounded by a function of n, the
number of steps taken by the algorithm.

Lemma 1 ([7], Lemma 1) If R < 1 then P(z, € 5*) < b(n) < 1, where

b(n) =1~ ¢;;"I"q5 (1 — R),

J

and ¢, is the index to the temperature at step n and n = m;, + Z?‘:Bl mj.
This bound implies several other bounds on the probability of success of SA. In
particular, it can be generalized for more practical situations in which a near optimal
solution is desired. Let S¢ = {s | |f(s) — f(s*)|] < ¢,s* € §*}. Let R’ = |K!|/|S|,
where Kj is the set of states in S for which there is at least one downhill path of
transitions defined by the neighborhood operator N() that ends with a state in S¢.
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Corollary 1 If R’ < 1 then P(z, € 5¢) < b(n) < 1, where
b(n) =1— ¢TI g7 (1 - RY),

in=1

and i, is the index to the temperature at step n and n = m;, + X2, m;.

4 Analysis of Markovian Search Algorithms

In this section I demonstrate general conditions for which stochastic optimization
algorithms can be shown to be asymptotically better than SA. These conditions rely
on an analysis of homogeneous finite Markov chains, which can be used to define
stochastic optimization algorithms.

A homogenouse finite Markov chain describes the probabilistic steps that can be
taken over a finite space. The probability of moving from state s; to state s; is pyj,
and these probabilities can be collected into a transition matriz P = (p;;). For each
entry, pi; € [0,1] and ZL-S:ll pi; = 1 for all s; € S. Given an initial distribution po,
the distribution of the chain after the nth step is p® = poP™. State s; is said to be
accessible from state s; if there exists £ > 0 such that R-(jk) > 0.

Given a set of goal states S’ C S, we define a search algorithm that relies on a
Markov chain to sample the search space. The key property of the Markov chain is
that at least one goal state is accessible from every state in S. This ensures that
the Markov chain will visit a goal state with high probability as the number of steps
becomes large. Formally, the Markov chains that we consider are defined by the
following assumption.

Assumption 1 Consider a finite Markov chain with transition matrix P defined over
S. Let §' C S be given. For all s € S— .9, there exists s’ € S’ such that s’ is accessible
from s.

The following lemma shows that a Markov chain that satisfies Assumption 1 will
sample a state in S’ with high probability for sufficiently large n.

Lemma 2 Let $’ C S and S, = {s1,52,-..,5.} be a sequence of states sampled by
a Markov chain that satisfies Assumption 1. Then there exists o € (0,1) and ng such
that for n > ng

P (SnﬂS" = (0) <da".

Proof. Let p = miny,;50p;ij, where P = (p;;) is the transition matrix of the
Markov chain.

For all s € S, consider the shortest sequence of transitions that terminates with a
state in S’. By Assumption 1 such a sequence of transitions always exists. Let ¢ be
the length of the longest such sequence.

If p =1 then a-state in 5’ is reached in no more than ¢ steps, so for n > ny = g,

P(S,S'=0) <o
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for any a € (0,1).

Now assume that p < 1. The probability of traversing any sequence of length ¢
is at least p?. It follows that after q steps the probability that a state in S’ is not
sampled is less than or equal to 1 — p?. Similarly, the probability that a state in 5’ is
not sampled after kq steps is

P(S.S'=0) < (1-p".

Now for arbitrary n we have

P (Sn nS, — w) S (1 _pQ)[n/'JJ S (1 _pq)n/(2q) .

Thus if
o=(1 pq)I/(Zq)
then
P(8,N8"=0) <o
for n > ng = q. =

We can now define a search algorithm that uses this Markov chain to find a goal
state. In the context of global optimization, the goal states are typically S* or S°.

Definition 1 A (finite) Markovian search algorithm samples the search space for a
state in S’ C § according to a Markov chain that satisifies Assumption 1 and keeps
track of the best solution sampled.

The class of Markovian search algorithms is quite broad. It includes a variety of
EAs, as well as many other standard global optimization algorithms. The following
theorem proves the remarkable result that any Markovian search algorithm eventually
has a higher probability of success than SA.

Theorem 1 Let A be a Markovian search algorithm. If R < 1 then there exists a
constant ng such that if n > ng then Pga(z, € S*) < Ps(z, € S*).

Proof. If n is sufficiently large, then we know from Lemma 2 that P4(z, € 5*) >
1 — o™, for some constant « € (0,1). From the definition g; it follows that ¢; tends to
one as n increases. Thus there exists a k such that ¢ > . Let

D = f:%qj '(1-R)
m = Z mj.
j=1

Now 0 < D <1 and

(ﬁ) <o ™D
qk
for sufficiently large . It follows that

a(n+m) < qzl-‘[y—l q; J(l - R)
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If we take n = & + m and note that ¢f < ¢/¢"5*...q*, i = i, then we have

o" = o) < PFTER (1 — R).

Thus
Pa(zn € 8*) > 1—a" > 1—g"iZjq;" (1 — R) = Psa(za € S*).
n

This result can be generalized to the case in which a near optimal solution is
desired. The proof is identical, though the constant ng differs from that of Theorem 1.

Corollary 2 Let A be a Markovian search algorithm. If B’ < 1 then there exists a
constant ng such that if n > ng then Psa(z, € S¢) < Pa(z, € S°).

Finally, we comment on the condition R < 1 (R’ < 1) that is required for these
results. The following lemma demonstrates that this condition is satisfied if and
only if the objective function contains a local minimum that is not globally optimal.
Since stochastic global optimization algorithms are most appropriate for multimodal
objective functions, this condition does not appear restrictive.

Definition 2 A local minimum is a state s € S such that f(s) < f(s') for all 8’ €
N(s).

Lemma 3 R < 1 if and only if there is at least one local minima in S that is not a
global optima.

Proof. Assume that there is a local minima that is not a global optima. From
the definition of Kj, this state is not included in K3, so R < 1.

Now if R < 1, then S — K is not empty. Take any state s € S — K; and consider
a downhill path of transitions from s. At some point, this path terminates at a local
minima. Since this path cannot lead to a local minima in K, this local minima must
be in S — K;. Consequently, there is at least one local minima in S that is not a
global optima. ‘ =

5 Analysis of Evolutionary Algorithms

It is quite natural to model EAs as Markov processes in which the state space
contains the space of all possible populations, where each population is represented
as a set of individuals. In particular, the Markov chains of GAs have been analyzed
by a number of researchers [5, 6, 11, 16, 17, 20], since GAs have traditionally been
applied to discrete search spaces (especially {0, 1}%).

As a consequence, we might expect the analysis of Markovian search algorithms
to apply to certain classes of EAs. In fact this is the case. However, we need to prove
modified forms of Theorem 1 and Corollary 2. These results assume that visiting n
states in S incurs the same cost for both SA and the Markovian search algorithm.
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However, this is not true for the Markov chains that model EAs, since each state is
a vector of the states samplied by SA.
More formally, for Markov chains that model EAs the state space is

S = {(s1,...,8n) | i € S}. EAs simply need to find a population that contains one
or more instances of optimal individuals. Consequently, we define 5* = {(s4,...,sn) |
ds; € $*,i=1,...,N} and §¢ = {(s1,...,sn) | 3s; € S¢,i = 1,...,N}. Note that if
a state in S* is sampled, then the canonical EA defined in Figure 1 has the property
that z, € S*.

Lemma 4 Let A be a Markovian search algorithm that costs N per transition. If
R < 1 then there exists a constant ng such that if n > ng then Pss(z.y € 5*) <
PA(xn €S *)

Proof. If n is sufficiently large, then we know from Lemma 2 that P4(z, € S*) >
1—a™ > 1—a™N for some constant « € (0,1). From the definition g; it follows that
g; tends to one as n increases. Thus there exists a & such that g; > a'/N. Let

cC = oV
D = MgP(-B
-1
m = ij.
Jj=1
Now0<D<1and
C (R+m—-1)N
(—) <C™Np
gk

for sufficiently large . It follows that

CEtmN < gFHm-UNTIE-147i(1 — R).

_1 5
If we take n = 7 + m and note that q(n"'m DN o g gmict .e-qp*, i = inn, then we
have
O™V = o+mIN < gl (1 — R).
Thus

Py(zn,€S*)21—a">1— ;—_'llqj J(1 — R) = Psa(zn.y € S™).
|

Corollary 3 Let A be a Markovian search algorithm that costs N per transition. If
R' < 1 then there exists a constant ng such that if n > ng then Pss(z.y € 5¢) <
P,A (mn € SC).

Theorem 2 applies Lemma 4 to show that a wide variety of evolutionary algorithms
are stochastically superior for large enough n. Let I'(Z") C S be the set of all possible
individuals that could possibly be generated from Z"™ by the evolutionary operators.
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Assumption 2 Consider an EA for which

1. Ve S,I'(3) =8

2. Vs € I'(z"), if fi(s) < f(s),Vs' € z" then P(s € z"1) > 0.
Assumption 8 Consider an EA for which

1. V5 € § there exists a sequence of transitions 5 = 51, 33, ... ,3; such that 5 € 5*
and s;4; €T(E)N fori=1,...,5 — 1L

2. Vs € T'(z"), P(s € z™1) > 0.

Theorem 2 Let A be an EA that can be modelled by a Markov chain that satisfies
Assumption 2 or 3. If R < 1 then there exists a constant ng such that if n > ng then
Psa(zpn € S*) < Py(zn € S¥).

Proof. Assumptions 2 and 3 place restrictions on the transition matrix of the
EA that ensure that it satisfies Assumption 1, where S’ = S*. Given this, the result
follows from Lemma 4 because the EA is a Markovian search algorithm.

If Assumption 2 is satisfied, then in a single transition every individual s can
move to a state in S*. Thus every state 5 can move to a state in S*. The second
part of Assumption 3 guarantees that such a transition has positive probability, so
Assumption 1 is satisfied.

If Assumption 3 is satisfied, then there exists a sequences of transitions that take
every state in S to a state in 5*. The second part of Assumption 2 guarantees that
the probability of this sequence of transitions is positive, so Assumption 1 is satisified.

n

The restrictions imposed by Assumptions 2 and 3 are quite mild. Consequently,
Theorem 2 applies to a large number of the EAs that have been previously considered.
Assumption 2 restricts Theorem 2 to EAs for which the evolutionary operators can
generate any solution in S. Consequently, the particular selection algorithm used in
this class of EAs is irrelavant, since any solution can be used to generate a solution
in §*. This assumption allows for a very restrictive replacement algorithm, one that
only needs to allow solutions to remain in the next population if they are better than
the best solution in the current population.

The conditions imposed by Assumption 2 are satisfied by the canonical GA [17],
which searches a space of binary vectors {0,1}* with a mutation operator that flips
each bit along an individual with probability ¢ > 0. The standard replacement
algorithm for the canonical GA is to simply replace the entire population. This
clearly satisfies the requirements of Assumption 2. The elitist GA considered by
Suzuki [20] also satisfies Assumption 2. Assumption 2 also reflects the characteristics
of EP and ES. These EAs use genetic operators that can generate any solution in the
search space from any other solution. Furthermore, they use replacement algorithms
that are no more restrictive than those permitted by Assumption 2. Consequently,
Theorem 2 would apply to variants of EP or ES that are used for combinatorial
optimization.
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Assumption 3 restricts Theorem 2 to EAs for which every initial population can
reach a population in S* via some sequence of transitions. Further, the selection
and replacement algorithms are restricted to allow any sequence of transitions to
occur with positive probability. This assumption can be viewed as a generalization of
Assumption 2 for the case where the genetic operators cannot necessarily generate a
solution in S* from every state in S. Examples of EAs that satisfy Assumption 3 are
many of the GAs used to search through the space of permutations. These EAs have
been applied problems such as the Travelling Salesman problem [19, 24], scheduling
problems [19, 21], the clustering problem [1] and partitioning problems [13]. The
limitation of the evolutionary operators for these EAs lies in the fact that the mutation
operator is typically an operation like two-opt, which generates a small number of
possible neighbors.

6 Discussion

Note that the analysis of EAs in Section 4 is independent of the particular for-
mulation of evolutionary operators used by the EA. Consequently, the conditions in
Theorem 2 may be satisfied by either mutation or crossover or both. This fact dis-
tinguishes this analysis from analyses of Markov chains of EAs that rely on mutation
to prove performance guarantees (e.g. see Rudolph [17]).

Another interesting property of this analysis is that the neighborhood structure
used by the Markov chain for the EA is independent of the neighborhood structure
used by SA. Thus the steps used by the EA for mutation or crossover are not nec-
essarily related to the steps used by SA. In practical terms, this means that the EA
can encode the problem differently so long as the cardinality of the search space is
preserved.

An important criticism of these results is that the value ny postulated by the
results may be unreasonably large. Thus in practice SA may have better performance
than EAs for all reasonable values of n. Further, it is not clear from this analysis
whether it is necessarily true that ng < |S|. If ng > |S| it is often possible to simply
enumerate the space, in which case these results do not have practical relevance.
Since the value ng depends upon the problem and neighborhood structures used by
the SA and EAs, an important research issue is the identification of problems for
which ng < ISl

Note that this criticism does not apply if S is countably infinite. In fact, the
results in Sections 3 and 4 can be generalized to handle the case when S is countably
infinite. However, it is difficult to imagine many practical examples with this property.
NP-complete problems typically have search spaces that are exponential in the size
of the input, so for a given input the search space is finite. An example of a problem
that might be reasonable is the grammar induction problem [25] where a grammar
for an infinite set of sequences is being learned.

To conclude, we note that these results should naturally generalize to parallel EAs.
PFerreira and Zerovnik [7] describe bounds for parallel versions of SA. Consequently,
parallel GAs should naturally have a similar relationship with parallel SA. We also
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expect that the analysis of Markovian search algorithms can be used to prove that
a variety of other search algorithms are superior to SA. An important step that is
missing from the current analysis is accounting for general costs in these algorithms,
which is necessary to generalize to a wide variety of other search algorithms.
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