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| Complexity of Hierarchically and 1-Dimensional
Periodically Specified Problems

M.V. Marathe ® H.B. Hunt IIT 2?3 R.E. Stearns 123 V. Radhakrisﬁnan 2,4
August 23, 1995

Abstract

We study the complexity of various combinatorial and satisfiability problems when instances are
specified using one of the following specifications: (1) the 1-dimensional finite periodic narrow specifica-
tions of Wanke and Ford et al. [FF58, Wa93], (2) the 1-dimensional finite periodic narrow specifications
with explicit boundary conditions of Gale [Ga59], (3) the 2-way infinite 1-dimensional narrow periodic
specifications of Orlin et al. [Or82a] and (4) the hierarchical specifications of Lengauer et al. [LW87a).
we obtain three general types of results.

First, we prove that there is a polynomial time algorithm that given a 1-FPN- or 1-FPN(BC)-
specification of a graph (or a CNF formula) constructs a level-restricted L-specification of an isomorphic
graph (or formula). This theorem along with the hardness results proved here provides alternative and
unified proofs of many hardness results proved in the past either by Lengauer and Wagner [LW92] or
by Orlin [Or82a].

Second, we study the complexity of generalized CNF satisfiability problems of Schaefer [Sc78].
Assuming P # PSPACE, we characterize completely the polynomial time solvability of these problems,
when instances are specified as in (1), (2), (3) or (4).

As applications of our first two types of results, we obtain a number of new PSPACE-hardness and
polynomial time algorithms for problems specified as in (1), (2), (3) or (4). Many of our results also
hold for O(log A) bandwidth bounded planar instances. The results significantly extend the results in
[LW92, Or82a, Sc78].
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1 Introduction

Large objects with highly repetitive structure can often be represented succinctly. In the past, several
methods have been proposed to succinctly represent objects. Here we consider two of these methods,
namely (i) the hierarchical specifications [Ga82, LW92, BOW83, RH93] and (ii) the periodic specifica-
tions [CM91, IS87, KO91, KS88, Or82a, Wa93].

Hierarchical specifications are used to describe large scale systems with a very regular structure.
This is because by using hierarchical specifications, the overall design of an object can be partitioned
into the design of a collection of modules; which is a much more manageable task than producing
a complete design in one step. Hierarchical specifications have found applications is VLSI layout
[HLW92, RH93], finite element analysis, software engineering and datalog queries (see [HLW92, Ma94]
and the references therein). Examples of hierarchical specification methodologies previously discussed
include [Ga82, LW92, BOWS83, RH93]. Periodic specifications can also be used to define large scale
systems with highly regular structures. Using periodic specifications, large objects are described as
repetitive connection of a basic module. Frequently, the modules are connected in a straight line but
the basic modules can also be repeated in two or higher dimensional patterns. Periodic specifications
have applications in such diverse areas as transportation planning [Or82a, HLW92, Ma94], parallel
programming [HLW92, KMW67] and VLSI design [IS87, HLW92]. They model periodic problems
where the constraints or demands for any one period is the same as those for preceding or succeeding
periods.

An important feature of both hierarchical and periodic specifications is that they can be much more
concise in describing objects than standard specifications. In general, the size of an object can be
exponential in the size of its periodic or hierarchical specifications. Since, the complexity of solving
a problem is usually measured as a function of the size of the description of problem instance, the
complexity of a problem when instances are specified using standard descriptions can be much different
than the complexity of the same problem when instances are specified hierarchically or periodically.
For example, while 3-COLORING problem [GJ79] is NP-complete when the graphs are represented -
by an adjacency matrices or by adjacency lists, it is PSPACE-complete when instances are specified
hierarchically or periodically [LW92, Or84b]. On the other hand the 2-COLORING problem is solvable
in polynomial time even when instances are specified using the hierarchical specifications of Lengauer
et al. [LW92] or the periodic specifications of Orlin [Or82a).

In this paper, we study the complexity of several combinatorial, graph and generalized satisfiability
problems when instances are specified using one of the following specifications: (1) the 1-dimensional
finite periodic narrow specifications of Wanke [Wa93], and of Ford and Fulkerson [FF58], (denoted
here by 1-FPN-specifications), (2) the 1-dimensional finite periodic narrow specifications of Gale [Ga59)
and others (denoted by 1-FPN(BC)-specifications), (3) the 2-way infinite 1-dimensional narrow periodic
(sometimes called dynamic) specifications of Karp and Orlin et al. [KMW67, Or82a], (denoted by 1-PN-
specifications), or (4) the hierarchical specifications of Lengauer [LW87a], (denoted by L-specifications).

Let II be a problem posed for instances specified as usually assumed in the literature. For instance,
for CNF formulas, the standard specification for instances of satisfiability problems is sets of clauses,
with each clause being a set of literals. For problems in graph theory, the adjacency matrix represen-
tation or the adjacency list specification of the edges in the graph are standard specifications of the
graph. For the rest of the paper we refer to such usual specifications as standard specifications. In this
paper, we use L-II, 1-FPN-II 1-FPN(BC)-II and 1-PN-II to denote the problem II when instances are
specified using L-, 1-FPN-, 1-FPN(BC)- 1-PN-specifications respectively. For example, L-3SAT denotes
the problem 3SAT when instances are specified using L-specifications and 1-FPN-3SAT denotes the
problem 3SAT when instances are specified using 1-FPN-specifications. We also use the term succinct
specifications to mean one of the above given specifications. For the rest of the paper we use o to denote




one of the succinct specifications given above.

2 Summary of results

One important goal of this paper is to provide a better understanding of the efficient inter-translatability
of description of objects using various succinct specifications considered. In particular, we show that
very simple repetitive structures that can be specified by each of succinct specifications studied in this
paper make the problems “hard” to solve. This implies (provides alternative and unified proofs for)
the PSPACE-hardness results obtained in the past either by Lengauer and Wagner [LW92] or by Orlin
[Or82a]. In the past, the hierarchical and periodic specifications have been studied in isolation; our
results here point out the close correspondence between the two specifications. The results obtained
~ in this paper extend the results of (i) Schaefer [Sc78], where the complexity of non-succinctly specified
satisfiability problems was studied and a complete characterization of the problems was given, (ii)
Orlin [Or84b] on the complexity of 1-PN specified problems, (ii) Lengauer and Wagner [LW92] on the
complexity of L-specified problems. We discuss these extensions in detail in the subsequent subsections.

2.1 Translation Theorem

We first prove that that given a 1-FPN or 1-FPN(BC) specification of a graph (or a CNF formula) G
we can construct a 1-level restricted L-specification of a graph (or a formula) G’ which is isomorphic
to G. (Theorem 7.1 proved in the Appendix. Henceforth referred to as Translation Theorem.) The
translation theorem implies that for all the graph and satisfiability problems II, the problem IT when
specified using a 1-FPN-specification is polynomial time reducible to the problem II when specified
using an L-specification. Thus, given the translation theorem, it suffices to prove lower bound results
for 1-FPN-specified problems and upper bound results for L-specified problems. Therefore, for the rest
of the paper, whenever possible we prove the hardness results for 1-FPN-specified instances and the
easiness results for L-specified instances. - -

2.2 Complexity of Satisfiability Problems

To understand the results in this subsection, it is useful to first review the relevant definitions from
[Sc78]. We assume that the reader is familiar with the problem 3SAT. Let S = {Ry,...,Rnm} be
a finite set of finite arity Boolean relations. An S-formula is a conjunction of clauses each of the
form f%,-(él,&, -+-), where &, &, - - - are distinct, unnegated variables whose number matches the rank
of R;;i € {1,---m} and R; is the relation symbol representing the relation R;. The S-satisfiability
problem (denoted by SAT(S)) is the problem of deciding whether a given S-formula is satisfiable. The
above formulation yields an infinite collection of satisfiability problems which contains the the problems
3SAT and 1-3SAT as special cases. A variation of the SAT(S) problems is the problems SAT.(S), in
which we allow constants 0 or 1 in the input formulas. _

Here, we investigate the complexity of the generalized satisfiability problems for succinctly specified
instances (denoted as a-SAT(S)) (See Definitions 4.1 and 4.2). Specifically, we completely charac-
terize the complexity of the problems a-SAT(S) for every finite set of finite arity boolean relation S.
We prove the following theorem.

Theorem 2.1 Let S be a finite set of finite arity boolean relations. Let conditions (a) through (e) be
defined as follows.

(a) Every relation in S is 0-valid or every relation in S is 1-valid.

(b) Every relation in S is 1-weakly positive or every relation in S is 1-weakly negative.




(c) Every relation in S is weakly positive or every relation in S is weakly negative.
(d) Every relation in S is affine.
(e) Every relation in S is bijunctive.

1. If S satisfies one of the conditions (b) (d) or (e) then L-SAT.(S) and 1-FPN(BC)-SAT.(S) are in P
otherwise L-SAT.(S) and 1-FPN(BC)-SAT.(S) are PSPACE-complete.

2. If S satisfies one of the conditions (a) (b) (d) or (e) then L-SAT(S) and 1-FPN(BC)-SAT(S) are in
P. Otherwise, L-SAT(S) and 1-FPN(BC)-SAT{(S) are PSPACE-complete.

3. If S satisfies conditions (a), (b), (c), (d) or (), then the problems 1-FPN-SAT(S) and 1-PN-SAT(S)
are in P. Otherwise, the problems 1-FPN-SAT(S) and 1-PN-SAT(S) are PSPACE-complete.

Our work is motivated by the work of Schaefer [Sc78] who gave a complete characterization of the
generalized satisfiability problems SAT(S) when instances are specified using standard specifications,
and the work of Orlin [Or82a), where he proved the PSPACE-hardness of the problem 1-PN-3SAT. An
interesting aspect of our characterization of the problems a-SAT(S) is that for any given finite arity
finite set of boolean relations S, the problem a-SAT(S) is either in P or is PSPACE-complete. Thus, our
dichotomy result is similar in spirit to the result of Schaefer [Sc78], except that he proved that each of
the problems SAT(S) is either in P or is NP-complete. Thus the result significantly extends the work of
(i) Schaefer [Sc78], where the complexity of non-succinctly specified satisfiability problems was studied
and a complete characterization of the problems was given, and (ii) Orlin [Or82a], where 1-PN-3SAT
‘was proved to be PSPACE-complete. Apart from being of independent interest, the hardness results
for the problems a-SAT(S) serve as useful starting points for proving the PSPACE-hardness of various
other combinatorial and graph problems specified using one of the specifications a.

Applications -

Next, we use the first two types of results together with known “local” reductions between problems
to obtain hardness results for various graph theoretic and combinatorial problems, when instances
are specified using one of the specification a. Specifically, we show that for most natural problems,
if II; < I3 such that the reduction is local, then the problem a-II; < a-II5. Several combinatorial
problems II are known to have local reduction from the problem 3SAT and its variations. These
reductions are lified to obtain local reductions from @-3SAT to a-II. For example we obtain the
following result.

Theorem 2.2 The problems a-3SAT, a-HP, a-IS, a-VC, a-3COLORING are PSPACE-hard for O(log NV)
bandwidth bounded a-specified planar graphs.

3 Related ‘work and significance

Orlin considered the problem 1-PN-3SAT, and proved that 1-PN-3SAT is PSPACE-complete. Then
using known local replacement type reductions from 3SAT to other classical problems II he showed
that the problems 1-PN-II are PSPACE-complete. The problems shown to be PSPACE-hard include 1-
PN-3SAT, 1-PN-Knapsack, 1-PN-HP, 1-PN-3COLORING and 1-PN-3DM. Lengauer and Wagner [LW92)
characterize the the complexity of several graph problems when specified hierarchically. They prove the
PSPACE-hardness of the problems 3 Coloring (3COLORING), Independent set (IS), Hamiltonian Circuit
(HC), Monotone Circuit Value Problem (MCVP), Network Flow (NF) and Alternating Graph Accessibility
problem (AGAP). E




The proofs of PSPACE-hardness for the problems studied in this paper improve upon known PSPACE-
hardness results in several ways. First, for many of problems considered, we give tight lower and
upper bound (given the current state of knowledge about computational complexity.) in terms of the
space and time required for solving the problems. For example, our results show that the problem
1-PN-3SAT can be decided in non-deterministic linear space. Furthermore, we show that the problem
is PSPACE-complete by a f(n) size reduction® from the membership problem for non-deterministic
linearly bounded automaton (LBA). This along with Savitch’s result imply that 1-PN-3SAT requires at
least 2%("") deterministic time to solve. (Assuming that there are languages in NSPACE(n) requiring
deterministic time 2%(®"), 0 < r < 1.) On the other hand, Orlin’s reduction from the membership
problem for a non-deterministic LBA to the problem 1-PN-3SAT is a #(n?) size reduction. Such a
reduction only implies that 1-PN-3SAT takes deterministic time 22n™*) {4 solve the problem. Similar
lower bound results hold for the space required to solve L-specified problems. For example, Lengauer
and Wagner have a 6(n*) sized reduction from the languages in DSPACE(n) to the L-MCVP (monotone
circuit value problem). Here we show that L-MCVP is PSPACE-complete by a 6(n2) sized reduction
from from the languages in DSPACE(n). Thus while our reduction implies a lower bound of 2%(*™/*)
(Assuming that there are languages in DSPACE(n) requiring deterministic time 2%(*"), 0 < r < 1.)
for solving L-MCVP, the reduction of Lengauer and Wagner only implies a lower bound of PALC
for solving L-MCVP. Similarly the PSPACE-hardness of L-HC is by a #(n*) sized reduction from the
languages in DSPACE(n). This reduction only implies a lower bound of 22(n™*) for solving L-MCVP. In
contrast, we can show that L-HC requires 92(n™®) deterministic time to solve the problem. In several
cases, we can also give algorithms that solve the problem in time that matches the lower bounds proved
here. .

Second, the PSPACE-hardness results for most of the problems considered here hold for O(log V)
bandwidth bounded planar instances. No hardness results of any kind were presented for prob-
lems restricted to planar instances specified using any of the specifications a. Also, previously, the
only known PSPACE-hardness results for bandwidth bounded succinctly specified instances were the
PSPACE-hardness of L-3COLORING and L-IS [LW92]. Furthermore, in [LW92] the proof of PSPACE-
hardness of L-HC and L-MCVP is from QBF. It is not clear how to extend these reductions so as to
extend the PSPACE-hardness results for O(log A') bandwidth bounded planar instances. In contrast,
oour PSPACE-hardness results can be very easily extended to obtain results for O(log ) bandwidth
bounded planar instances.

Third, other than in the work of Orlin [Or82a], the complexity of satisfiability problems for succinct
specifications has not been not considered in the past. In particular, except for references in our
papers [MH+93a, MH+94] a-specified CNF formulas and their satisfiability problems have not appeared
previously in the literature.

The rest of the paper consists of selected proof sketches. Additional proofs appear in the Appendix.
For more details, we refer the reader to the complete version of the paper.

4 Preliminaries

Due to the lack of space, we refer the reader to the work of [LW92, HLW92, Le89, MH+94, Or82a, Or84b]
for definition of L-, 1-PN-, 1-FPN- and 1-FPN-specified graphs.

SWe say that A C I'* is PSPACE-complete via a size L({n) reduction if A is PSPACE-complete and for any B C A*
such that B is decidable {non)-deterministically in space S(n) = n, B <p A via some function f such that for all w € A*,
|f(w)] < eL(jw|), where c is a constant depending on B. If f(n) = O(n), we say that the reduction is a linear size
reduction.




4.1 Hierarchically specified formulas

Here, we introduce the concept of hierarchically specified S-formulas and the associated generalized sat-
isfiability problems. Such formulas are built by defining larger S-formulas in terms of smaller S-formulas.
Just as L-specifications can represent objects that are exponentially larger than the specification, hi-
erarchically specified S-formulas can be exponentially larger than the size of their specification. This
concept has been discussed briefly in [MH+93a, MH+94].

Definition 4.1 An instance F = (Fy(X1),..., Fp1(X"71), F,(X™)) of L-SAT(S) is of the form

F(XH=( N\ Fy(xj,2)) \ f(X%, 2%
1<i<l;
for 1 < i < n where f; are S-formulae, X™ = ¢, X, X},2%, 2%, 1 < i < n — 1, are vectors of boolean
variables such that X} C X*, Z! C 2%, 0 < i; < i. Thus, F} is just a CNF formula. An instance of
L-SAT(S) specifies a 3CNF formula E(F’), that is obtained by expanding the Fj, 2 < j < n as macros
where the variables Z's introduced in any expansion are considered distinct. The problem L-SAT(S) is to
decide whether the formula E(F) specified by F' is satisfiable.

The set of variables Z* in the corresponding F; are called explicit variables. Let n; be the total
number of variables used in F; (i.e. |X*|+|Z¢|) and let m; be the total number of clauses in F;. The size
of F', denoted by size(F), is equal to ), ;< ,(min;) = O(MN) where M = 3, m; and N = Y. n;.
‘Given a formula E(F) specified by a hierarchical specification F, BG(E(F)) denotes the bipartite
graph associated with E(F). We use Gpg(g(r)) to denote the hierarchical specification of BG(E(F)).
In [MH+93a] we outline a transformation which on input F' constructs Gpg(g(r)) in polynomial time.
We denote the size of E(F) (using standard specifications) by .

The above definition yields as special cases analogues of many of the well known satisfiability
problems such as 1-35AT, NAE3SAT, etc. denoted by L-1-3SAT and L-NAE3SAT respectively. For.
instance, the problem L-1-3SAT is defined analogously as in Definition 4.1 except that each fiisa
3CNF formula, which is true precisely when one of the literals is assigned a value 0.

Example: Let F = (Fi(z1,22), F5(x3,24), F3) be an instance of L-3SAT where each F; is defined as
follows:
Fl(iL']_,.'EQ) = (IB]_ +x2+21) A (Zz + 2,'3)

Fy(z3,%4) = F1(x3,24) A F1(24,25) A (24 + 25 + 24); F3 = Fa(zg,27) A Fi (27, 26)

The formula E(F) denoted by F is given by (27 + 2z + 21) A (23 + 23) A (28 + 24 + 22) A (22 + 22)A
(za+ 25 + 2) A (23 + 23) A (24 + 25 + 7).

4.2 Periodically specified formulas

Let U = {u,...,un} be a finite set of variables (referred to as static variables). U™ = {uz(i) : 1 <
k<n,i€Z} UM = {u(i): 1 <k <n,ic{0,1,2---,M}}. (In our proofs, variable u (%)
denotes the variable u; at grid point ¢.) A literal of U is an element of {ui,...,un,7,..., U5} Hw
is a literal of U, then w(4), is a literal of U®. Let C(i) be a parameterized conjunction of 3 literal
clauses such that each clause in C'() consists of variables ug(¢), ux (¢ + 1) with the constraint that at
least one variable is of the form wu(Z). We refer to the clauses C(Z) as static narrow clauses. (C(Z) is
called narrow because for all (wq (¢1) V wo(i2) V ws(isz)) € C@@), |is — i < 1lfor 1 <r < s <3.) Let
= (U,C3(), M). Let C*° = /\Zigc’ C(i). Then C* is the 3CNF formula specified by I'. Given UM and
C*, let CM be a subset of C with the following property: for each clause (w; (i1)Vws (i) Vws (i3)) € CM,
wy (i1), wa (i2), ws (i3)) € UM,




It is useful to imagine a narrow periodically specified formula I'*® as being obtained by placing a
copy of the variable set U at each integral point (also referred to as lattice point) on the X-axis (or the
time line). Furthermore, assume that the clauses C(t) are placed at time ¢. With this notation, we can
now refer to variables at time ¢ as the set of variables U(t) and clauses at time ¢ to clauses at time ¢

Definition 4.2 A 1-dimensional infinite (finite) periodic narrow specification (denoted by 1-PN (FPN)-
specification) of a 3CNF formula F°(U*®,C®) (FM(UM,CM)) is given by ( T = (U,C@)), ( T =
(U,C(3), M)), where, U is a a finite set of variables, C(i) is a collection of static narrow 3 literal clauses.
(In case of finite specifications M is non-negative integers specified in binary.) The size of the specification
denoted by size(I') = U] 4 |C()]. (In case of finite specifications size(T') = |U| + |C(5)] + bits(M),
where bits(M) denote the number of bits used to represent M.} We denote the size of FM specified using
standard specifications) by N.

The problem 1-PN-3SAT (problem 3SAT specified using 1-FPN-specifications) is the problem of deter-
mining if a 3CNF formula F*° (U, ) specified by T = (U, C(4)) is satisfiable.

Similarly, the problem 1-FPN-3SAT (problem 3SAT specified using 1-FPN-specifications) is the problem
of determining if a 3CNF formula FM(UM M) specified by T' = (U, C(i), M) is satisfiable.

For each finite set S of finite arity Boolean relations, it is straightforward to extend the above
definition so as to define the problems 1-PN-SAT(S) and 1-FPN-SAT(S) and hence we omit these
definitions. Observe that 1-FPN-specified graphs or formulas can be exponentially larger than their
input specifications.

Example 4: Let F' = (U,C(i),3) be an instance of 1-FPN-3SAT where the set of static clauses are
given by (z1(0) +z2(0) +23(0)) A (x1 (1) +23(0)) A(x3(1) +z2(0)). The set of variables U = {x;, 23,23}
The formula F3(U3, C®) denoted by T is given by

(21(0) + 22(0) + 23(0)) A (z1(1) + 23(0)) A (z3(1) + z2(0)) A\

(@1(1) + 22(1) + 23(1) A (22(2) + 23(1)) A (23(2) +22(1) A\

(21(2) + 22(2) + 25(2)) A (21(3) + 25(2) A (23(3) + 22(2)) N @) +22(3) +23(3)) W

Some instances of problems arising in practice have a periodic specification of the graph or a
formula along with explicit initial and final conditions. We call such periodic specifications as periodic
specifications with boundary conditions (BC). Observe that for 1-PN-specifications boundary conditions
do not make any sense since the expanded graph or the formula is infinite in both directions. Hence
boundary conditions are used to augment only 1-FPN-specifications.

5 PSPACE-completeness of a-3SAT

Theorem 5.1 (1) 1-FPN-3SAT is in NSPACE(n).
(2) There is a linear size quasi linear time reduction from the membership problem for non-deterministic
LBA to the problem 1-FPN-3SAT. Thus 1-FPN-3SAT is PSPACE-complete.

Proof:

Part (1): We first show that the problem is in NSPACE(n) (and therefore in DSPACE(n?)). To show
this, observe that given a 1-FPN-specification I' = (G(V, E), m), a Turing machine needs to maintain
at any given time ¢ only assignments to variables at time ¢ and time ¢ - 1. This is because without
loss of generality we can assume that a clause specified at time t contains variables defined at time %
and ¢ + 1. Hence a polynomial non deterministic linearly space bounded Turing machine can verify
that the instance of 1-FPN-3SAT is satisfiable as follows. At each step ¢ it guesses an assignment to the




variables at grid point ¢ 4 1. It also remembers the assignment to the variables at grid point ¢. Using
these values it verifies that the clauses at time ¢ are indeed satisfied. This proves that given an instance
I’ of 1-FPN-3SAT, we can decide in non-deterministic linear space if the formula G™ is satisfiable.
Part (2): Next, we prove 1-FPN-3SAT is PSPACE-hard. Given a non-deterministic LBA, M, with input
z (where |z| = n), we construct an instance of 1-FPN-3SAT F(z) such that size(F(z) = O(n), and z
is accepted by M if and only if F(z,t,t + 1) is satisfiable. The reduction consists of two phases.
Phase 1: In the first phase, we start with the given LBA M with input 2 = (z1,...,2,) and construct
a new LBA M; which simulates M on z with the following additional properties that

1. if the LBA M does not accept = then each computation of My on z halts within 2°°™ moves, else

2. if the LBA M accepts z then M; has a cycling computation, where the length of an ID never
exceeds O(|z|). '

M; can be constructed easily by adding an auxiliary clock to serve as a counter. M; now just

simulates M. If M enters a final configuration, then My repeats this configuration. Its clear that M;
accepts z if and only if M accepts = and their number of accepting computations is the same. Moreover
it is easy to see that M; has the two desired properties above.
Phase 2: The second phase consists of constructing an instance A ,F(z,t,t+1) of 1-FPN-3SAT by a
polynomial time reduction from M;. Now we know that each ID of the Turing machine M; is of length
O(n), where n is the size of the input. Since M; is non-deterministic LBA we need to consider only
2P gdifferent ID’s for our reduction. (Here D is an appropriately chosen constant.) We can choose an
encoding of states and symbols of M; into words in {0, 1}* so that every ID of M; will consist of c; - nn
boolean variables where n = |z| and ¢; is a constant independent of . Let ID(t) denote the ID of the
Turing machine at time ¢. We also have a set of Dn + 1 boolean variables encoding a counter y(¢). The
counter values range from 0 to 2°". The formula F(z,t,t+1) = fi(z,t,t+1)Afalz, t, t+ DA fs(z, 8, t+1).
We discuss each of the f;(t,t +1),1<i<3.

1. The formula f;(z,t,t + 1) encodes a counter which is given by
Yt +1) = (y(t) +1) (mod 2°P™ +1).

The intended meaning of the equation is that the counter resets after every 2" + 1 time units.
It is easy to see that the counter can be simulated by a CNF formula, in which each clause has
variables that are no more than one time unit apart.

2. The formula fo(z,t,t + 1) enforces the condition that when the counter value is 0, the variables
X (t) encode the starting ID of the Turing machine. Here, start(ID(t)) denotes a CNF formula
which checks if ID(¢) is the initial ID of the machine. Thus f2(¢,¢ + 1) is a 3CNF formula which
encodes the implication (y(f) = 0) = start(ID(¢)).

Again, we can verify that fs(z,¢,t 4+ 1) can be written as a 3CNF formula in polynomial time.
Again by standard techniques it follows that the formula fo(z,t,t + 1) is of size O(n).

3. The formula f3(z,t,t + 1) is needed to ensure that starting at the second ID, each subsequent
ID of M; follows from the previous ID by using the transition function of M;. (Recall that the
notation (X F—fVIY) means that machine M, starting with ID X, can produce the ID Y in exactly
j steps.) Thus f3(t) is a 3CNF formula encoding the following implication.

(1<) <2P™ = (ID(t - 1)FuID()):

The function (ID(¢)FaID(t + 1)) can be expressed by 3CNF formula whose sizes are linear in n
as shown in [Hu73a]. Moreover the 3CNF formula depends on the current value of the counter.




Hence the CNF formula f3(z,¢,t+ 1) is narrow periodic formula, since the clauses at time ¢ would
contain variables only from times ¢ and ¢t + 1.

The expanded finite periodic 3SAT instance is /\t_0 F(z,t,t+1), where N = 22P*_ We now verify that
/\t_0 F(z,t,t + 1) is an instance of 1-FPN-3SAT.

We now prove the correctness of our reduction. If the Turing machine M accepts z then we know
that M; has a cycling computation. Hence by setting d; = 0, we can ensure that f(0) is satisfied. The
consistency condition now forces the formula to be satisfiable

Conversely, assume that the formula is satisfiable. Since D ( and hence N) are sultably large
integers, it is guaranteed that the simulation must be carried out for enough steps so that the Turing
machine M; goes through the sequence d; = 0,d; = 1,d; = 2,---dy = 2P”. This implies that the
formulas f>(t) and f3(t) would be true from then on and therefore the Turing machine M accepts
z. A .

As our next corollary shows, 1-FPN-3SAT is even when restricted to formulas with bandwidth
O(log N). Recall that N denotes the size of the encoding of the expanded formula using standard
encodings.

Corollary 5.2 1-FPN-3SAT is PSPACE-complete even when restricted to formulas with bandwidth O(log V).

Proof: The proof follows by observing that the following numbering scheme yields a O(log ) band-
width layout. Let C(¢) have p clauses. Then number the clauses at time ¢ using numbers from pt to
(p + 1)t. The numbering of clauses at a given time ¢ can be carried out in any arbitrary order. W
Remark: The above corollary in conjunction with local replacement type reductions between problems
specified using standard specifications can be used to prove that several classical graph problems are
PSPACE-hard even for O(log A) bandwidth bounded graphs specified using either 1-FPN-specifications
or strongly 1-level-restricted L-specifications (since the L-specification obtained by the translation the-
orem represents an isomorphic graph (formula}).

Next, we discuss the PSPACE-hardness of the problem 1-FPN(BC)-3SATWP. 1-FPN- 3SATWP (prob- .
lem 3SATWP specified using 1-FPN-specifications) is the problem of determining if a 3CNF formula
FM(UM, CM) which contains at most one negated literal per clause and is specified by T' = (U, C(3), M)
is satisfiable.

Theorem 5.3 The problems 1-FPN(BC)-3SATWN and 1-FPN(BC)-3SATWP are PSPACE-complete by a
linear size quasi-linear time reduction from the membership problem for deterministic LBA.

Proof: We prove the result for 1-FPN(BC)-3SATWN. The proof for 1-FPN(BC)-3SATWP is similar. The
membership of the problem 1-FPN(BC)-3SATWN in NSPACE(n) follows since the problem 1-FPN(BC)-
35AT is in NSPACE(n). To prove that 1-FPN(BC)-3SATWN is PSPACE-hard we give a linear size
reduction from the acceptance problem of a bf deterministic linearly bounded machine. Let ID(t)
denote the instantaneous description of a TM at time time ¢. Given a deterministic LBA M and
input z such that |z| = n we create an instance (F(z,t,t + 1),m) of 1-FPN(BC)-3SATWN, such that
A=V F(x,t,t + 1) is satisfiable if and only if M accepts x. The reduction is similar to one presented
for 1-FPN-3SAT. The formulas encoding (ID(t) & ID(t+ 1)), and start(ID(t)) can be represented by a
weakly negative formula as in [JL77] for UNIT. By negating all literals, we can obtain a weakly positive
formula proving the PSPACE-hardness of L-3SATWP. Let a € {#}UT U (S x T), where T denotes the
tape symbols and S denotes the set of states. Let P2(t) be a boolean variable which means that the

- contents of i** tape cell at time ¢ is a. Observe that for a given value of ¢ the number of variables P2(t)
is O(n). The formula g(z,0) is now represented as

9(,0) = (P{**)(0) A B*(0),.. A PE(0)) \ ( INEEON P,-b<o>>)

a#b

i




The first part represents the condition that the first ID corresponds to the input and the second part
represents the condition that one position cannot contain two distinct symbols. Hence, the above
formula represents the condition that the first 1D is correct. Also observe that since the number of
tape symbols are constant, the size of g(z,0) is linear in the size of the input.

Next, we represent (ID(t)FaID(t + 1)) as follows: Let f: (TU(S xT))® - TU (S x T) be the
finite function such that if positions ¢ — 1, ¢ and ¢ + 1 of the ID(%) contain a, b and ¢ respectively,
then position ¢ of the ID(t + 1) must contain f(a,b, c). The determinism of M ensures that f is single
valued. We express the requirement that ID(t + 1) is appropriately determined by ID(t) as follows:

g(e,t,t+1) 57\n A (P AP APEL®) = PI"(t+1))

i=1 a,b,eeT

which can be written as an equivalent weakly negative formula as follows:

smtir= A A (PLOVEO VPOV B¢ +1)

i=1 ab,ceT

Now, each four literal clauses replaced by equivalent three literals clauses by adding new auxiliary
variables Tf (e.b.c) (). Therefore g(z,t,t + 1) can now be rewritten as

7\ A ((PLOVER VT @) A (TF"0) v @ v P/ +1))

i=1 a,b,ceT

F(z,t,t + 1) = g(z,0) U g(z,t,t + 1). Now let N = 22P», The instance obtain as a result of the
reduction is (F'(z,¢,t + 1), N) The expanded formula is now given as

N

FV(z) = g(z,0) A )\ gz, t,t +1). :
t=0

Again observe that since the number of tape symbols are constant and i varies from 1 to n, the size
of the formula g(z,t,¢ + 1) is linear in the size of the input. Also, observe that representation of N is
of size O(n). Therefore the size of the instance obtained as a result of the reduction is O(n). Now N
is suitably chosen large integer so that the simulation can be carried out for enough number of states.
This completes the proof of the theorem. =

We note by a direct extension of this proof, we obtain the PSPACE-hardness of the problem
1-FPN(BC)-MCVP. Also observe that the monotone circuit value problem makes sense only for 1-
FPN(BC)-specifications. Alos observe that the hardness results discussed above hold for O(logN)
bandwidth bounded instances.

5.1 Hardness of a-SAT(S)

We now show that when Rep(S) denotes the set of all boolean relations, a-SAT(S) is PSPACE-complete.
Recall that Rep(S) is the set of relations that are representable by existentially quantified S-formulas
with constants. Repnyc(S) is the set of relations that are representable by existentially quantified
S-formulas without constants.

Theorem 5.4 If Rep(S) is the set of all finite arity boolean relations, then

(a) the problem 1-FPN-SAT(S) is PSPACE-complete. (b) The problems 1-FPN-SAT(S) and 1-PN-SAT(S)
are in P if each relation in S is O-valid or each relation in S is 1-valid, otherwise the problems 1-FPN-SAT(S)
1-PN-SAT(S) are PSPACE-complete.




Proof: First, we give a polynomial time reduction from 1-FPN-3SAT to 1-FPN-SAT.(S) as follows:
Since Rep(S) is the set of all finite arity boolean relations, for each such S and 3CNF clause ¢, there
is an existentially quantified (but not necessarily constant-free) S-formula f. such that ¢ = [f.]. Again
up to an easy renaming of variables, there are only fourteen such formulae.

Let F be an instance of 1-FPN-3SAT. Obtain a static formula by replacing every clause ¢ with the
existentially quantified (but not necessarily constant-free) S-formula f. such that ¢ = [f.]. For each of
these clauses, let f! be the S-formula (again, possibly with of constants) resulting from f. by deleting
all quantifiers after making sure that all quantified variables are distinct from each other and from all
free variables. Without loss of generality, we assume that, for all clauses c, all variables of f/, that are
not variables of f, are local to f.. We have now obtained an instance F' of 1-FPN-SAT,(S), which is
satisfiable if and only if F' was satisfiable.

Next, we now reduce 1-FPN-SAT(S) to 1-FPN-SAT(S). Let S be a set of nonempty logical relations.
Then as shown in [Sc78] one of the following holds: (1) Every relation in S is 0-valid. (2)Every relation
in S is 1-valid. (3) [z] and [%] are contained in Repnc. (4) [z # y] € Repnc(S). Hence the proof
consists of a case analysis depending on which of above conditions is satisfied by S.

Cases (1) and (2): A logical relation R is 0-valid if (0,...,0) € R. A logical relation R is 1-valid
if (1,...,1) € R. Therefore in both these cases it is easy to see that 1-FPN-SAT(S) and 1-PN-SAT(S)
are polynomial time solvable.

Case (3): [z] and [T] are contained in Repnc.

In this case, we modify F' to obtain F" as follows. We introduce auxiliary variables and replace all
occurrences of 0 by [z(¢)] and replace all occurrences of 1 by [z(2)] and replace all existentially quantified
variables by new variables.

Case (4): [z # y] € Repnc(S).

In this case, each relation in § is complementive. We modify F’ as follows to obtain F". We introduce
two new variables z(t) and y(t) and replace all occurrences of 0 by z(t) and replace all occurrences of 1
by y(t). We then add the S-formulas [z: # yi] A [z: Z re][re Z Teta] Alye Z sel[st # yet1]- to the static
S-formula, and replacing all existentially quantified variables by new variables zq (£), ... z,(t). Since F'-
is complementive, F" is also complementive.

Therefore, we have now obtained an instance F” of 1-FPN-SAT(S), which is satisfiable if and only
if F' is satisfiable. Clearly the hardness of 1-FPN-SAT(S) implies the hardness of the corresponding
problems 1-PN-SAT(S). m

6 Polynomial time solvable subcases

6.1 Solving 1-FPN-3SATWN and 1-FPN-3SATWP

We now consider the problems 1-FPN3SATWP and 1-FPN3SATWN. The polynomial time solvability of
these problems demonstrates the relative hardness of problems (assuming P # PSPACE) when specified
using 1-FPN or 1-FPN(BC) specifications. In particular, while the problems 1-FPN(BC)-3SATWP and
1-FPN(BC)-3SATWN are PSPACE-hard the problems 1-FPN-3SATWN and 1-FPN-3SATWP are in P. (In
the appendix we show how to solve L-specified satisfiability problems when each relation is bijunctive,
1-weakly positive or 1-weakly negative.) The algorithm for solving the problem 1-PN-3SATWP is
relatively easy, due to the following observation: If an instance of 1-PN-3SATWP is satisfiable ther
exists a satisfying assignment that assigns the same value to all the copies of a given variable in the
static formula. This is intuitively true because, in case of 1-PN-3SATWP, whenever we have a clause
of the form z;(t) or x;(t + 1), we have that all the copies of the variable z; have to be set to true (A
similar argument applies for negated clauses). Any algorithm for solving this problem must be more
subtler. This is because in the case of finite instances while a clause of the form z;(t) implies that z;
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Heuristic ALG-AFFINESAT
Input: An L-specification F = (F1,...,Fy) of a SAT(S) formula E(F), such that every relation in S is affine.
Output: Yes if and only if E(F) is satisfiable.

1. Repeat the following steps for 1 < ¢ < n.

(a) Let Fy,,..., F,-,,i denote the non-terminals called in F;. Replace each of the F; ; by the smaller set of equations
Fz.b,, that has been already computed.
Remark: The sizes of F;;, 1 <j < r; is O(n?j).

(b) Let Gi(X?) represent the set of equations over X U Z* obtained as a result of substitution. Here X? is the set
of pin variables of G; and Z* is the set of explicit variables of Gj;.

(c) Using Gaussian elimination, eliminate all the variables which are not in X*, to obtain a set of equations F,.b only
using variables in X*.
Remark:The number of independent equations obtained is no more than | X "| and each equation can have at
most all the variables in X?. Hence the size of F? is O(n).

(d) Check if F} is consistent. If not then output unsatisfiable and Stop.

2. F is satisfiable if F? is consistent.

Algorithm 4: Details of the algorithm to solve L-SAT(S) when every relation in S is affine.

is set to true for time periods, it is not necessarily true if there is a clause of the form =z;(t + 1). Such
a clause does imply anything about the value of the variable z(0) in a satisfying assignment of the
formula. The following example shows that the only way the expanded formula is satisfied is to assign
different values to the copy of a particular variable.

Example 5: Let F = (U,C(t,t + 1),2) be an instance of 1-FPN-3SAT where the set of static clauses
are given by (z1(t) + z2(t + 1)) A (z2(t)) A (z2(t) + 21 (¢ +1)). The set of variables are U = {z1, 22,23}
The formula F1(U?,C?) denoted by T is given by

(1(0) + z2(1)) A (32(0)) A (21(1) + 72(0)) /\

(@1 (1) + 22(2)) A (22(1)) A (21(2) + 22(1)) \(22(2))

By inspection it is clear that whenever z1(0) = z1(1) = 1(2) and z2(0) = z3(1) = 22(2) cannot
satisfy the formula F2. But, 25(0) = z3(1) = z2(2) = False , 21(0) = True and z,(1) = z,(2) = False
satisfies the formula F2. m

Example 5 suggests that for designing a polynomial time algorithm for solving 1-FPN-3SATWP
should distinguish the between a copy of the variable at time ¢ = 0 and the copy of the same variable
at time ¢ > 0. Algorithm 2 outlines the method to solve the problem. In describing the algorithm and
its proof, we use v[z;(#)] to denote the value assigned to the variable z;(¢). The proof of correctness is
omitted due to lack of space.

6.2 Solvability of a-SAT(S) for affine relations

We consider the complexity of a-SAT(S) when every relation in S are affine. The logical relation R is
affine if R(z1,zs2,...) is logically equivalent to some system of linear equations over the two-element
field Z,. Algorithm 4 gives the method for solving this problem in polynomial time.

Acknowledgement: We thank Professors Ken Regan and Eric Allender for constructive suggestions
on an earlier draft of this paper. We also thank Sandeep Shukla for his help during the course of writing
this paper.
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Heuristic ALG-1-FPN-3SATWP
Input: A 1-FPN-specification (F(U,C(t,t + 1),m) of a 3SATWP formula F™. Here U = {z1,...,Zn} denotes the set
of variables in the static formula.
Output: Yes if and only if F™ is satisfiable.
1. flag = 0 and satisfy = -1. Let D(t) = ¢. Also let r = {t,t+ 1} and j = 0.
2. Repeat until flag =1

(a) If zi(r) € C(t,t + 1) and z;(r) € C(t,t + 1), then set flag = I and satisfy = 0. Return to Step 4.

(b) ¥z;(t+1) € C(t, ¢t +1) and z;(t + 1) € C(t,¢ + 1), then set flag = I and satisfy = 0. Return to Step 4.

(c) If all clauses in F contain a positive literal or all clauses in F' contain a negative literal then satisfy = 1 and
flag = 1. Go to Step 3.
Remark: An assignment of the form v[z;(r)] = 1, Vz; € C(t,t+ 1), t < r < t+ 1 satisfies the clauses in
AYZTC(t,t + 1). Therefore, we only need to verify that D(£) is satisfiable.

(d) else

i. If there is a single literal clause F(t), 1 <i < n then do
A t<r<t+1,set v[z;(r)] = 0.
B. If there is a clause in D(t) that contains ;{(—7:7, then delete the clause. Similarly, delete all occurrences of
z;(r) from all the clauses in D(t).
ii. else
A. Pick a single literal clause m

Remark: Existence of such a clause follows from (i) the definition of 3CNF weakly positive formula, and
(ii) Conditions for executing Steps 2(c) and 2(d) are not satisfied.

B. Set v[z;(t+1)] = 0.
Remark: Existence of a clause z;(¢ + 1) implies that for the formula F*° to be true, 0 <t <m, v{z;(t +
1)] = 0. This does not force an assignment for z;(0).

C. Set D(t) = D(t) U Cly(y), where Cly(;) denotes the set of clauses containing z(t). If there is a clause in-

D(t) that contains z;(t + 1), then delete the clause. Similarly, delete all occurrences of z; (¢ + 1) from all the
clauses in D(t).

Remark: 0 < ¢ <m, =z;(t+1) € C™ implies that if F° is satisfiable, then 1 <t <m, v[z;(t)] =0.
iii. Let Nz;(¢,t+ 1) C C(t,t+ 1) denote the set of clauses containing z;(r). Also, let Pz, (t,t+1) C C(t,t+ 1)
denote the set of clauses containing z;(r). Modify Py, (t,t+ 1) by deleting the literal x;(r) from each of the
clauses in Pz, (t,t +1). Let Py (t,¢+ 1) denote the resulting set of clauses.

iv. Ct,t+1) =(C{t,t+1) — Nz, (8, +1) — Py (t,t + 1)) U P, (1, 1+ 1).
Remark: Delete all clauses containing the occurrence of the variable z;(r) and for all clauses which contain
z;(r) delete it from the clause.

v. j=j+1
Remark: The formula F*° as a result of modification is given by
Ff° = Ff2  (v[zs(®)] = 1, 1 < ¢ Sm)UD() — (AeNo, (6,8 + 1)) = (AePa, (8,8 + 1)) U (AN, (8¢ + 1))
(e) If the formula F = ¢, then set satisfy = I and fleg = 1.
3. Instantiate £ = 0 for all the variables in the clauses in D(t). Check if the clauses in D(t) are satisfiable. If D(0) is

satisfiable then salisfy = 1 else satisfy = 0.
Remark: All the clauses in D(0) contain variables only from time 0.

4. Output Yes if and only if satisfy = 1.

Algorithm 2: Details of the algorithm to solve an instance of 1-FPN-3SAT1WP.
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Appendix

7 Translation Theorem

Theorem 7.1 Thereis a polynomial time transformation TFORM, that maps a 1-FPN(BC)-specification
I = (G(V, E), m) of the graph I'"™ to a strongly 1-level-restricted L-specification I'; of a graph, such that
the graphs represented by I" and I'; are isomorphic and size(T';) = (size(T'))?.

Proof: Given a 1-FPN-specification I' = G(V, E) of G™ we construct a L-specification Hg = (Hy, - -- Hp)
as follows. The non-terminal H; consists of four copies of G (i.e. G*). They are connected in series as

shown in Figure 1(a),

Non-terminal H;, 2 < i < n: Asssume that the periodic graph is of the form G**. The non-terminal

H; consists of five components I;, r;, m;, H;_1, H;—;. Each of [;, r; and m; consists of at least 2 copies”
of G (G?) attached in a manner as shown in the Figure 1(b). Each H;_; recursively encodes G?, We

need to ensure that for each recursive call p is even, thus we need to adjust the sizes of the components

l;, r; and m; accordingly. The H;_;’s are connected to the components I;, r; and m; as shown in

Figure 1(b). The condition that each H;_; should have even number of copies of G implies that the

construction should satisfy the following constraints.

[l il Imal 22, p=2m, 2m+2m+ ||+ |ri| + |ms| = 2k

The first constraint is needed so that the resulting specification is 1-level-restricted. The second
equation says that p is even. The third equation says that the size of the components total number of
copies is no more than 2k, which is the size of the graph we want to encode. It is clar that the sizes of
l;, r; and m; can be chosen so that the above equations can be satisfied. It is now easy to see that the
process can be carried out recursively to obtain the required specification H in polynomial time. ®

Observe that a similar transformation can be carried out if we start with a 1-FPN(BC) speci-
fied graph G. In such a case the graphs which specify the boundary conditions are included in the
highest non-terminal. Also, observe that a similar transformation can be carried out to transform a
1-FPN-specification T' = (U, C(%),m) of a formula I'™ to an L-specification I'; that specifies a formula
isomorphic to I'™

Corollary 7.2 There is a polynomial time, O((size(T))?) size transformation that maps a 1-FPN(BC)-
specification I' = (U, C (), m) of the formula I'™ to a strongly 1-level-restricted L-specification I'; in such
a way that the formulas represented by I' and. T"; are isomorphic.
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7.1 Solvability of a-2SAT, a-3SAT1IWN and o-3SAT1WP

‘We now discuss the polynomial time solvability of the problems a-2SAT, a-SAT(S) when every relation
in' S is bijunctive and finally the problems a-3SAT1IWN and a-3SAT1WP. Our algorithms are based on
the work of Davis and Putnam [DP60], who gave a polynomial time algorithm to solve the problem
2SAT. We first recall additional definitions from [Sc78].

The logical relation R is bijunctive if R(z;,%2,...) is logically equivalent to some CNF formula
having at most two literals in each conjunct.

The logical relation R is complementive if it is closed under component-wise complement, that
is, for all (a1,-..,am), if (a1,-..,am) € R, then (1 —ay,...,1 — ay,) € R. The logical relation R is
1-weakly positive if R(z1,Z2,...) is logically equivalent to some CNF formula having at most one
negated variable in each conjunct, such that any clause with a negated literal has no more than 1
unnegated literal. The logical relation R is 1-weakly negative if R(x1,2,...) is logically equivalent
to some CNF formula having at most one unnegated variable in each conjunct, such that any clause
with an unnegated literal has no more than 1 negated literal.

We first review the method of Davis and Putnam[DP60] to eliminate clauses and variables. These
rules can be used on any 3CNF formula and are described in Algorithm 3.

Lemma 7.3 Let Step (3) in Algorithm 3 be applied to eliminate a variable v in a 3CNF formula F to
obtain a new formula F'. Then, F’ can be converted into an equivalent 3CNF formula in polynomial time
if one of the following conditions hold:

(a) the formula F' only contains 2 literal clauses.

(b) F'is 1-weakly positive.

(c) F is 1-weakly negative.

Proof: Given the 3CNF formula F' with the variable v, collect the clauses in which v appears negated,
collect the clauses in which v appears unnegated and collect the clauses in which v does not appear.
Factor v from the set of clauses in which v appears unnegated and express this set as v A A where A°
is also a CNF formula. Factor ¥ from the set of clauses in which v appears unnegated and express this
set as T A B where B is also a CNF formula. The set of clauses in which v does not appear is a CNF
formula, R. Thus F = (AVv)A(BV7)AR, where A, B, and R are CNF formulae which are free of v.
Then F is satisfiable iff F' = (AV B) A R is satisfiable.

We now consider three cases in which F' can be expressed as an equivalent 3CNF formula in
polynomial time.
Case 1: F'is a 2CNF formula. :
In this case, A and B are CNF formulas in which each clause has 1 literal. Let A = uqy Aus A ... A ug
and B = v3 Avg A... Ay where u; and v; are literals. Then (A V B) can be expressed as a 2CNF
formula with all clauses of the form (u; Vv;),1 < i <k,1< j <!I. Hence F’ can also be expressed as
a 2CNF formula.
Case 2: F is a 1-weakly positive formula.
In this case, A is a CNF formula in which each clause either has at most 2 unnegated literals or 1
negated literal. Similarly, B is a CNF formula in which each clause has either has at most 1 unnegated
literal and has no negated literals. Let A=ci AcoA...Acy and B =c| AchA...Ac] where each ¢; is
of the form (u; V u}) or %3, and each ¢} is of the form v;. Here u;, u} and v; are variables. Then (AV B)
can be expressed as a 1-weakly positive 3CNF formula with all clauses of either of the form (T; V v;)
or of the form (u; V u, Vv;) for 1 <i <k,1 < j <I. Hence F' can also be expressed as a l-weakly
positive 3CNF formula.
Case 3: I is a 1-weakly negative formula.
This case can be handled similar to Case 2 except that each clause in A has either at most 1 negated
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Procedure Clause-Elimination
Input: A 3CNF formula F such that one of the conditions in Lemma 7.3 hold.
Output: Yes if and only if F is satisfiable.

1. Set flag = false and satisfy = 0
2. While F is empty or flag = done do

(a) If F contains one literal clauses then do

i

If a formula F in CNF contains a variable v as a one literal clause and also contains 7 as a one htera.l clause,
then F is unsatisfiable. Set flag = done.

. If case (a) does not apply, and a variable v appears as a clause in a CNF formula, then one may modify F by

deleting all clauses that contain v unnegated, and deleting all occurrences of ¥ from the remaining clauses, to
obtain a new formula F which is satisfiable if and only if F' is satisfiable.

iii. Set F = Fy. If F is empty then set flag = done; satisfy = 1.
. If case (a) does not apply, and T appears as a clause in a CNF formula, then one may modify F by deleting

all clauses that contain 7 unnegated, and deleting all occurrences of v from the remaining clauses, to obtain
a new formula which is satisfiable if and only if F is satisfiable.

Set F = Fy. If F is empty then set flag = done; satisfy = 1.

(b) If a variable v occurs only unnegated in a formula F or if v occurs only negated, then all clauses which contain
v may be deleted. The new formula obtained is satisfiable if and only if F is satisfiable. If the new formula is
empty, then F is satisfiable.

(c) Eliminating variables:

i

iii.

iv.

Let A; denote the formula which is a conjunction of clauses in F' which contain ». Then A is obtained from
Ai by deleting v from each clause in A;. Similarly, B be the formula which is obtained after deleting from
each clause in Bj the occurrence of 7.

. Let R be a conjunction of clauses which neither contain v nor v. Then the original formula F' can be put in

the form: (AVv) A(BVT)AR.

Remark: F is satisfiable if and only if (A vV B) A R is satisfiable.

Convert (A V B) A R into an equivalent 3CNF formula F; as outlined in Lemma 7.3.

Remark: The formula (AV B) A R can be converted back into 3CNF by using the laws of distributivity if the
formula F only contains 2 literal clauses or if F is 1-weakly positive or if F" is 1-weakly negative as shown in
Lemma 7.3.

Set F = Fy.

3. If satisfy = I then return Yes
else return no.

Algorithm 3: Details of the Davis Putnam algorithm to eliminate variables.

literals and no unnegated hterals and each clause in B has at most 2 negated literals or at most 1
unnegated literal. H

Solving a-2SAT and is variants

We now prove the polynomial time solvability of the problems L-25ATand L-SAT.(S), when every
relation in S is bijunctive. The procedure is described in Algorithm 4.

Proof of Correctness

Consider an instance of L-2SAT. Let the formula be of the form F = (F},..., F,,) where each F; is a
formula consisting of calls to F;j(1 < j < i) and a 2CNF formula f;. For each F;, the 2CNF formula F7,
obtained in Step 1(c) of the Algorithm 4 has the following properties.

1. F; is satisfiable if and only if F? is satisfiable.

2. F! which is a 2CNF formula which depends only on its input variables X*.
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Heuristic ALG-L2SAT
Input: An L-specification F = (Fi,...,F,) of a 2SAT formula E(F).
Output: Yes if and only if E(F') is satisfiable.

1. Repeat the following steps for 1 <i < n.
(2) Let F;,,...,F;, denote the non-terminals called in F;. Replace each of the Fi; by the smaller set of
equations F}, that has been already computed.
Remark: The sizes of F;, 1 <j < kis O(nfj).
(b) Let Gi(X*) represent the set of 2CNF clauses over X* U Z* obtained as a result of substitution.
(c) If (i< n) do

e Eliminate the variables which are not input variables to F; using the method of Davis and Putnam
to remove one literal and two literal clauses to obtain F.
Renmark: The variables of F? are the input variables of F; and the size of F? is bounded by
polynomial in the number of the input variables of F;. This is because the number of distinct 2CNF
clauses is on n variables is O(n}).

else

e Output Yes if and only if the formula G, is satisfiable.

2. Qutput H = (Ha, ..., Hy) as the L-specification of the satisfying assignment to the variables.

Algorithm 4: Details of the algorithm to solve L-2SAT.

3. The size of F? is poljrnomial in the size of the input specification.

Theorem 7.4 1. Given an instance F' = (F7,... , Fy) of the problem L-2SAT, the algorithm ALG-L-
2SAT decides in polynomial time if F is satisfiable.

2. There is a polynomial time algorithm for solving the problem L-SAT(S) when every relation in S is
bijunctive.

Proof:
Part (1): Follows from the Observations 1, 2 and 3 and Algorithm 4.
Part (2): If every relation in S is bijunctive, then any instance of L-SAT(S) or L-SAT.(S) can be
expressed as an instance of L-2SAT in polynomial time. =

We now consider the problems a-3SATIWN, a-3SAT1IWP and those a-3SAT(S), when every relation
in S is 1-weakly positive or every relation in S is 1-weakly negative. We first prove a technical lemma
about representing every 1-weakly postive or 1-weakly negative relation as a 1-weakly postive or a
1-weakly negative formula respectively.

Lemma 7.5 Every 1-weakly positive relation can be expressed as an existentially quantified 3CNF formula
in which each clause is 1-weakly positive. Every 1-weakly negative relation can be expressed as an existentially
quantified 3CNF formula in which each clause is 1-weakly negative.

Proof: We consider the case of a 1-weakly positive relation. This relation can be expressed as a CNF
formula in which each clause has at most one negated literal. Moreover, any such clause with a negated
literal has no more than 1 unnegated literal. Observe that by preceeding discussion it is clear that
each clause with more than 3 literals only has unnegated literals. For each such clause (with at least 3
literals), ¢ = (v Vw2 V...V v;), we replace ¢ with a existentially quantified formula f. defined as

fe=(Vy)AGEVvaVy) A (%V v3Vys)...A T2 V=1 Vyr—1) A Te—1 V &)
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Heuristic ALG-L3SAT1IWP
Input: An L-specification F = (F1,...,F;) of a 3SAT1WP formula E(F).
Output: Yes if and only if E(F') is satisfiable.

1. Repeat the following steps for 1 < ¢ < n.
(a) Let F,,...,Fi, denote the non-terminals called in F;. Replace each of the Fi; by the smaller set of

equations F,-'} that has been already computed.

" Remark: The sizes of F;,1<j<kis O(n:-t.). The resulting formula is a 1-weakly positive CNF
formula whose size is polynomial in the original representation of F;.

(b) Let Gi(X*) represent the set of clauses over X* U Z* obtained as a result of substitution.
(c) If(i<n)do

o Eliminate the variables which are not input variables to F; using the method given in Algorithm 3.
The 1-weakly positive CNF formula obtained after this step is Fy.
Remark: The variables of F? are the input variables of F; and the size of F? is polynomial in the
number of the input variables of F;.

else

e Output Yes if and only if the formula G, is satisfiable.

2. Output H == (Hy,..., H,) as the L-specification of the satisfying assigment to the variables.

Algorithm 5: Details of the algorithm to solve L-3SATIWP.

such that the y; are existentially quantified. By direct inspection, we get that given an assignment to
the variables v;, 1 < ¢ < k, this assignment satisfies ¢ if and only if the assignment can be extended to
an assignment to the existentially quantified variables y; which satisfy the formula f.

A 1-weakly negative 3CNF formula can be obtained in a similar fashion from a 1-weakly negative
relation. W -

Theorem 7.6 1 The problems L-3SAT1WN and L-3SAT1IWP are in P.

2 The problems L-SAT(S) and L-SAT(S) are in P if every relation in S is 1-weakly positive or every relation
in S is 1-weakly negative.

Proof Sketch: ;

Part (1): It is easy to see that Algorithm 5 indeed decides in polynomial time whether an instance
of L-3SAT1IWP is satisfiable. This is because we are merely mimicking the algorithm outlined for the
same problem when instances are specified using standard specifications.

Part (2): If every relation in S is 1-weakly positive, then any instance of L-SAT(S) or L-SAT.(S) can be
expressed as an instance of L-3SAT1WP using Lemma 7.5. Similarly, if every relation in S is 1-weakly
negative, then any instance of L-SAT(S) or L-SAT,(S) can be expressed as an instance of L-3SATIWN
using Lemma 7.5. ®

8 Applications

8.1 Planar Satisfiability and Graph Problems

We first show that the problem 1-FPN-PI3SAT is PSPACE-complete. To do this, we introduce some
additional notation. By the proof of Theorem 5.1, we know that the instance of 1-FPN-3SAT instance
has the following property: A clause defined at time ¢ is is made up of literals defined at times ¢ and
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Figure 2: Schematic Diagram showing how to obtain an instance of 1-FPN-PI3SAT. (a) Schematic
diagram of the bipartite static graph. The black dots represent the variables and the ellipses represent
the clauses. The dotted circles denote the crossovers which are replaced by crossover boxes. The squares
denote the placeholders for variables at the next time unit. The variables and clauses are knitted as
shown by a dotted cycle. (b) Part of the expanded 1-FPN-PI3SAT instance. The small squares in time
t are replaced by the corresponding actual variables (represented by black dots) defined in next time
unit. We have left the squares and black dots representing the variables to illustrate the way they will
be glued.

t + 1. Now, given an instance of F' of 1-FPN-3SAT (i.e. the static formula), we define a extended
static bipartite graph G(V, E) associated with F as follows: V = U(t) UU (¢ + 1) UC(t), where U (%)
corresponds to the set of variables defined at time ¢, C'(t) corresponds to the set of clauses defined at
time ¢ and U(¢ + 1) corresponds to the set of variables defined at time (¢ + 1). ‘

E{(c,a)|lc € C(t), a € UF)UU(t+ 1) and a appears in the clause c}. One can think of U(t + 1)
as a set of place holders for the variables defined in the next time unit. Hence the essential difference
between the standard static graph and the one defined here is that instead of having weights on the
edges corresponding to the period of the edge, we have two copies of the variable vertices in each period.

Now, given an instance (F,m) of 1-FPN-3SAT, we obtain an instance (F1,m) of 1-FPN-PI3SAT as
follows. _

Step 1: Construct an extended static bipartite graph G associated with F'.

Step 2: Next, lay out the vertices U(t) U(t + 1) and C(t) such that the following conditions hold:
(a) The vertices in U(t) all lie on a distinct vertical line and are at integral coordinates. Similarly,
the vertices in U(¢ + 1) and C(¢) all lie on a vertical line and are at integral coordinates. The relative
positions of these vertical lines on which the variables in U(¢) U(t+1) and C(¢) is as depicted in Figure
2. . .

(b) Draw the edges between U(t) and C(t) so that they are made up of horizontal and vertical segments
and all the edges lie inside the cycle ( shown in dotted lines) knitting the variables in U(t) and the
clauses in C(t). A similar procedure is carried out for edges between U(t + 1) and C(2).

Step 3: Remove all the crossovers (marked in the Figure 2 by dotted circles) by using Lichtenstein’s
crossoverbox. (Observe that the removal of with at most one negated literal per clause static bipartite
grap static bipartite graph.)

The resulting formula F; has the property that the F{™ is satisfiable if and only if F™ is satisfiable.
The construction gives rise to a new bipartite graph G which can be obtained from G in polynomial
time. Moreover the graph G7* (obtained by expanding Gy as shown in Figure 2(b) is planar. This is
because the ordering of variables in U(¢) and U(t + 1) is consistent and hence when we identify the set
of variables U(t + 1) with the set of variables U in the next time unit, the ordering does not change.
This completes the proof of the theorem. =
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