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Research Motivation

— Interest in cloaking structures and materials
— Electromagnetic cloaks use coordinate transformation methods
— Difficulty in translating these solutions to acoustic wave energy
management
— Proposed media for acoustic cloaks require extraordinary properties
— Radially varying anisotropic mass density and bulk modulus
— Elastic acoustic metamaterials provide candidate for more-easily realized
acoustic cloaking material
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Research Motivation

— Select materials that provide optimal vibration control through large scale PDE
constrained optimization
- Many engineering systems use viscoelastic media to control vibration
environments
— Current engineering practice ‘ad hoc’ in the design of foam materials for
damping
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Governing Acoustic-Structural
Interaction
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Frequency-Domain Governing Equations for Coupled
ASI Problem

Coupled PDE’s for ASI govern system behavior and provide constraints for optimization

Elastodynamics Scalar Helmholtz Eqn. in Fluid
—w?psu—V -0 =0 in Qg —k%) — A =0 in Qp
o= (bDy,+GDg¢) : € Vi -n=—psv, on I'nF
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Coupled Boundary Conditions
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Weak Form of Governing Equations

Find the mapping (u, ) — Vs(2s) x V¢(2) such that:

—wz/ psuwdﬂ+/ J:VSwdQ—/ o, wds
Qg Qg 'w

= fwdf)
Qs

—k? DoddQ) + V) - VodQ + / a—wqbds

Qp Qp T on

— /FNF g—igbds

Vw € Vg, 0 € Vy




Discrete Coupled ASI Equations

e Introduce discretization of structural displacements & velocity potential:

Nsdo f

U = Z NACA, Ny € Qs,CA € R"sdof
A

Nfdof

772: Z NBdB, NBEQF,dBERndef
B

e Discretized coupled weak form equation represented as:

(2]9)-

:<[K50(p) _K(J)‘"/pf]—i_iw[g; —C?/pf]_wzlﬂgs Mf/ﬂf])[g]_[;ﬂ

=0
o {K;,C,,M,} = Structural Stiffness, Damping, and Mass Matrices
o {K;,C;,M;} = Fluid Stiffness, Damping, and Mass Matrices

e L. = Coupling Matrix
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Design Variables

e Represent spacial distribution of material moduli with design variable p

e Generalize material as viscoelastic, with frequency-dependent complex

bulk and shear moduli, {b, G}:

b(wv (E) — bR(wvw) + b](CU, CB)
Gw,x) =Gr(w,x) + Gr(w, x)
D = {GRabR7G17bI}

e Structural stiffness matrices depend on material distribution:
K, = / BT DBd"
Q

= BT(GRDG -+ bRDb)dQ - ’L/ (G]DG O b_be)dQ
Qs
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Least-Squares Minimization Design Approach

Objective Function: Least-squares residual between computed and desired physical
fields, with regularization term for design variable

K

J(v,p) =5 (0"~ ) [Q](v" ~ v)

o v ={u,1p} € C¥fd State Variable

o v? = Target data, € C3¢+/4

e p = Design variable, € C%®

e [)] = Boolean measurement location matrix
e sd = Structural d.o.f.

e fd = Fluid acoustic d.o.f.

DUke e dv = Discrete design variable dimension @ ﬁaa%gi:a |
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Optimization Formulation

— Define the minimization problem:

minimize J (’U, p) Objective Function
v,p
SUbjeCt to g (’U’ p) — 0 with PDE constraint ( structural-

acoustic Helmholtz equation) + design

G 1 < pa < Gu variable bounds
b < pp < by

— Bounds on placed on design variables to restrict to realistic values:
— Gradient-based optimization implementation in Rapid Optimization
Library/Sierra SD
— Numerical optimization using Newton-Krylov methods with Trust-
Region Search
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Optimality Conditions

— Define a Lagrangian, where w 1s a vector of Lagrange multipliers:

L(u,p,w) =T (u,p) +w' g(u,p,w)

— KKT Conditions require:
T
Lu ju 1 gu w
__ 1l 0
Ly p=1 Jptg,w =0
Loy g
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Reduced Space Formulation

— Consider state variable v as a function of the design parameter p to define:

J(p) = J(v(p), p)

— Newton Step Optimization Process:

g — 0 Compute state vector u
T
g, w = — j U Solve for adjoint vector w
/
J =, D + g T’UJ Calculate reduced gradient

J ( p) Evaluate Reduced Objective
H Ap =7 / Solve for Newton Step with
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Numerical Results

— 2-D fluid region with circular VE solid inclusion

— Inclusion consists of concentric rings w/ distinct material properties

— Harmonic acoustic pressure load applied to I'yg

— Match forward problem pressure distribution by adjusting VE material parameters

Ic

Ic

Left: Model Set up
Right: Finite element model mesh, with 50 layers,r = 0.25 m



Initial Guess and Optimization Bounds

— Initial guesses approximate a nearly-incompressible viscoelastic material, similar in magnitude
to rubber
— Bounds selected to provide realistic damping/elasticity ratios

Modulus Initial Lower Bound Upper Bound

br 5e+08 1le+08 le+10
br le+03 le+02 le+05
Gr le+06 le+05 le+07
Gy le+03 le+02 le+05
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Acoustic Cloaking

— Optimized VE foams allow recovery of desired pressure distribution

Forward Initial Guess Optimized

\ /4

Left: Target acoustic pressure distribution, from forward problem
Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)
Right: Pressure distribution after convergence to optimized design



Solutions at Different Frequencies

— Optimized VE foams allow recovery of desired forward pressure distribution at

variety of frequencies
— Top : Acoustic pressure from forward analysis
— Bottom : Acoustic pressure around optimized solid inclusion
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Bulk Modulus Variation

- Bulk modulus sensitive to frequency, and varies nontrivially along disk radius
- Results suggest radially graded dispersive, elastic material can serve as acoustic cloak
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Figures: Real component of bulk modulus along radius, for various frequencies
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Shear Modulus & Damping Components

* A constant shear modulus shown to be effective in achieving cloaking behavior
* Minimized lossy components shown to be important for cloaking behavior

* Imaginary components remained at initial values in optimized solution

* Eliminating lossy components (Setting G, = b, = 0) can improve objective

Table 1: Comparison of Objective Function Values for Post-Processed Modulus
Distributions (1200 Hz Example)

Case Objective Value
Initial Guess 6.1041e-01
Optimized Solution 8.6274e-05
Averaged G 8.9483e-05
Constant Gr/bg = le-3 8.9732e-05
Gr=br=0 8.9905e-05
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Multi-frequency Elastic Solution

— Single elastic distribution can minimize reflection for extended bandwidth of
frequencies
— Solution for 1200 Hz evaluated over extended frequency range

1000 Hz 1600 Hz 1800 Hz 2000 Hz

Top: Target acoustic pressure distribution, from forward problem

Bottom: Acoustic pressure field for each frequency from single elastic distribution
solution



Conclusions

— Abstract formulation for viscoelastic material design via numerical optimization
— Variation of purely elastic properties allows material to cloak itself from incident
acoustic pressure for individual frequencies and frequency bandwidths
— Bulk modulus is sensitive to radial variation for different frequencies
— Generally observe decaying modulus values towards center of disk
— For certain frequencies, appear to match impedance of surrounding
fluid
— Shear modulus generally insensitive; averaged shear modulus sufficient for
cloaking behavior
— Imaginary components need to be minimized for cloaking behavior
— Decrease of imaginary components has no effect on objective; increase

of imaginary components worsens performance
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