

Design of Continuously Graded Elastic Materials for Acoustic Cloaking

Clay Sanders ^a, Wilkins Aquino ^a, Timothy Walsh ^b

^aDuke University, Department of Civil & Environmental Engineering

^bSandia National Laboratories, Albuquerque NM

US National Congress on Computational Mechanics, Montreal, Canada

July 17-20, 2017

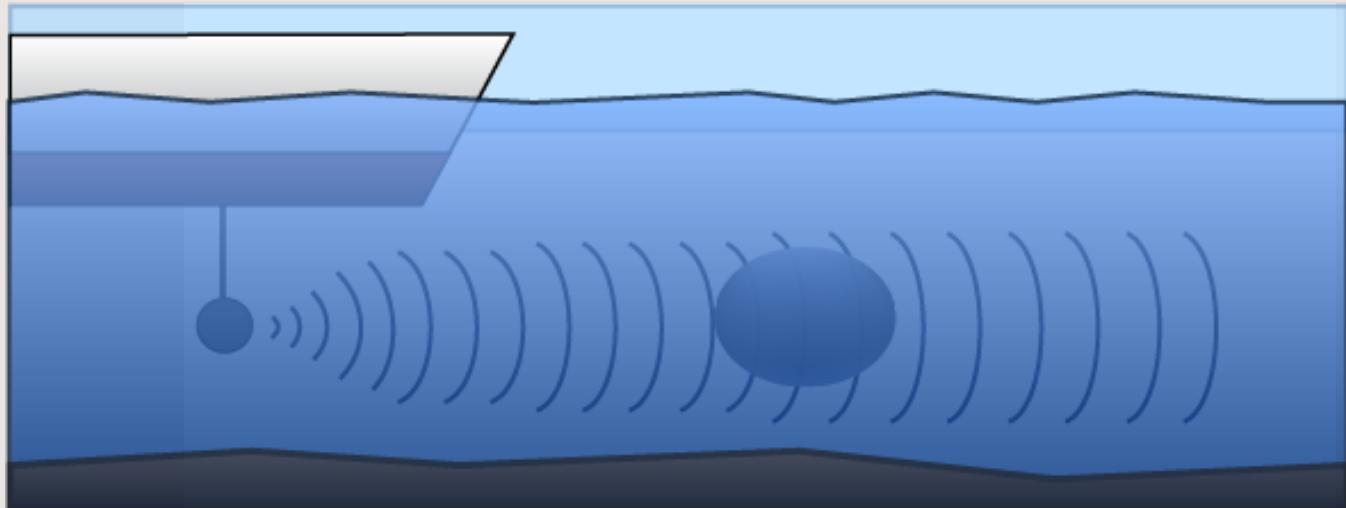
Sandia National Laboratories, Albuquerque, NM. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, C.A., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Outline

- Research Motivation
- Problem Formulation
 - Governing acoustic-structural interaction
 - Abstract Optimization Formulation
- Numerical Results
 - Frequency-specific design
 - Extended frequency range support
- Conclusions & Questions

Research Motivation

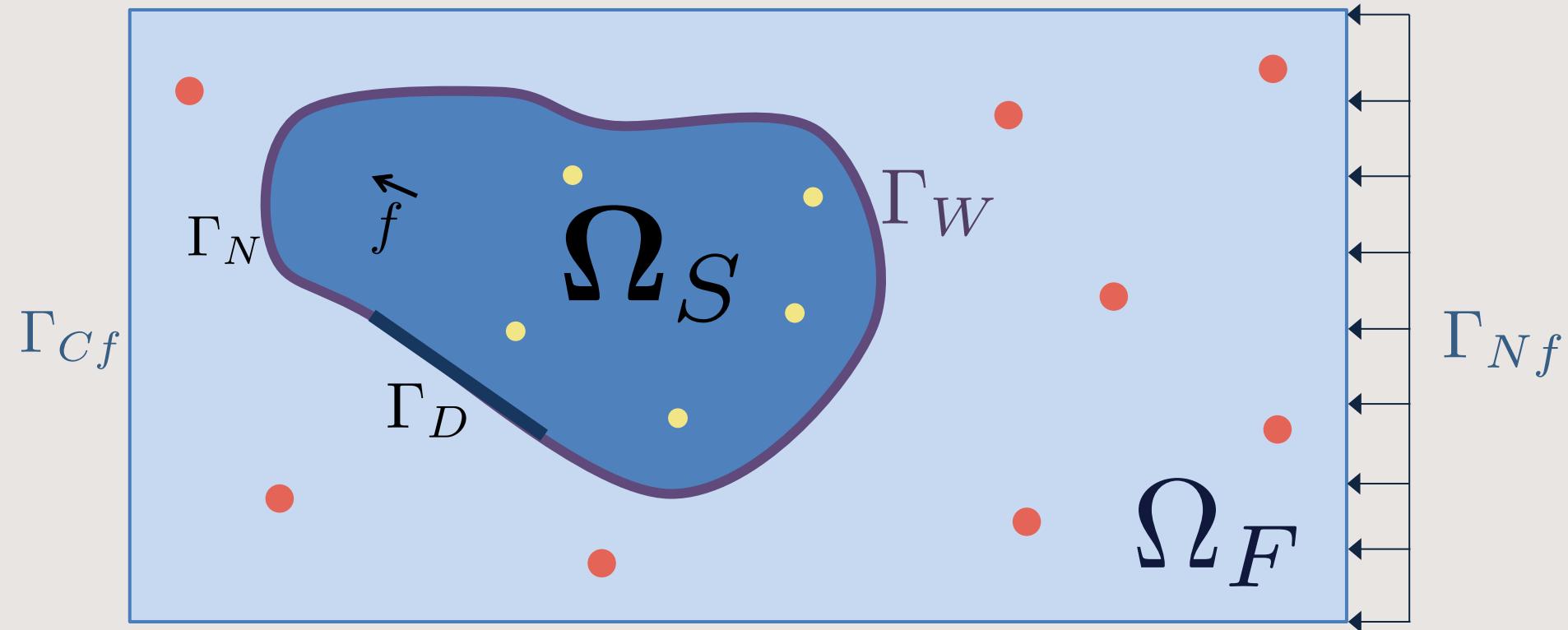
- Interest in cloaking structures and materials
 - Electromagnetic cloaks use coordinate transformation methods
 - Difficulty in translating these solutions to acoustic wave energy management
- Proposed media for acoustic cloaks require extraordinary properties
 - Radially varying anisotropic mass density and bulk modulus
- Elastic acoustic metamaterials provide candidate for more-easily realized acoustic cloaking material



Research Motivation

- Select materials that provide optimal vibration control through large scale PDE constrained optimization
 - Many engineering systems use viscoelastic media to control vibration environments
 - Current engineering practice ‘ad hoc’ in the design of foam materials for damping

Governing Acoustic-Structural Interaction



(● ○) = Measurement locations (Red: microphones, Yellow: accelerometers)

Frequency-Domain Governing Equations for Coupled ASI Problem

Coupled PDE's for ASI govern system behavior and provide constraints for optimization

Elastodynamics

$$\begin{aligned}-\omega^2 \rho_s \mathbf{u} - \nabla \cdot \boldsymbol{\sigma} &= \mathbf{0} \text{ in } \Omega_S \\ \boldsymbol{\sigma} &= (b \mathbf{D}_b + G \mathbf{D}_G) : \boldsymbol{\epsilon}\end{aligned}$$

Scalar Helmholtz Eqn. in Fluid

$$\begin{aligned}-k^2 \psi - \Delta \psi &= 0 \text{ in } \Omega_F \\ \nabla \psi \cdot \mathbf{n} &= -\rho_f v_n \text{ on } \Gamma_{NF} \\ \nabla \psi \cdot \mathbf{n} &= -ik\psi \text{ on } \Gamma_C\end{aligned}$$

Coupled Boundary Conditions

$$\begin{aligned}\frac{\partial \psi}{\partial n} &= -\rho_f v_n \text{ on } \Gamma_W \\ \boldsymbol{\sigma} \cdot \mathbf{n} &= -\psi \mathbf{n} \text{ on } \Gamma_W\end{aligned}$$

Weak Form of Governing Equations

Find the mapping $(\mathbf{u}, \psi) \rightarrow V_s(\Omega_s) \times V_f(\Omega_f)$ such that:

$$\begin{aligned} -\omega^2 \int_{\Omega_S} \rho_s \mathbf{u} \mathbf{w} d\Omega + \int_{\Omega_S} \boldsymbol{\sigma} : \nabla^s \mathbf{w} d\Omega - \int_{\Gamma_W} \sigma_n \mathbf{w} ds \\ = \int_{\Omega_S} f \mathbf{w} d\Omega \\ -k^2 \int_{\Omega_F} \psi \phi d\Omega + \int_{\Omega_F} \nabla \psi \cdot \nabla \phi d\Omega + \int_{\Gamma_W} \frac{\partial \psi}{\partial n} \phi ds \\ = \int_{\Gamma_{NF}} \frac{\partial \psi}{\partial n} \phi ds \end{aligned}$$

$$\forall \mathbf{w} \in V_s, \phi \in V_f$$

Discrete Coupled ASI Equations

- Introduce discretization of structural displacements & velocity potential:

$$\hat{\mathbf{u}} = \sum_A^{n_{sdof}} \mathbf{N}_A \mathbf{c}_A, \quad \mathbf{N}_A \in \Omega_S, \mathbf{c}_A \in \mathbb{R}^{n_{sdof}}$$

$$\hat{\psi} = \sum_B^{n_{fdof}} \mathbf{N}_B \mathbf{d}_B, \quad \mathbf{N}_B \in \Omega_F, \mathbf{d}_B \in \mathbb{R}^{n_{fdof}}$$

- Discretized coupled weak form equation represented as:

$$\begin{aligned} \mathbf{g} \left(\begin{bmatrix} \hat{\mathbf{u}} \\ \hat{\psi} \end{bmatrix}, \mathbf{p} \right) &= \\ &= \left(\begin{bmatrix} \mathbf{K}_s(\mathbf{p}) & 0 \\ 0 & -\mathbf{K}_f/\rho_f \end{bmatrix} + i\omega \begin{bmatrix} \mathbf{C}_s & \mathbf{L} \\ \mathbf{L}^T & -\mathbf{C}_f/\rho_f \end{bmatrix} - \omega^2 \begin{bmatrix} \mathbf{M}_s & 0 \\ 0 & \mathbf{M}_f/\rho_f \end{bmatrix} \right) \begin{bmatrix} \hat{\mathbf{u}} \\ \hat{\psi} \end{bmatrix} - \begin{bmatrix} \mathbf{f}_s \\ \mathbf{f}_f \end{bmatrix} \\ &= \mathbf{0} \end{aligned}$$

- $\{\mathbf{K}_s, \mathbf{C}_s, \mathbf{M}_s\}$ = Structural Stiffness, Damping, and Mass Matrices
- $\{\mathbf{K}_f, \mathbf{C}_f, \mathbf{M}_f\}$ = Fluid Stiffness, Damping, and Mass Matrices
- \mathbf{L} = Coupling Matrix

Design Variables

- Represent spacial distribution of material moduli with design variable \mathbf{p}
- Generalize material as viscoelastic, with frequency-dependent complex bulk and shear moduli, $\{\mathbf{b}, \mathbf{G}\}$:

$$b(\omega, \mathbf{x}) = b_R(\omega, \mathbf{x}) + b_I(\omega, \mathbf{x})$$

$$G(\omega, \mathbf{x}) = G_R(\omega, \mathbf{x}) + G_I(\omega, \mathbf{x})$$

$$\mathbf{p} = \{G_R, b_R, G_I, b_I\}$$

- Structural stiffness matrices depend on material distribution:

$$\begin{aligned}\mathbf{K}_s &= \int_{\Omega} \mathbf{B}^T \mathbf{D} \mathbf{B} d\Omega \\ &= \int_{\Omega_S} \mathbf{B}^T (G_R \mathbf{D}_G + b_R D_b) d\Omega + i \int_{\Omega_S} (G_I \mathbf{D}_G + b_I D_b) d\Omega\end{aligned}$$

Least-Squares Minimization Design Approach

Objective Function: Least-squares residual between computed and desired physical fields, with regularization term for design variable

$$J(\mathbf{v}, \mathbf{p}) := \frac{\kappa}{2} (\mathbf{v}^d - \mathbf{v})^T [\mathbf{Q}] (\mathbf{v}^d - \mathbf{v})$$

- $\mathbf{v} = \{\hat{\mathbf{u}}, \hat{\psi}\} \in \mathbb{C}^{sd+fd}$, State Variable
- \mathbf{v}^d = Target data, $\in \mathbb{C}^{sd+fd}$
- \mathbf{p} = Design variable, $\in \mathbb{C}^{dv}$
- $[\mathbf{Q}]$ = Boolean measurement location matrix
- sd = Structural d.o.f.
- fd = Fluid acoustic d.o.f.
- dv = Discrete design variable dimension

Optimization Formulation

- Define the minimization problem:

minimize
 \mathbf{v}, \mathbf{p}

$J(\mathbf{v}, \mathbf{p})$

Objective Function

subject to

$\mathbf{g}(\mathbf{v}, \mathbf{p}) = \mathbf{0}$

with PDE constraint (structural-acoustic Helmholtz equation) + design variable bounds

$G_l \leq \mathbf{p}_G \leq G_u$

$b_l \leq \mathbf{p}_b \leq b_u$

- Bounds on placed on design variables to restrict to realistic values:
- Gradient-based optimization implementation in Rapid Optimization Library/Sierra SD
 - Numerical optimization using Newton-Krylov methods with Trust-Region Search

Optimality Conditions

- Define a Lagrangian, where w is a vector of Lagrange multipliers:

$$\mathcal{L}(u, p, \omega) = \mathcal{J}(u, p) + w^T g(u, p, \omega)$$

- KKT Conditions require:

$$\begin{Bmatrix} \mathcal{L}_u \\ \mathcal{L}_p \\ \mathcal{L}_w \end{Bmatrix} = \begin{Bmatrix} \mathcal{J}_u + g_u^T w \\ \mathcal{J}_p + g_p^T w \\ g \end{Bmatrix} = \vec{0}$$

Reduced Space Formulation

- Consider state variable v as a function of the design parameter p to define:

$$\hat{J}(p) = J(v(p), p)$$

- Newton Step Optimization Process:

$$g = 0 \quad \text{Compute state vector } u$$

$$g_u^T w = -\mathcal{J}_u \quad \text{Solve for adjoint vector } w$$

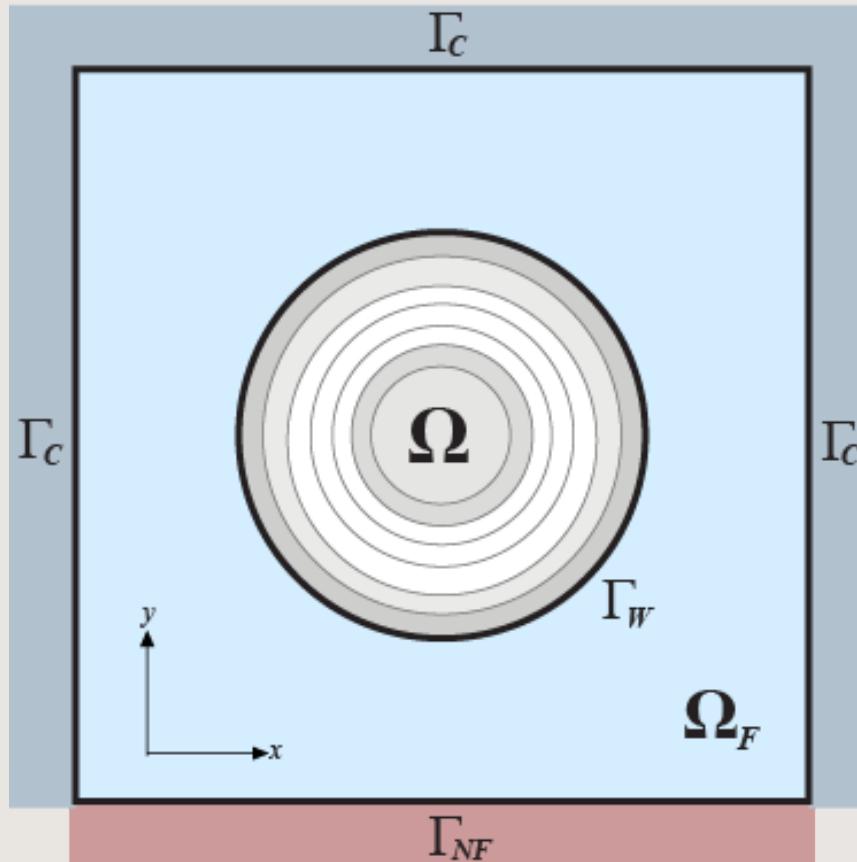
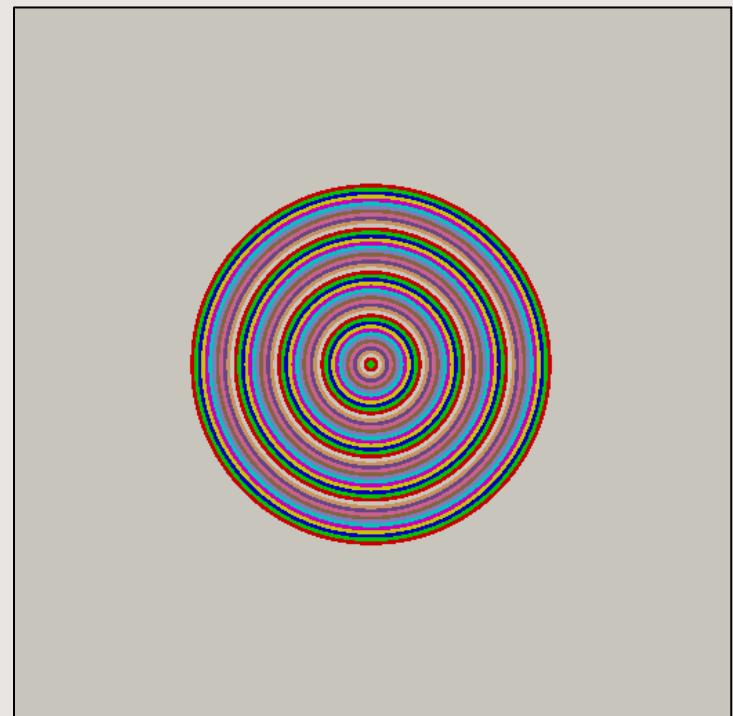
$$\mathcal{J}' = \mathcal{J}_p + g^T w \quad \text{Calculate reduced gradient}$$

$$\hat{J}(p) \quad \text{Evaluate Reduced Objective}$$

$$H \Delta p = \mathcal{J}' \quad \text{Solve for Newton Step with Hessian } H$$

Numerical Results

- 2-D fluid region with circular VE solid inclusion
- Inclusion consists of concentric rings w/ distinct material properties
- Harmonic acoustic pressure load applied to Γ_{NF}
- Match forward problem pressure distribution by adjusting VE material parameters



Left: Model Set up

Right: Finite element model mesh, with 50 layers, $r = 0.25$ m

Initial Guess and Optimization Bounds

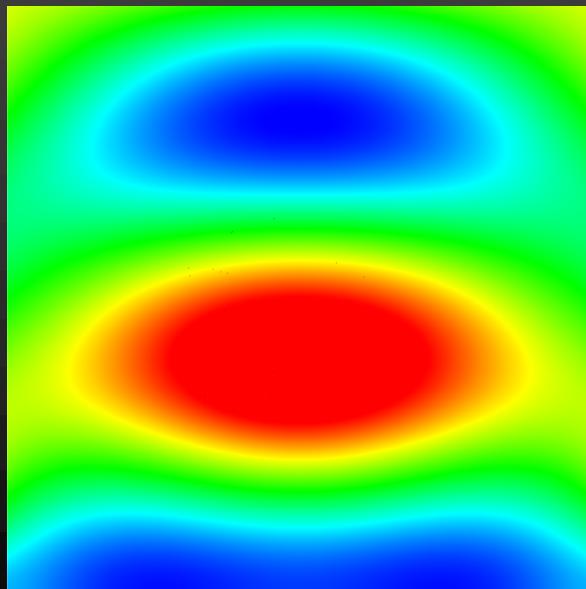
- Initial guesses approximate a nearly-incompressible viscoelastic material, similar in magnitude to rubber
- Bounds selected to provide realistic damping/elasticity ratios

Modulus	Initial	Lower Bound	Upper Bound
b_R	5e+08	1e+08	1e+10
b_I	1e+03	1e+02	1e+05
G_R	1e+06	1e+05	1e+07
G_I	1e+03	1e+02	1e+05

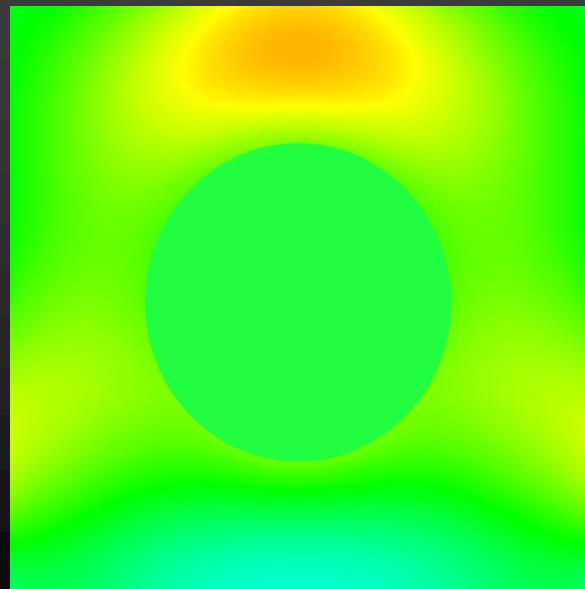
Acoustic Cloaking

- Optimized VE foams allow recovery of desired pressure distribution

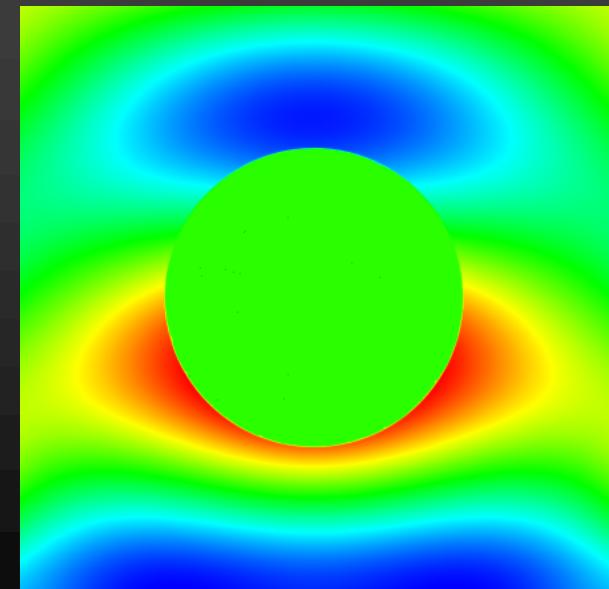
Forward



Initial Guess



Optimized



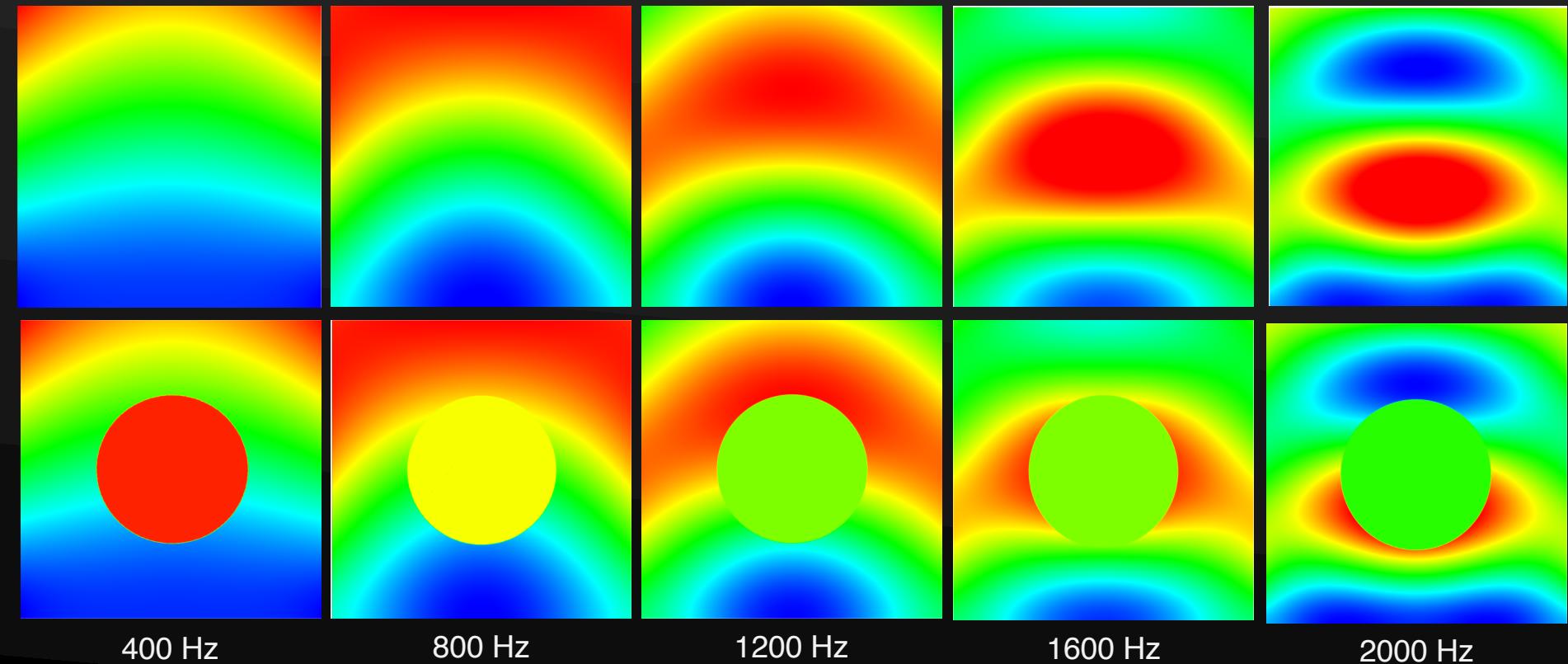
Left: Target acoustic pressure distribution, from forward problem

Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)

Right: Pressure distribution after convergence to optimized design

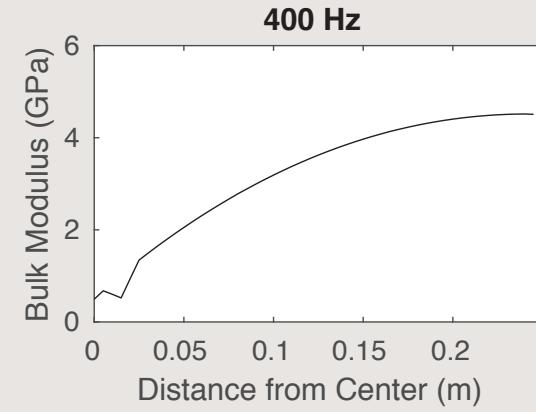
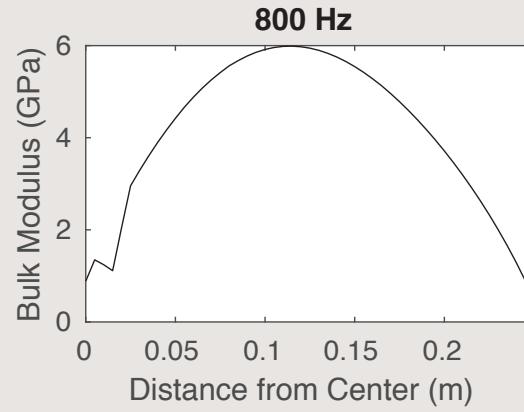
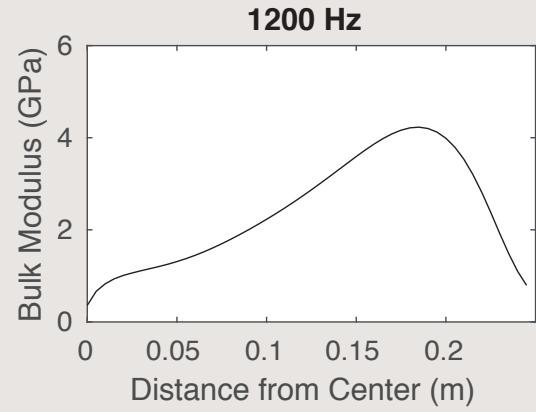
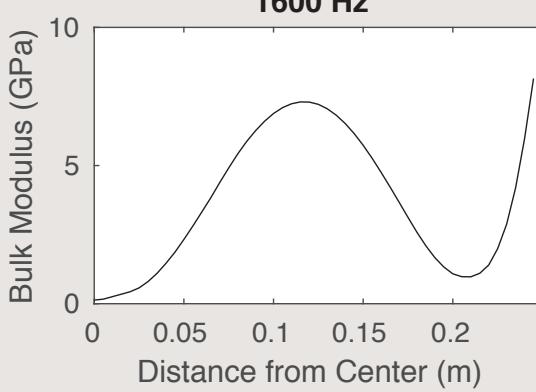
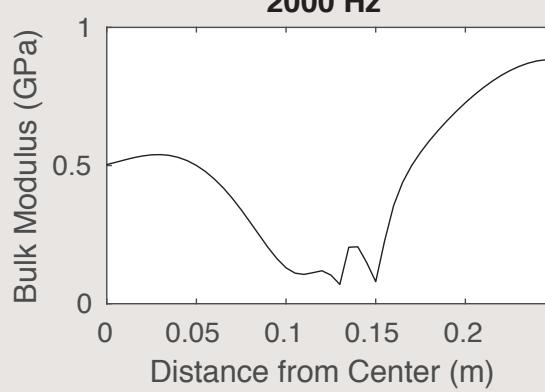
Solutions at Different Frequencies

- Optimized VE foams allow recovery of desired forward pressure distribution at variety of frequencies
 - Top : Acoustic pressure from forward analysis
 - Bottom : Acoustic pressure around optimized solid inclusion



Bulk Modulus Variation

- Bulk modulus sensitive to frequency, and varies nontrivially along disk radius
- Results suggest radially graded dispersive, elastic material can serve as acoustic cloak



Figures: Real component of bulk modulus along radius, for various frequencies

Shear Modulus & Damping Components

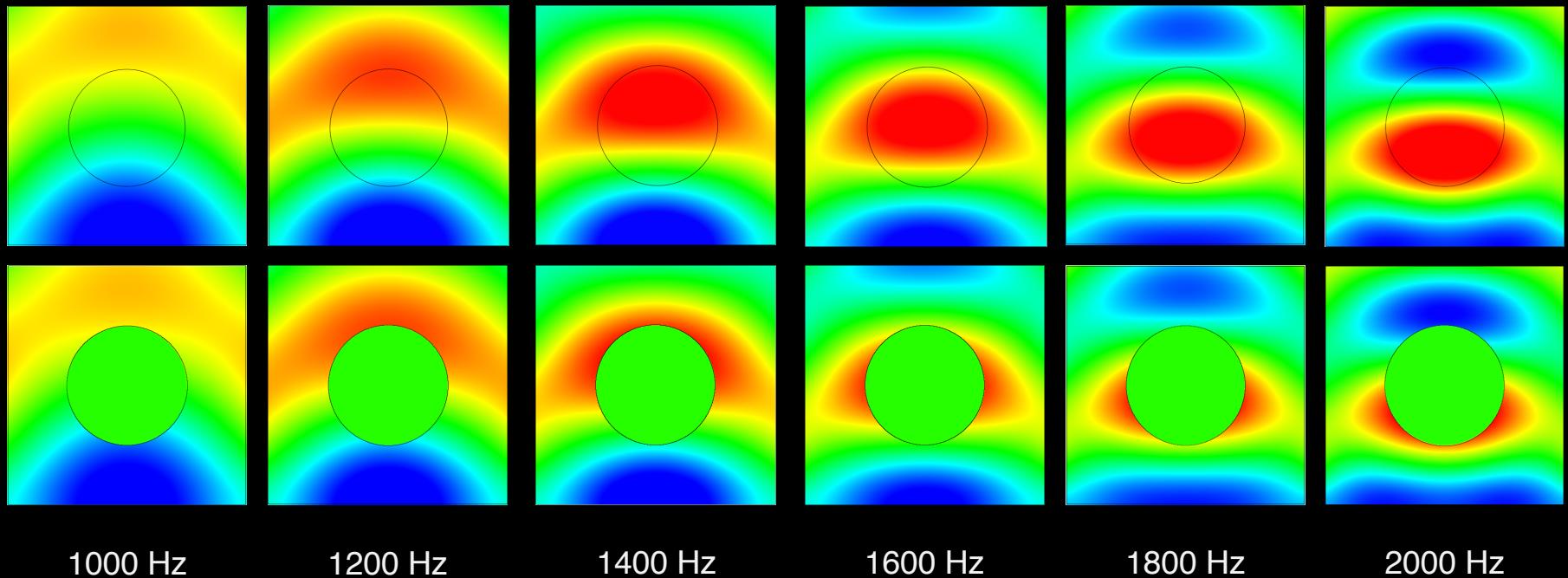
- A constant shear modulus shown to be effective in achieving cloaking behavior
- Minimized lossy components shown to be important for cloaking behavior
 - Imaginary components remained at initial values in optimized solution
 - Eliminating lossy components (Setting $G_I = b_I = 0$) can improve objective

Table 1: Comparison of Objective Function Values for Post-Processed Modulus Distributions (1200 Hz Example)

Case	Objective Value
Initial Guess	6.1041e-01
Optimized Solution	8.6274e-05
Averaged G_R	8.9483e-05
Constant $G_R/b_R = 1e-3$	8.9732e-05
$G_I = b_I = 0$	8.5905e-05

Multi-frequency Elastic Solution

- Single elastic distribution can minimize reflection for extended bandwidth of frequencies
- Solution for 1200 Hz evaluated over extended frequency range



Top: Target acoustic pressure distribution, from forward problem

Bottom: Acoustic pressure field for each frequency from single elastic distribution solution

Conclusions

- Abstract formulation for viscoelastic material design via numerical optimization
- Variation of purely elastic properties allows material to cloak itself from incident acoustic pressure for individual frequencies and frequency bandwidths
 - Bulk modulus is sensitive to radial variation for different frequencies
 - Generally observe decaying modulus values towards center of disk
 - For certain frequencies, appear to match impedance of surrounding fluid
 - Shear modulus generally insensitive; averaged shear modulus sufficient for cloaking behavior
 - Imaginary components need to be minimized for cloaking behavior
 - Decrease of imaginary components has no effect on objective; increase of imaginary components worsens performance

Acknowledgments

- Support through:
 - DOE CSGF, provided under grant number DE-FG02-97ER25308
 - Sandia National Laboratories
- Prof. Wilkins Aquino, Ph.D.
- Timothy Walsh, Ph.D
- Software: Sierra SD & Rapid Optimization Library, produced by Sandia National Labs

References

- [1] Chen, Y., Barnhart, M., Chen, J., Hu, G., Sun, C., and Huang, G., Composite Structures 136, 358 (2016).
- [2] Cheng, Y., Yang, F., Xu, J. Y., and Liu, X. J., Applied Physics Letters 92, 151913 (2008).
- [3] Cummer, S. A., Popa, B. I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M., and Starr, A., Physical review letters 100, 024301 (2008).
- [4] Everstine, G. C., Computers and Structures 65, 307 (1997).
- [5] Guild, M. D., Alu, A., and Haberman, M. R., The Journal of the Acoustical Society of America 129, 1355 (2011).
- [6] hoorickx, C. V., Sigmund, O., Schevenels, M., Lazarov, B., and Lombaert, G., Journal of Sound and Vibration 376, 95 (2016).
- [7] Kadic, M., Bückmann, T., Schittny, R., Gumbsch, P., and Wegener, M., Physical Review Applied 2, 054007 (2014).
- [8] Kouri, D., Ridzal, D., Van Bloemen Waanders, B., and Von Winckel, G., “Rapid optimization library,” Tech. Rep. (Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2014). Nakshatrala, P. and Tortorelli, D., Computer Methods in Applied Mechanics and Engineering 295, 305 (2015).
- [9] Nocedal, J. and Wright, S., Numerical optimization (Springer Science & Business Media, 2006). Norris, A. N., in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 464 (The Royal Society, 2008) pp. 2411–2434.
- [10] Reese, G., Bhardwaj, M. K., and Walsh, T., Sandia National Laboratories, Albuquerque, New Mexico SAND2011-8272 (2011).
- [11] Shen, H., Wen, J., Yu, D., Cai, L., Wen, X., et al., Modelling and Simulation in Materials Science and Engineering 21, 065011 (2013).