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Research Motivation
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- Interest in cloaking structures and materials
- Electromagnetic cloaks use coordinate transformation methods
- Difficulty in translating these solutions to acoustic wave energy 

management
- Proposed media for acoustic cloaks require extraordinary properties

- Radially varying anisotropic mass density and bulk modulus
- Elastic acoustic metamaterials provide candidate for more-easily realized 

acoustic cloaking material



Research Motivation
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- Select materials that provide optimal vibration control through large scale PDE 
constrained optimization
- Many engineering systems use viscoelastic media to control vibration 

environments
- Current engineering practice ‘ad hoc’ in the design of foam materials for 

damping



Governing Acoustic-Structural 
Interaction
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Frequency-Domain Governing Equations for Coupled 
ASI Problem
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E l a s t o d y n a m i c s  S c a l a r  H e l m h o l t z  E q n .  i n  F l u i d
Coupled PDE’s for ASI govern system behavior and provide constraints for optimization

C o u p l e d  B o u n d a r y  C o n d i t i o n s



Weak Form of  Governing Equations
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Discrete Coupled ASI Equations
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• {Ks,Cs,Ms} = Structural Sti↵ness, Damping, and Mass Matrices

• {Kf ,Cf ,Mf} = Fluid Sti↵ness, Damping, and Mass Matrices

• L = Coupling Matrix



Design Variables
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Least-Squares Minimization Design Approach
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Objective Function: Least-squares residual between computed and desired physical 
fields, with regularization term for design variable



- Define the minimization problem:

- Bounds on placed on design variables to restrict to realistic values:
- Gradient-based optimization implementation in Rapid Optimization 

Library/Sierra SD
- Numerical optimization using Newton-Krylov methods with Trust-

Region Search 

Optimization Formulation
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Objective Function

with PDE constraint ( structural-
acoustic Helmholtz equation) + design 
variable bounds 



- Define a Lagrangian, where w is a vector of Lagrange multipliers:

Optimality Conditions
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L(u,p,!) = J (u,p) +wTg(u,p,!)

- KKT Conditions require: 
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Reduced Space Formulation
- Consider state variable v as a function of the design parameter p to define:  

- Newton Step Optimization Process: 

Compute state vector u

Solve for adjoint vector w

Calculate reduced gradient

Evaluate Reduced Objective

Solve for Newton Step with 
Hessian H

g = 0

gT
uw = �Ju

J 0 = Jp + gTw

Ĵ (p)

H�p = J 0



Numerical Results
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- 2-D fluid region with circular VE solid inclusion 
- Inclusion consists of concentric rings w/ distinct material properties
- Harmonic acoustic pressure load applied to ΓNF
- Match forward problem pressure distribution by adjusting VE material parameters

Left: Model Set up
Right: Finite element model mesh, with 50 layers, r = 0.25 m 



Initial Guess and Optimization Bounds
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- Initial guesses approximate a nearly-incompressible viscoelastic material, similar in magnitude 
to rubber

- Bounds selected to provide realistic damping/elasticity ratios

Modulus Initial Lower Bound Upper Bound

bR 5e+08 1e+08 1e+10

bI 1e+03 1e+02 1e+05

GR 1e+06 1e+05 1e+07

GI 1e+03 1e+02 1e+05



- Optimized VE foams allow recovery of desired pressure distribution

Left: Target acoustic pressure distribution, from forward problem
Center: Acoustic pressure distribution with initial material guess (2000 Hz Loading)
Right: Pressure distribution after convergence to optimized design 

Acoustic Cloaking

Forward OptimizedInitial Guess



800 Hz 1200 Hz 2000 Hz1600 Hz400 Hz

- Optimized VE foams allow recovery of desired forward pressure distribution at 
variety of frequencies 
- Top : Acoustic pressure from forward analysis
- Bottom : Acoustic pressure around optimized solid inclusion

Solutions at Different Frequencies



Bulk Modulus Variation
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- Bulk modulus sensitive to frequency, and varies nontrivially along disk radius
- Results suggest radially graded dispersive, elastic material can serve as acoustic cloak

Figures: Real component of bulk modulus along radius, for various frequencies
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Shear Modulus & Damping Components

Table 1: Comparison of Objective Function Values for Post-Processed Modulus
Distributions (1200 Hz Example)

Case Objective Value
Initial Guess 6.1041e-01

Optimized Solution 8.6274e-05
Averaged GR 8.9483e-05

Constant GR/bR = 1e-3 8.9732e-05
GI = bI = 0 8.5905e-05

• A constant shear modulus shown to be effective in achieving cloaking behavior
• Minimized lossy components shown to be important for cloaking behavior

• Imaginary components remained at initial values in optimized solution
• Eliminating lossy components (Setting GI = bI = 0) can improve objective



- Single elastic distribution can minimize reflection for extended bandwidth of 
frequencies

- Solution for 1200 Hz evaluated over extended frequency range

Top: Target acoustic pressure distribution, from forward problem
Bottom: Acoustic pressure field for each frequency from single elastic distribution 
solution

Multi-frequency Elastic Solution

1000 Hz 1200 Hz 1400 Hz 1600 Hz 1800 Hz 2000 Hz



Conclusions
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- Abstract formulation for viscoelastic material design via numerical optimization
- Variation of purely elastic properties allows material to cloak itself from incident 

acoustic pressure for individual frequencies and frequency bandwidths
- Bulk modulus is sensitive to radial variation for different frequencies

- Generally observe decaying modulus values towards center of disk
- For certain frequencies, appear to match impedance of surrounding 

fluid
- Shear modulus generally insensitive; averaged shear modulus sufficient for 

cloaking behavior
- Imaginary components need to be minimized for cloaking behavior

- Decrease of imaginary components has no effect on objective; increase 
of imaginary components worsens performance
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