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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
= Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis

* Modeling damage and failure
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Ingredients for computational peridynamics

= @Governing equations
= Continuum form of the balance of linear momentum

p(x)u(x,t) = / {T[x,t] (x' —x) = T'[x',t] (x —x')} dVi + b(x,t)

= Semi-discrete form: meshless discretization of the strong form

X))ty (x,t) Z{ (X —x) — T'[x;, t] (x — x}) } AV +b(x, 1)
= Boundary and initial = Discretization
conditions = Time integration
= Constitutive model »  Explicit
=  Bond failure law = Implicit
= Contact model = Pre- and post-processing

Meshfree peridynamic model of an
expanding, fragmenting cylinder

S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.

S.A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, 83:1526-1535, 2005.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Model for a peridynamics simulation code
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Constitutive models

= Bond-based models

= Direct pairwise interactions
= State-based models

= Multi-point interactions
= Correspondence models

=  Worapper for classic stress-
strain models

Example: Linear peridynamic solid [Silling]

= State-based model

= Deformation decomposed into deviatoric and
dilatational components

923/ (wz)-edV
m Jy

el =e—

= Magnitude of pairwise force density given by

t=

S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Algorithm 2 Routine for calculation of the internal force density for a linear peridynamic
solid material with a Gaussian influence function
1: procedure LINEAR PERIDYNAMIC SOLID INTERNAL FORCE

SOftwa r e i m p l e m e n ta ti O n Of th e 2 > Initialize the global force density vector to zero.

3: for each node ¢ do
Li Peridynamic Solid S endtor
Inear er’ yna IC O I 5: end for
6: > Compute the dilatation for each node.
T for each node ¢ do
8: 6; <0
9: for each node j in neighbor list for node 7 do
Algorithm 1 The initialization routine for a linear peridynamic solid material with a Gaus- 10: £ex-x
sian influence function. 1 neu- “igﬁ
1: procedure LINEAR PERIDYNAMIC SOLID INITIALIZATION 12 W exp (_ & )
2. > Compute the weighted volume for each node. 18: e« [&+n| €]
R 14: 0; 6, + 2wl e AV;
3 for each node ¢ do mi
15: end for
4 m; 0 N ) ) ) 16:  end for
5: for each node j in neighbor list for node i do 17: > Compute the pairwise contributions to the global force density vector.
6: £ —x—x; 18 for each node i do
_ @3) 19: for each node j in neighbor list for node ¢ do
7 g(—exp( 52 20: £ X —Xx
8 m; < m; +w [€]* AV 21: neui—w
9 end for 29: w ¢ exp _%Z
10: end for 93 e+ |€+n|—|€|
11: end procedure 24; el e — Ul
25: U—%kﬁigm-!—l%ggd
26: M« &1
|
27: fi i+t MAV;
28: f](—f]—ﬁMA‘/L
29: end for

30: end for

David J. Littlewood. Roadmap for Peridynamic Software Implementation. SAND Report 2015-9013. 31: end procedure

Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Bond failure law

= Critical stretch [Silling]
= Brittle failure

= (Critical stretch value determined from
the material’s energy release rate

= Energy-based approach [Foster]
= Ductile failure models [Silling]

Example: Critical stretch law

= Bond fails irreversibly when critical stretch

is exceeded
g o Ymax 7T q-Jo i
max — T - 1 lf

S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88, 2007.

Smax < So
Smax = S0
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Software implementation of the
Critical Stretch Bond Failure Law

Algorithm 3 Routine for evaluation of the critical stretch bond failure law. Bond damage
values, d;;, are initialized to zero at the beginning of the simulation and set to a value of one
if the bond stretch exceeds the specified critical value.

1: procedure CRITICAL STRETCH BOND FAILURE

2 for each node 7 do

3 > Evaluate the stretch of each bond.

4 for each node j in neighbor list for node ¢ do
5: £ X;—X;
6

7

8

9

n<u—w

g = l&tn|-l€l
> Check the bond stretch against the critical value.

: if s > s, then

10: dij =1.0

11: end if

12: end for

13: end for

14: end procedure
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Modeling contact

= Contact algorithms involve two distinct steps:
=  Proximity search
= Enforcement

= The majority of meshfree peridynamic simulations to date have
utilized the short-range force approach of Silling

= Local contact models have also been applied to peridynamic
simulations

Iterative penalty approach to disallow interpenetration and minimize
contact gap

Contact modeling remains an open research topic in peridynamics

Simulation of brittle fracture

1.
2.

Silling, S.A. and Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures 83:1526-1535, 2005.
SIERRA Solid Mechanics Team, Sierra/SolidMechanics 4.22 user’s guide, SAND Report 2011-7597, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2011.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Example of a short-range force contact model

Short-range force contact models
g f Force is zero if distance between nodes is greater than dj
= Spring-like repulsive force
d;; = min{8|x; — x;|, a(r; +7;
= Active when relative distance is smaller * {61 J il o ])}

than the prescribed contact radius , , ,
P _ o o Short-range force includes static and dynamic components
= Does not require explicit definition of

tact surf d—ly; — yil
contact sur ac.es | | | fntic = A Cij ( J i AV AVj M;
= |nterpenetration is possible (high d
velocity, node misalignment) c 18k M, — Yi—Yi
ii =~ /A N —
* Friction may be incorprated by T omot [y; — il

decomposing relative motion into

] fdamping = €7Yc Uiy Mij
normal and tangential components

vij = (Vj = vi) - My

Ye = 24/ACij AV; AV; m
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

lllustration of short range force and standard bond force

—_— «—
Bond Force Only Short-Range Force Only Bond Force and Short-Range Force
2.50+09 T r 4.5e+09 T T 8e+09 T T T T
! 4e+09 |- 7e+09
2e+09 3.5e+09
6e+09
3e+09
g T5ex09 1 @ 250409 | g =
g % 2e+09 g for8
o fe+09 - = K oo |
1.5e+09 -
10409 | 20400 -
5e+08
56+08 |- 1e+09 -
ol.z 0.4 0.6 o‘,a 1 I 0.2 04 0.6 ‘;-8 1 o¢ ol.z 0.4 0.6 ol.s 1
Displacement (m) Displacement (m) Displacement (m)
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Applying a traditional (local) contact model to peridynamics
= Contact algorithm operates on planar facets
= Peridynamics algorithm operates on sphere elements

= Lofted geometry allows for coupling of peridynamics and contact algorithm

Conversion to Create planar facets for
sphere mesh contact algorithm

Initial hex mesh

Simulation of brittle fracture

D. J. Littlewood. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In Proceedings of the ASME 2010 International Mechanical
Engineering Congress and Exposition (IMECE), Vancouver, British Columbia, Canada, 2010.

SIERRA Solid Mechanics Team. Sierra/SolidMechanics 4.36 user’s guide. SAND Report 2015-2199, Sandia National Laboratories, Albuquerque, NM and Livermore, CA.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Simple test: To bars in contact and under compression

- 4=

Challenges with contact and nonlocal models

Horizon = 3 * Mesh Spacing Horizon = Mesh Spacing
Displacement Displacement
. oy 08 . 08
s i = i
-
. u
- 0.0045 - 0.0045
Displacement Displacement
00085 Classical FEM —e— 0.0085 Classical FEM —e—
0.008 Peridynamics, § = 3h —e— 0.008 Peridynamics,d =h —e—
g 00075 g 00075
= o007 = 0007
£ £
£ 00065 g 00065
g g
£ 000 £ 000
A 00055 A 00055
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0.0045 0.0045
-0.1 -0.05 0 005 0.1 -0.1 -0.05 0 005 0.1
Initial Position (m) Initial Position (m)
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Meshfree discretizations for peridynamics

= Meshfree discretization is defined by nodal volumes: (x, y, z, V)
= Each nodal volumes is assigned a material model, etc.
= Nodal volumes may be grouped into “blocks” to simplify bookkeeping
= Example approaches for generating a meshfree discretization:
= Simulation code internal mesh generator
= Pre-processing script to generate (x,y,z,V) data
= Conversion of a FEM hex/tet mesh to nodal volumes
= Concerns specific to peridynamics:
= Avariable horizon is generally not supported in peridynamics

= Discretization can be nonuniform, but large variations in V can
produce undesirable results

= Boundary conditions are generally applied over a volumetric region;
bookkeeping can be challenging, thin layers can cause difficulity
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Conversion of a FEM mesh to a meshfree discretization

= Node sets defined in the original hex/tet mesh must be transferred to meshless discretization
= Elements are preserved (one-to-one map) but nodes in the FEM mesh are not preserved

= A mechanism is required for treating small features, controlling visibility between material points
= Aso-called bond filter may be used to disallow pairwise interactions

Element Conversion
Routine

Initial mesh generated in Cubit

Peridynamic blocks converted to sphere elements
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Time integration for computational solid mechanics

= Explicit integration (dynamics): Velocity-Verlet, a.k.a. leapfrog
=  Well suited for modeling pervasive damage
= Does not require the solution of a global system of equations
= Conditionally stable, requires small time step
= Equivalent to Newmark Beta with Beta =0, gamma = 0.5
= Implicit integration for quasi-statics
=  Assumes that acceleration is zero everywhere, solve for equilibrium
=  Wave propagation is neglected
=  Requires solution of a global system of equations
=  Care must be taken w.r.t. rigid body modes
= Implicit integration for dynamics
= Newmark Beta

=  Requires solution of a global system of equations

m ﬁgggﬁal %OAK RIDGE . . Short COUI’SG. .
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Explicit time integration

= Appropriate for dynamic problems and those with
pervasive material failure

p(x)tp(x,t) = Z{Txt (x} —x) — T'[x}, 1] (x }AV + b(x,t)
Algorithm 1 Velocity Verlet
= Conditionally stable 1 w2 — yn %M—l(fn +b")
= Requires estimate of the critical time step 2. u"tl = u” 4+ Aty t1/2
. . Contl _ o n+1/2 | Atng—1ien+1 +1
= Requires many small time steps 8 vl = v SEMTH(E b

= Easy to implement
= Does not require solution of global system of equations
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

Implicit time integration
= Unconditionally stable
= Allows for large time steps
= Suitable for solution of static and quasi-static problems
= Suitable for implicit dynamics
= Requires solution of system of equations involving current and future configurations
= Generally nonlinear

= Newton-like methods require tangent stiffness matrix
= Matrix-free schemes offer a promissing alternative approach (e.g., Jacobian-Free Newton-Krylov)

S. A. Silling. Linearized theory of peridynamic states. Journal of Elasticity, 99:85-111, 2010.
J. A. Mitchell. A nonlocal, ordinary, state-based plasticity model for peridynamics. SAND Report 2011-3166, Sandia National Laboratories, Albuquerque, NM and Liver- more, CA, 2011.
M.L. Parks, D.J. Littlewood, J.A. Mitchell, and S.A. Silling, Peridigm Users’ Guide v1.0.0. Sandia Report SAND2012-7800, 2012.

Brothers, M.D., Foster, J.T., and Millwater, H.R. A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code.
Computer Methods in Applied Mechanics and Engineering 279:247-267, 2014.

David J. Littlewood. Roadmap for Peridynamic Software Implementation. SAND Report 2015-9013. Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015.
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Computational Peridynamics
1. Ingredients of a peridynamic simulation

The tangent stiffness matrix

= Approaches for construction:
= Analytic (i.e., peridynamic modulus state)
= Finite difference
= Automatic differentiation
= Tangent is expensive
= Expensive to construct
= Expensive to store
= Expensive to apply
= Number of nonzeros is directly related to
the number of peridynamic bonds
= Nonzero entry for all bonded nodes

= Nonzero entry for all nodes that are
bonded to a common node (state based)

Algorithm 1 Construction of the tangent stiffness matrix by central finite difference.

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

procedure TANGENT STIFFNESS MATRIX
> Initialize the tangent stiffness matrix to zero.
K+« o0
> Traverse each node in the discretization.
for each node i do

{traversal list} < node i and all neighbors of node i
for each node j in {traversal list} do
> Evaluate the force state at x; under perturbations of displacement.
for each displacement degree of freedom r at node j do
T Tlx](u+te)
T« Tlx](u—e€)
> Evaluate pairwise forces under perturbations of displacement.
for each node £ in neighbor list of node i do
fer« T (x, —x;) AV; AV,
f T IE_ <Xk — Xj) AV, AV,
fdiﬁ<—f6+ _ff—
for each degree of lf{l;eedom s at node k do
L
end for
end for
end for
end for

end for

24: end procedure
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
= Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis

* Modeling damage and failure
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Computational Peridynamics
2. Surface effect

The peridynamic surface effect is a significant concern for engineering applications

= The majority of peridynamic material models were derived based on bulk response
= Material points close to the surface have a reduced nonlocal region (fewer bonds)

relative to material points in the bulk
Root problem

An important subset of peridynamic
models assumes that a full

= Ordinary peridynamic material models exhibit inconsistencies at the surface

Axial Di Splacement Stress versus Strain neighborhood of bonds is present
Mo Surface
Stored Elastic Energy i+ A O g b

40f — Elastic Modulus

Tt —— 2.0F
by 8
l o m L [Images courtesy John Mitchell]

0 1 2 3 4 5 6
Engineering Strain (ni/m)
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Computational Peridvhamics
2. Surface effect

One possible approach to mitigating the surface effect

= Position-Aware Linear Solid (PALS) constitutive model
takes proximity to free surfaces into account

1 ~
W:§K92—|—[,L(@)o§, 9:(Q|X|)'€ 6 <t

= Coefficients 0 and w are determined for each point in the
discretized model

= Calculation of 0 and w ensures that the expected strain
energy is recovered for a set of matching deformations

J. Mitchell, S. Silling, and D. Littlewood. A position-aware linear solid (PALS) model for isotropic elastic materials.
Journal of Mechanics of Materials and Structures 10(5):539-557, 2015.

Example calculation

PALS model accurately recovers elastic

modulus in tensile test

Numerical strain gauge

- J
X S ) Gauge
/ bond: & \

Region

14.0

12.0

10.0

8.0

6.0

Engineering Stress (G Pa)

4.0

2.0

0.0
0

10-3

— Expected E
— LPS
o—e PALS

x107°

1

2 3 4 5 6
Engineering Strain (m/m)

7

8
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
=  Governing equations

= Constitutive model, bond failure law

= Contact model

= Discretization

= Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis

* Modeling damage and failure
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Computational Peridynamics
3. Estimation of the maximum stable time step

Candidate approaches

= Courant-Friedrichs-Lewy (CFL) condition

= Approach of Silling and Askari for microelastic materials (von Neumann analysis)
= Generalized Silling and Askari approach incorporating bond angles

= Global estimate using the Lanczos method

= Largest eigenvalue of 3x3 nodal stiffness matrix Collaborators
Jesse Thomas
Measures Of success Timothy Shelton

= Accuracy of estimate
= Comparison against empirical result (numerical experiment)

= Computational expense

Littlewood, D.J., Thomas, J.D., and Shelton, T.R. Estimation of the critical time step for peridynamic models. Presented at the SIAM Conference on Mathematical Aspects of Materials Science, Philadelphia, Pennsylvania, 2013.
Hughes, T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.
Silling, S.A. and Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures 83:1526-1535, 2005.

Koteras, J.R. and Lehoucq, R.B. Estimating the critical time-step in explicit dynamics using the Lanczos method. International Journal for Numerical Methods in Engineering 69:2780-2788, 2007.
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Computational Peridynamics
3. Estimation of the maximum stable time step

Approach of Silling and Askari At = ZPQVZC@ Cip = |Clzp — wi)| = \3—2

= Derived for one-dimensional problems with bond-based Prototype Microelastic Brittle material model
= Anecdotal evidence suggests time step estimate is conservative for other materials

CFL limit c= \/é At< B2

c

= What is the proper characteristic length for peridynamic models?
= Anecdotal evidence suggests node spacing yields conservative estimate, horizon yields non-conservative estimate

S

Eigenvalue analysis Mii + Ku = f (K- XM)x =0 At, =

= Requires an efficient algorithm to find the maximum global eigenvalue
= E.g., Lanczos algorithm

m ﬁgggﬁal %OAK RIDGE . . Short COUI’SGI .
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Computational Peridynamics
3. Estimation of the maximum stable time step

= |nvestigate material models Simulation Material Parameters
=  Microelastic bond-based Bar Length 10.0 cm Density 7.8 glcm3
n Linear peridynamic Solid State_based Bar Width 1.0cm Young’s Modulus 300.0 GPa
» Wrapped classical elastic model Initial Velocity 10.0 m/s Poisson’s Ratio 0.25
. . . . Time St 0.48 Hori 0.5075
= |nvestigate critical time step estimates me =P He orzon °n
= Empirical (numerical experiment)
= 1D approach of Silling and Askari
. e . Fixed displacement in
= Generalized Silling and Askari longitudinal direction
= Element time step (3x3 stiffness probe) Initial velocity in Velocity (cm/s)
longitudinal direction 1500
" Lanczos global estimate — —— Em
8
E—fm
0
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Computational Peridynamics

3. Estimation of the maximum stable time step

N
Nodal Stiffness Matrix
max. time step = 0.314 ps
Time Step | Kinetic Energy max. kinetic energy = 3.51 J )
~N
0.1 ps 3.51J CFL Limit (element size)
0.2 ps 3.51J max. time step = 0.329 us
max. kinetic energy = 3.51 J
0.3 s 3.51 ] / . kinetic energy )
0.4 us NaN N
K \ Empirical Observation
0.5 ps NaN max. time step = 0.381 ps
0.6 s NaN max. kinetic energy = 3.51 J )
0.7 ps NaN ~N
0.8 s NaN Global Lanczos
max. time step = 0.381 ps
0.9 s NaN max. kinetic energy = 3.51 J )
1.0 us NaN P N
CFL Limit (horizon)
max. time step = 1.00 us
max. kinetic energy = unstable
San_dia OAK RIDGE Short Course
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Computational Peridynamics
3. Estimation of the maximum stable time step

= |nvestigate material models Material Parameters

: . Simulation i 3
= Microelastic bond-based Density 7.8 glem
. . . . Ring Diameter 4.5cm Young’s Modulus 300.0 GPa
= Linear peridynamic solid state-based 9 9
. . Ring Width 1cm Poisson’s Ratio 0.25
= Wrapped classical elastic model (nosb)
. . . . Initial Radial Velocity 200.0 m/s Critical Stretch 0.01 cm/cm
= |nvestigate critical time step estimates Horizon 0,603 om

=  Empirical

= 1D approach of Silling and Askari
= Generalized Silling and Askari

= Element time step (3x3 stiffness probe) \ I /

= Lanczos global estimate
Initial radial

velocity

/1\
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Computational Peridynamics
3. Estimation of the maximum stable time step

Simulation results for iég&@ %é -
microelastic material § 3
- — '§ : Time step = 5.0 ys
. Percentage of | Maximum Kinetic % é 3 05 46.7% of bonds brok
Time Step | Byoken Bonds Energy (t > 10 pus) A ’ -, -{"/0 O DONAS broken
0.01 s 4.3 % 3.83 kJ A . @'g i
0.1 us 445 % 3.82 kJ %@.&@'sﬁ' "
0.2 ps 44.7 % 3.82 kJ
0.3 ps 45.3 % 3.82 kJ
0.4 ps 45.3 % 3.82 kJ
0.5 ps 45.4 % 3.82 kJ
0.6 ps 46.7 % 3.81 kJ Ty
0.7 us 49.1 % 3.83 kJ i % 'E
0.8 us 73.5 % 3.82 kJ & s .
0.9 95.3 % 4.39 kJ 2 % ; Time step = 7.5 Hs
i 0 ' ' > 62.7 % of bonds broken
1.0 ps 99.1 % 6.40 kJ g .
#&' oy nE
Wi ;6%
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Computational Peridynamics
3. Estimation of the maximum stable time step

CFL Limit (element size)

max. time step = 0.395 ps
percentage of broken bonds = 45.3 %
max. kinetic energy = 3.51 J

J
. Percentage of | Maximum Kinetic
Time Step Broken Bonds | Energy (t > 10 ,us) ( Global Lanczos A
0.01 pus 40.3 % 3.43 kJ max. time step = 0.494 ps
T 01 us | w029 1T T 3ua3ng percentage of broken bonds = 42.8 %
0-1 pis 0 ? 343 kJ _ maxkineficenergy=343kJ |
0.2 us 40.4 % 3.43 kJ
0.3 ps 41.6 % 342KkJ ( Nodal Stiffness Matrix )
0.4 ps 42.0 % 3.44 kJ max. time step = 0.505 ps
0.5 us 44.7 % 3.45 kJ percentagg of proken bonds = 44.8 %
0.6 s 95.6 % 433 kJ S max. kinetic energy = 3.82 kJ )
0.7 97.3 % 5.54 kJ
08 pe 08.6 (; 14k ( Empirical Observation )
- ’ max. time step = 0.509 ps
0.9 ps 99.4 % 19.8 kJ percentage of broken bonds = 50.0 %
1.0 ps 99.8 % 62.8 kJ Y max. kinetic energy = 3.46 kJ )
( CFL Limit (horizon) )
max. time step = 1.19 ys
percentage of broken bonds = 99.1 %
\ max. kinetic energy = unstable )
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Computational Peridynamics

3. Estimation of the maximum stable time step

= Choice of influence function affects
critical time step

= Lanczos algorithm successfully detects
changes in critical time step

= QObservation: Influence function that
decays with increasing bond length
results in reduced critical time step

08

0.6

04

Influence Function Value

02

Parabolic decay
influence function

Influence Function Value

Peridynamic Linear Solid

02 04 0.6 0.8

Distance from Node / Horizon

0.8

0.6

04

02

Constant
influence function

02 04 0.6 08

Distance from Node / Horizon

Correspondence Material Model

Parabolic decay
influence function

Constant
influence function

Parabolic decay
influence function

Constant
influence function

Max. Lanczos

time step 0.381 ps

0.434 ps

Max. Lanczos
time step

0.490 ps

0.549 ps

Empirical result

0.381 ps

0.434 ps

Empirical result

0.490 ps

0.549 ps

14% Increase

12% Increase

Sandia OAK RIDGE
National National Lab
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
= Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis

* Modeling damage and failure
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Computational Peridvnamics
5. Convergence of meshfree models

Vj(i)
, , e R ST e e e Te T -
Convergence of meshfree peridynamics )( o o ANH oo o ope o]ele
e e e :g et te :%/},‘ Neighbor-horizon
= Two forms of convergence: horizon and mesh spacing N e o Tl = Dpelele e e te e intersection in 2D
= Convergence to a local solution as horizon approaches zero .':'\$‘:‘ﬁ%';}' ol
=  Convergence to a nonlocal solution under mesh refinement . andl

with horizon held constant

= Current practice introduces errors and spoils convergence

=  Poor treatment of neighbor-horizon intersections

Neighbor-horizon
intersection in 3D

= Geometry, quadrature

Seleson, P. Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations, CMAME, 282, pp. 184-217, 2014.
Seleson, P., and Littlewood, D.J. Convergence studies in meshfree peridynamic simulations. Computers and Mathematics with Applications 71:2432-2448, 2016.

Seleson, P., and David J. Littlewood, D.J. Numerical tools for effective meshfree discretizations of peridynamic models. In George Z. Voyiadjis, editor, Handbook of Nonlocal Continuum
Mechanics for Materials and Structures. Springer. In preparation.
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Computational Peridvnamics
5. Convergence of meshfree models

Approaches for improving behavior at neighbor-horizon intersections

Algorithm 1 : FV Algorithm 2 : PV-PDLAMMPS Algorithm 3 : PV-HHB
1: {Compute bond length} 1: {Compute bond length} 1: {Compute bond length}
2: €] = |x; —x 2: [€] = |xj — x| ) . ) ' . 2 |&] = |x; — x|
3: {Check if node j is in the family of node i} 3: .{Check fcell 7 is contained within the neighborhood of node i (perfect in 1D only)} 3: {Check i}fcell j is contained within the neighborhood of node i (perfect in 1D only)}
4: if |¢| < then 4: if €] + 5 < d then 4: if €| + 5 <4 then
5 v =y, 5 V=V 5 v =v;
6: else] 7 6:  {Check if node j is in the family of node i} 6:  {Check if node j is in the family of node i}
R 72 O 7: else if [£] < 6 then 7: else if €] — % < § then
8 endif & vO=i[s-(e-3%)]v & vO=i[s-(el-3)]vs
9: Return V}(’) 9: else @) 9: else
10:  V;¥=0 10: V]_(t) -0
11: end if 11: end if
12: Return V]-(l) 12: Return Vj(i)
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Computational Peridvnamics
5. Convergence of meshfree models

Explicit calculation of partial areas (2D) and volumes (3D)

SIS

® ® © @ Analytic calculation of Numerigal approximation
] partial areas (2D) of partial volumes (3D)
DO\ @
Application of smoothly-decaying NSRS
influence functions \ Candidate
= Mitigates numerical difficulties at neighbor-horizon interface ool ‘ . ;E‘:'\iﬁgﬁz
= Changes the underlying model (physics)

0 L L L L L L =
o 0.1 02 03 04 05 06 0.7 08 09 1
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Computational Peridvnamics
5. Convergence of meshfree models

Numerical experiments: Solution of statics problem with known solution

= Linearized LPS material model equates to classical local model under assumption of a quadratic displacement field

Peridynamic equation of static elasticity, linearized LPS model

- [ D 5k 56) (o + e+ )€
H m

Classical Navier-Cauchy equation
of static elasticity

« Y = [G’Vzu(x) + (K - %G) v(V- u)(x)] = b(x).

+30G

(u(x + &) — u(x))}dVE = b(x) x€eqQ,
u(x) = g(x) x € B\ Q.

145

= Permits verification via method of manufactured solutions

Quadratic displacement field
b1

u(x) = Ur12% + Usoy® + Usz2® + Urazy + Ursz2 + Ussyz,
v(x) = V112° + Vagy? + Vaz2? + Vigzy + Vizzz + Vasyz, b2
w(x) = Wi1z? + Waoy® + Waz2? + Wiszy + Wizzz + Wasyz,

by = —

Body force density for static equilibrium

[ 1
2G (U11 + Uy + Uss) + (K + §G> (U1 + Vo + Wls)] )

[ 1
2G (Vi1 + Vag + Va3) + (K + §G> (Ur2 + 2V + Wzs)} )

[ 1
2G (Why + Way + Was) + (K + EG) (U3 + Vas + 2W33)] .

Sandi
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Computational Peridvnamics
5. Convergence of meshfree models

Numerical experiments: Solution of statics problem with known solution

=  Cubic computational domain

= U,, nonzero, all other components of quadratic
displacement field set to zero

= Displacement prescribed over boundary layer
= Body force applied to inner region

= Solution for inner region should converge to the analytic
solution under mesh refinement (horizon fixed)

B\ Q
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Computational Peridvnamics
5. Convergence of meshfree models

Convergence results for different partial-volume schemes and different influence functions

-1.8 T . . P —— -1.8
19+ j_%:aggws A19F ___,.s;uig;;g;ws . Algorithm a=0 o=

A - . Al e == r R | 7 R
=, / - R =9 L FV 1.53 0.165 | 1.38 0.128
® . =" / PV-PDLAMMPS | 0.86 0.186 | 0.89 0.167
<, 22T 1 <% ' : PV-HHB 1.56 0.035 | 1.34 0.030
=23/ =- PV-NC 1.22 0.003 | 1.05 0.001
2. - FV PWL 1.24 0.036 | 1.05 0.004
FV PWC 1.07 0.005 | .11 0.009

FV PWQ 1.10 0.014 | 1.15 0.016

FV PWS 1.04 0.006 | 1.12 0.012

-2.15 -2.1 -2.05 -2 -1.95 -1.9
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Computational Peridvnamics
5. Convergence of meshfree models

Numerical experiments: Solution of dynamics problem o
Initial displacement

" Cubic computational domain S a
= |nitial displacement applied to shell of - :
internal nodes - ;

= Wave allowed to propagate freely through B /——J
domain ¥
= Solutions compared against highly-refined R

benchmark solution

Initial conditions

;
‘

(x|=ro)? _
up(x) = { @ & if (ro—3¢) < |x| < (ro+3¢) ’ IR : :
otherwise, VAN [ .
vO(x) = 07 ® u
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Computational Peridvnamics
5. Convergence of meshfree models

Convergence results for different partial-volume schemes and different influence functions

-4.7

475 | o pveoLames ] 4750 | o pveoLawes Algorithm a=0 a=1

a8k |— NG [ T R T R
B Jdoan FV 427 0514|141 0.099
= a9l R El PV-PDLAMMPS | 1.05 0.202 | 1.02 0.157
<, 48] < PV-HHB 1.31 0.038 [1.04 0.026
= s = PV-NC 0.96 0.013 | 0.85 0.016
E £, FV PWL 0.98 0.019 [ 0.93 0.017
sit / FV PWC 0.85 0.016 | 0.88 0.015
5151/ FV PWQ 0.86 0.015[0.91 0.015
R . . - : . FV PWS 0.85 0.016 | 0.93 0.015

© 20 2 495 19 18  -18 -2.05 -2 198 19 -85 -8

log,y(h) log,,(h)
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Computational Peridvnamics
5. Convergence of meshfree models

Bk
23332333
3

|u(x, T)|

7))

Changing the influence

function changes the R e e e e
underlying model (physics) (@) a=0 (b) a=1
_ \i\‘ _
3 \ 3

(c) @ =0 (zoom in) (d) @ =1 (zoom in)
ﬁgggﬁal %O AK RIDGE . _ Short Course_ _
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Computational Peridvnamics
5. Convergence of meshfree models

Convergence studies with peridynamic are inherently difficult / expensive

= Volumetric region for prescribed displacement .
becomes large as horizon increases

Number of bonds becomes huge as the ratio of
the horizon to the node spacing becomes large

= Number of nodes / bonds becomes large as

horizon decreases Nheig Number of PD bonds
(6/h) FV PV-NC
3 12,433,244 25,077,672
4 62,022,592 | 110,046,364
5 242,086,412 | 384,681,876
6 753,964,092 | 1,040,684,328
7 1,838,660,296 | 2,552,461,732
N 8 4,080,378,204 | 5,479,353,788
9 8,456,684,628 | 10,782,968,496
10 15,752,838,172 | 19,683,573,672
0/L 0.000 | 0.001 | 0.005 | 0.010 | 0.050 | 0.100
IB\ Q[/| | 0.000 [ 0.012 [ 0.062 | 0.130 | 0.953 | 3.630
Sandia OAK RIDGE Short Course
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
= Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis

* Modeling damage and failure
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Computational Peridvnamics
7. Demonstration of meshfree peridynamics for modal analysis

Test case

Why modal analysis?

One-dimensional analysis of simply-supported

®  Modal analysis is used to determine the dominant structural modes and beam with square cross section

natural frequencies of a given system

Classical (local)

®  Peridynamic models containing material damage can be used in the analytic solution
analysis of experimentally-measured frequency responses (nondestructive
testing of bridges, etc.)

Elastic modulus

Height and depth
of beam
Mass of beam

How does it work?
Length of beam

®  Modal analysis is achieved by solving for the dominant eigenvalues and Positive integer

eigenvectors of the tangent stiffness matrix £ ?haraeteri(stic (liinee;r
requency (mode n

n?m E h4

=5\ Tgmna
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Computational Peridvnamics
7. Modal analysis of peridynamic models

Results from peridynamic simulation Classical Peridynamic  Percent

Mode  Theory Simulation  Difference

= Beam dimensions: 1m x 0.01m x 0.01m
= Material: steel (E=206.8 GPa)
=  Peridynamic horizon: 0.000713m

1 2330 Hz 23.26 Hz 0.17 %
2 93.22 Hz 93.02 Hz 0.21 %
3 209.73Hz  209.06 Hz 0.32 %
4 372.86 Hz  371.29Hz 0.43 %
5

= Correspondence elastic material model
582.59Hz 57939Hz  0.55%

= Beam discretized with 840K elements

Visualization of first five mode shapes

(a) Mode 1. (c) Mode 3. \/\/\/

\/\ \/\/\ (© Mode 5

(b) Mode 2.
(d) Mode 4.

David J. Littlewood, Kyran Mish, and Kendall Pierson. 2012. Peridynamic simulation of damage evolution for structural health monitoring.
Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition (IMECE2012), Houston, TX.
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Computational Peridynamics

Outline

Ingredients of a peridynamics simulation
= Governing equations

= Constitutive model, bond failure law

=  Contact model

= Discretization

=  Time integrator

= Surface effect in peridynamic simulations

= Estimation of the maximum stable time step for dynamic simulations
= Convergence of peridynamic models

= Demonstration of meshfree peridynamics for model analysis

= Modeling damage and failure
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Computational Peridvhamics
7. Modeling failure and damage

Modeling failure and damage with peridynamics

= Modeling pervasive damage is a primary advantage of peridynamics
= Nonlocality separates the length scale (horizon) from the mesh, which relieves mesh dependence

= Convergent solutions to material failure problems (localizing phenomenon) are possible with
peridynamics, impossible with a local model

= Cracks develop / grow / branch in peridynamic simulations based primarily on energetics

Eg

[Images courtesy Seleson]
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Computational Peridvhamics
7. Modeling failure and damage

Experimental setup

= Tube expansion via collision of Lexan
projectile and plug within AerMet tube VISAR Probes

cb

= Accurate recording of velocity and ¥

displacement on tube surface lll

Modeling approach 1 <t
Sample Tube Projectile

=  AerMet tube modeled with peridynamics, BSSES

elastic-plasitic material model with linear Experimental setup

hardening [Vogler, et al.]

. . Computational model

= Lexan plugs modeled with traditional FEM,

EOS-enabled Johnson-Cook material model

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of
materials in expanding tube experiments. International Journal of Impact Engineering, 29:735-746, 2003.

D. J. Littlewood. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In Proceedings of the ASME 2010 International
Mechanical Engineering Congress and Exposition (IMECE), Vancouver, British Columbia, Canada, 2010.
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Computational Peridvhamics
7. Modeling failure and damage

Experimental image at 15.4 Simulation at 15.4 microseconds
microseconds [Vogler et. al]

Experimental image at 23.4 Simulation at 23.4 microseconds
microseconds [Vogler et. al]
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Computational Peridvnamics
7. Modeling failure and damage

VISAR Probes

cha
Displacement and velocity Hl [Vogler, etal ]
on tube surface
at probe position A <
Sample Tube Projectile
2.5
250

21 Experimental Data [Vogler et al.] ——
_ xperimental Data [ os% rf,{] i:t?o,]] 200
£ 5
E 15 2
z £ 150
5 =y
—i ! ;f 100
.‘Dﬁ >

Experimental Data [Vogler et al.] ——
0.5 50 Simulation
0 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14
Time (microseconds) Time (microseconds)
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Computational Peridvhamics
7. Modeling failure and damage

Qualitative Comparison of
Fragmentation Results

damage

* Vogler et. al reported significant
uncertainty in results at late time

» Approximately half the tube remained
intact

» Vogler et al. recovered 14 fragments
with mass greater than one gram

Simulation at 84.8 microseconds
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Computational Peridvhamics
7. Modeling failure and damage

Identification of fragments in a meshfree peridynamic simulation

= Provide post-processing capability for characterizing fragmentation process

Approach

. Fragment ID

= Computational domain is traversed to identify networks of unbroken bonds
* Process is iterative, converges when fragment numbers are no longer changing
= A fragment number is assigned to every node in the model

= Tiny fragments are (optionally) combined and assigned a common fragment
number

= Related quantities of interest are computed for each fragment ':?rl‘(t;ficationt°f
ISK Tragments
= Mass, center of mass, linear and angular momentum, moments of inertia, block names

ﬁgggﬁal %OAK RIDGE . . Short COUI’SG. .
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Computational Peridvnamics
7. Modeling failure and damage

Algorithm for fragment identification

DO initialize fragment numbers to node ids
REPEAT until fragment numbers stop changing
FOR every node i
FOR all neighbors j of node i
IF the bond between nodes i andj is unbroken
DO assign max( F;, F;) to nodes i and j

Sandia %OAK RIDGE Short Course

National . . . . .
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Computational Peridvnamics
7. Modeling failure and damage

Parallel algorithm for fragment identification
Additional loop for

DO initialize fragment numbers to node ids / global convergence

REPEAT until fragment numbers stop changing across all processors
REPEAT until on-processor fragment numbers stop changing
FOR every node i
FOR all neighbors j of node i
IF the bond between nodes i and j is unbroken
DO assign max( F;, F;) to nodes j and j
FOR every node i
DO assign global_max( F; ) to node i on all processors

\ Synchronization of fragment
numbers across processors

Sandia %OAK RIDGE Short Course
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Computational Peridvnamics
7. Modeling failure and damage

Parallel algorithm for fragment identification

= A CDF can be created for any quantity of interest
= Provides insight into the fragmentation process
= Allows for comparison with experimental data

Nfrag Nfrag
PX)=— Z m; M=Y m
X <X i=1

P(X) is the probability that a given material point belongs
to a fragment whose property value X; is less than X

Probability

0.8

0.6

04

0

Example: CDF for fragment mass

50

100
Mass (g)

150

200

Sandia %OAK RIDGE

I.Naal:lt:][:'g?(llries National Laboratory

Short Course
Peridynamic Theory of Solid Mechanics



Computational Peridvhamics
7. Modeling failure and damage

Elastic sphere impacting a brittle elastic disk
Projectile modeled with classical FEM
= Elastic material model

* Damage

= Radius 5.0 mm, ' [;32

= |nitial velocity 35.0 m/s ., 050

= Target modeled with peridynamics o [gég
=  Bond-based microelastic material model

= (Critical stretch bond failure rule

Radius 17.0 mm, height 2.5 mm

. Material parameters
Material parameters
. for target
for projectile Parameters for
Parameter Value fragment identification
Parameter Value
3 Density p 2200.0kg/m> output file = frag_data.csv
Densit 993.1kg/m: : _
yP ¢/ Bulk modulus k 14.9GPa increment = 4.0e-5
Bulk modulus & 1.0 GPa . minimum fragment size = 5
Horizon & 1.0mm
Poi ’s rati 0.3
oisson’s ratio v Critical stretch sy~ 0.0005
ﬁgggﬁal %O AK RIDGE Short Course
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Computational Peridvhamics
7. Modeling failure and damage

Algorithm captures evolution of fragmentation process

Fragment ID FrqgmerlTAID
1
i b
)
3 S 16
E 0 E 0
Exclusion of tiny fragments has a significant effect
1
08 Threshold Total Mass of
Fragment Size Tiny Fragments
>
% 0.6 1 0.000g
<
£ 2 0.531g
Ay
3 0.613¢g
02 4 0.641g
. Ting Frumeots Bxcloded — 5 0.651g
0 0.1 02 03 04 0.5
Mass (g)
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Computational Peridvnamics
7. Modeling failure and damage

Computational expense of fragment identification algorithm

= Qverall computational expense of algorithm was low

= Fragment identification algorithm called 50 times 30 e
=  Computational expense between 0.2% and 0.3% of overall 8 Processors —e—
25 16 Processors —=—

simulation time
= Additional processors resulted in modest increase in
number of required iterations
= Number of iterations is highest when fragmentation is
occurring

= Possible result of fragments that are connected by a small
number of bonds

20

Number of Model Traversals

0 0.2 04 0.6 0.8 1 12
Time (ms)
i, %OAKRIDGE _ _ ShortCourse |
laboratories - [Vational Laboratory Peridynamic Theory of Solid Mechanics




Computational Peridvnamics
7. Modeling failure and damage

. ) o A Y
= Fragmentation of an expanding ductile ring , - = N
= Bond-based microplastic material model e l
= Critical stretch bond failure rule « ‘
. . &
= |nner radius 110.0 mm, outer radius 125.0 mm, P e ..
height 25.0 mm A =1
» |nitial outward radial velocity 100.0 m/s . ’
- L.
= ~60,000 nodal volumes ‘u N I
Material parameters
Discretization of ring Parameter Value Parameters for
Density p 7850.0kg /m> fragment identification
Bulk modulus k& 140.0 GPa output file = frag_data.csv
Horizon & 5.025 mm increment = 2.4e-5
. minimum fragment size =0
Yield stretch sy 0.000988
Critical stretch scgt 0.02
Sandia OAK RIDGE Short Course
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Computational Peridvhamics
7. Modeling failure and damage

Algorithm captures evolution of fragmentation process

P =t -

govey 3

At N ’ ¢

g | A (3

FragmeniWID i € Fragmem]fgID ' 8 Frcgmenz‘(f\}D
' J L / = I.
N 4 ‘. s
o ¥ “ s
E 0 E 0 = I E 0

Exclusion of tiny fragments does not affect results

. —

08 JI
E 0.6 —
2 e
E 04 j_r
iy
02 J
:_I”e
0 .—r"—’
0 50 100 150 200
Mass (g)
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Computational Peridvhamics
7. Modeling failure and damage

Visualization of
fragment momentum

Momentum (kg m/s)
20.0

mlmrlllnllmllmhm
o o o
o o o

°
o
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