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TODAY’S	PRACTICE



§ Operational	Challenges
§ Committing	Least	Cost	+	Maintaining	Reliability
§ Out-of-Merit	Reliability	Commitments
§ Improving	convergence	between	day-ahead	and	real-time	prices

§ Algorithmic	Challenges
§ Accounting	for	reliability	needs	in	dispatch	and	pricing	optimization
§ Better	physical	representation	of	the	generating	units	and	underlying	

network

Issues	in	Day-Ahead	Markets
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Unit	Commitment	in	the	Day-Ahead	Market
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Current Practices Proposed Approach
UC/Security-Constrained UC
• Copper-plate (no network/single node)
• Ignores congestion; requires cutsets to 

proxy capacity limits on network
• Most tractable

SCUC DCOPF
• Real power flows only (proportional to 

current)
• BΘ (full) or PTDF (compact) approach

Extensions:
• Accounts for losses 
• Nomograms/cutsets to proxy reliability 

requirements

SCUC ACOPF
• Co-optimizes real and reactive power 

dispatch
• Accounts for commitments needed for 

blackstart service, reactive support, 
voltage support, and interface control

• Nonlinear, nonconvex on meshed 
networks



The	link	between	physics	and	prices
§ Locational	marginal	pricing	(LMP)	is	the	spot	price	of	electricity
§ Dual	variable/Lagrange	multiplier	(λn)	to	real	power	balancing	at	all	buses								

The	LMP	incorporates	the	marginal	cost	of	supplying	the	next	MW	of	load	
for	a	given	location	in	time;	includes	
1.	marginal	unit	cost,
2.	cost	of	network	congestion	(due	to	thermal	line	limits),	and
3.	cost	of	real	power	losses	on	the	network	

⇡ |ṽn|
X

m2N
|ṽm| (Bnm✓nm)
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CONTRIBUTIONS



CONTRIBUTIONS
OVERVIEW



UC+ACOPF:	MINLP

AC Network Limits
Real power balancing
Reactive power balancing
Voltage magnitude bounds
Thermal line limits
Spinning reserves

Apparent Power Production Limits §

Max/min real/reactive power generation 
Ramp up/down rates on real power
Minimum up/down time

§ Extends Morales-España, Latorre, and Ramos, “Tight and compact MILP formulation for the thermal unit commitment 
problem,” IEEE Trans. on Power Syst., vol. 28, no. 4, pp. 4897–4908, 2013.

System Data
Nodal voltage limits

Reserve requirements
Real/reactive power load

Transformer tap ratio and phase-shifters
Thermal line limits and line R/X/B

Shunts

Generator Data
Synchronous condensers
T0 state and startup lags

Minimum up/down time
Ramp up/down limits

Startup/shutdown ramp limits
Min/max real/reactive power limits

Min Production Costs + Startup Costs + No-Load Costs

subject to
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§ Polar	Power-Voltage	Power	Flow	Formulation	(PSV)

§ Rectangular	Power-Voltage	Power	Flow	Formulation	(RSV)

§ Rectangular	Current	Injection	Formulation	(RIV)

Nodal	Power	Balancing	is	Nonconvex

|vn,t|
X

m2N
|vm,t| (Gnm cos ✓nm,t +Bnm sin ✓nm,t)� p+n,t + p�n,t = 0, 8n 2 N

|vn,t|
X

m2N
|vm,t| (Gnm sin ✓nm,t �Bnm cos ✓nm,t)� q+n,t + q�n,t = 0, 8n 2 N
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MINLP	solved	by	Outer	Approximation§(OA)

𝑓(𝑥),
𝑔 𝑥 ≤ 0,
𝑥 ∈ 𝑋,
𝑥𝑖 ∈ ℤ, ∀𝑖 ∈ 𝐼

§ Outer Approximation Algorithm (Duran and Grossman, 1986); Graphics (Belotti et al., 2013)

/
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒4
𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜

𝑓:ℝ? → ℝ, 𝑔:ℝ? → ℝAare twice continuously differentiable functions,
𝑋 ⊂ ℝ?	is a bounded polyhedral set, and
𝐼	 ⊆ {1, … , 𝑛} is the index set of integer variables
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CONTRIBUTIONS
LOCAL	SOLUTION	METHOD



MIN Piecewise linear cost function with penalty factors

Line Current Flows

Network Current Balancing  

s.t.

ik (n,m)
r = Re Y1,1

k vn +Y1,2
k vm( ),  ik (m,n)

r = Re Y2,1
k vn +Y2,2

k vm( )    ∀k ∈K

ik (n,m)
j = Im Y1,1

k vn +Y1,2
k vm( ),  ik (m,n)

j = Im Y2,1
k vn +Y2,2

k vm( )    ∀k ∈K

               

  

in
r − ik (n,m)

r +Gn
shvn

r − Bn
shvn

j
k (n,⋅)∑( ) = 0   ∀n∈N

in
j − ik (n,m)

j +Gn
shvn

j + Bn
shvn

r
k (n,⋅)∑( ) = 0   ∀n∈N

               Nodal Voltage Magnitude Limits
Outer approximation,

First-order Taylor series,
Step-size bounds,

Tangential cutting planes, &
Inequality constraints with 

slack variables

Nodal Power Injections
First-order Taylor series

Generator Limits
Inequality constraints with 

slack variables

Thermal Line (Flowgate) Limits
Set reduction, Outer approximation,

First-order Taylor series,
Tangential cutting planes, & 
Inequality constraints with 

slack variables

Successive	Linear	Programming	(SLP)	[R1]
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(2) 

ACOPF  
Feasible 

(1) 

ACOPF  
Optimal 

(3) 
SLP Feasible 

(4) 
SLP Infeasible 

SLP	Convergence	Properties§

(1)		A	KKT	point	to	the	ACOPF	is	found
(2)	The	SLP	optimal	solution	is	ACOPF	
feasible	but	not	optimal
§ Still	a	useful	solution;	may	be	better	than	a	

DCOPF	with	AC	feasibility	or	decoupled	OPF	
solution

(3) The	SLP	optimal	solution	is	ACOPF	
infeasible
§ Active	penalties	present
§ Solution	may	be	useful	depending	upon	

whether	the	violated	limits	are	“soft”	or	
“hard”

(4) The	SLP	is	infeasible
§ The	ACOPF	may	have	no	solution
§ The	SLP	requires	a	better	initialization

§ Extends Theorem 10.3.1 of Bazaraa et al. (2006)
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Time	Complexity	Performance

§ Running	time	increases	linearly	with	the	network	size	(p=1	
corresponds	to	a	linear	algorithmic	scaling)	for	the	SLP	algorithm

§ Potentially	applicable	in	the	strict	time	frames	of	the	real-time	
markets

Best-Case Simulations All Converged Simulations
Baseline p R2 RMSE (s) p R2 RMSE (s)

NLP/KNITRO 1.42 0.83 1.46 1.47 0.82 1.40
NLP/Ipopt 1.13 0.95 0.60 1.34 0.97 0.50
SLP/CPLEX 0.97 0.99 0.20 1.01 0.98 0.33
SLP/Gurobi 1.01 0.99 0.21 1.03 0.98 0.33

Thermally Constrained
NLP/KNITRO 1.39 0.88 1.13 1.39 0.89 1.08
NLP/Ipopt 1.11 0.98 0.36 1.22 0.97 0.50
SLP/CPLEX 0.99 0.99 0.17 1.00 0.98 0.31
SLP/Gurobi 1.06 0.99 0.23 1.05 0.97 0.36

⇥ (|N |p)
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MINLP	solved	by	Outer	Approximation	(OA)
Initialization

Approximation MIP

Solve MIP for LB

Solve SLP ACOPF for UB

Feasible

Gap<

Add Constraints 
to Refine MIP

Fix binary

Done
Yes

No

No

Yes Local Solution [R2]
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CONTRIBUTIONS
GLOBAL	SOLUTION	METHOD



ACOPF	Second-Order	Cone	Relaxation§(SOCR)
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§ Second-Order Cone Relaxation (Jabr, 2006; Kocuk, 2015)



Improving	the	Lower	Bound	of	SOCR	[R3]

19

Cycle Constraints:
the sum of angle differences on 
each cycle equals to zero

G2

G1

G3

B1 B2

B3

θB1,B2,t

θB3,B1,t

θB2,B3,t

Convex Relaxation of arctan: 
Linear Over- and Under-Estimators
Optimality-Based Bound Tightening (OBBT)
Gradually Adding Cycle Constraints



Global	ACOPF	Performance
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Initialization

Relaxation MIP

Solve MIP for LB

Solve NLP ACOPF for UB

Feasible

Gap<

Add Constraints 
to Refine MIP

Fix binary

Done
Yes

No

No

Yes

Solving nonlinear, 
non-convex AC OPF 
to global optimality?✔

MINLP	solved	by	Outer	Approximation	(OA)

Global Solution [R4]
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CONTRIBUTIONS
UC+ACOPF	RESULTS
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Cost ($) AC Feasible?
UC 811,658 (base) NO

UC+DCOPF 814,715 
(+0.4%)

NO

Local
UC+ACOPF

843,591 
(+3.9%)

YES

UC+DCOPF+RUC 844,922 
(+4.1%)

YES

Global
UC+ACOPF

835,926
(+3.0%)

YES

§ Key	Takeaway:	Results	indicate	considerable	divergence	between	the	
market	settlements	and	stability/reliability	requirements

§ Data from Fu et al. (2006)



Computational	Results	(Local	Method)

§ Most	of	the	OA	algorithm	time	spent	in	the	MILP	(MIP	gap	tolerance	0.1%)
§ UC+ACOPF:	5x-15x	slower	than	the	UC+DCOPF
§ UC+DCOPF+RUC:	1.5x-5x	slower	than	the	UC+DCOPF

10 piecewise linear segments, relative MIP gap tolerance 0.1%
UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC

MILP MILP MILP SLP MILP SLP
Solution Time (s)
6-Bus 0.13 0.21 0.88(3) 0.07(50) 1.02(1, 1) 0.06(33)
RTS-79 1.86 6.76 88.71(3) 0.75(36) 10.37(1, 2) 0.45(26)
IEEE-118 5.04 21.42 110.17(2) 5.06(46) 57.2(1, 1) 3.71(33)

Cost ($)
6-Bus 101, 270 106, 987 101, 763 102, 523
RTS-79 823, 145 823, 894 895, 281 896, 169
IEEE-118 811, 658 814, 715 843, 591 844, 922
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Local	v.	Global	UC+ACOPF	Method

Case Problem 
Formulation

Upper 
Bound

Lower 
Bound

Relative 
Gap (%)

CPU Time 
(s)

6-Bus
Global
Local

101,763
101,763

101,655
-

0.11%
0.11%

3.6
0.95

RTS-79
Global
Local

895,096
895,281

893,967
-

0.13%
0.15%

266.4
89.46

IEEE-118
Global
Local

835,926
843,591

833,057
-

0.34%
1.25%

8480
115.23

§ Note:	Thermal	limits	different	in	global	solution	method	(apparent	power	
thermal	limit)	and	local	solution	method	(current	thermal	limit)	so	a	direct	
comparison	(above)	is	inexact

§ On	the	largest	test	case,	the	approximation	method	is	over	70x	faster,	at	the	cost	
of	0.91%	in	relative	optimality	gap	change
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ONGOING	WORK



Ongoing	Work

§ Study	of	global	solution	techniques	applied	to	the	PSV,	RSV	and	
RIV	ACOPF	formulations

§ Implications	on	market	settlements	for	including	AC	network	
constraints	in	the	day-ahead

§ Improving	the	performance	of	the	MIP	solution	time	in	the	OA	
algorithm	(e.g.,	hybrid	OA	+	branch-and-bound)

§ Comparing	the	fidelity	and	computational	performance	to	
current	market	practices	on	larger	scale,	more	realistic	
networks	(GRIDDATA)
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