

Solving the Mixed Integer Non-linear Programming Problem of Unit Commitment on AC Power Systems

*Exceptional
service
in the
national
interest*

Anya Castillo
Sandia National Laboratories
Albuquerque, NM USA

Carl Laird – Sandia National Laboratories
Jianfeng Liu – Purdue University
Jean-Paul Watson – Sandia National Laboratories

FERC Software Conference June 27, 2017

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 17-0001

Overview

- Today's Practice
- Contributions
 - Overview
 - Local Solution Method
 - Global Solution Method
 - UC+ACOPF Results
- Ongoing Work

TODAY'S PRACTICE

Issues in Day-Ahead Markets

- Operational Challenges
 - Committing Least Cost + Maintaining Reliability
 - Out-of-Merit Reliability Commitments
 - Improving convergence between day-ahead and real-time prices
- Algorithmic Challenges
 - Accounting for reliability needs in dispatch and pricing optimization
 - Better physical representation of the generating units and underlying network

Unit Commitment in the Day-Ahead Market

Current Practices

UC/Security-Constrained UC

- Copper-plate (no network/single node)
- Ignores congestion; requires cutsets to proxy capacity limits on network
- Most tractable

SCUC DCOPF

- Real power flows only (proportional to current)
- $B\Theta$ (full) or PTDF (compact) approach

Extensions:

- Accounts for losses
- Nomograms/cutsets to proxy reliability requirements

Proposed Approach

SCUC ACOPF

- Co-optimizes real and reactive power dispatch
- Accounts for commitments needed for blackstart service, reactive support, voltage support, and interface control
- Nonlinear, nonconvex on meshed networks

The link between physics and prices

- Locational marginal pricing (LMP) is the spot price of electricity
- Dual variable/Lagrange multiplier (λ_n) to real power balancing at all buses

$$p_n - p_n^d + p_n^g = 0 \quad (\lambda_n)$$

ACOPF

$$p_n = |v_n| \sum_{m \in \mathcal{N}} |v_m| (G_{nm} \cos \theta_{nm} + B_{nm} \sin \theta_{nm})$$

DCOPF

$$p_n = \sum_{m \in \mathcal{N}} (B_{nm} \theta_{nm}) \approx |\tilde{v}_n| \sum_{m \in \mathcal{N}} |\tilde{v}_m| (B_{nm} \theta_{nm})$$

DCOPF with losses

$$p_n = \sum_{m \in \mathcal{N}} \left(G_{nm} (\theta_{nm})^2 / 2 + B_{nm} \theta_{nm} \right)$$

The LMP incorporates the marginal cost of supplying the next MW of load for a given location in time; includes

1. marginal unit cost,
2. cost of network congestion (due to thermal line limits), and
3. cost of real power losses on the network

CONTRIBUTIONS

CONTRIBUTIONS OVERVIEW

Min Production Costs + Startup Costs + No-Load Costs

subject to

AC Network Limits

Real power balancing

Reactive power balancing

Voltage magnitude bounds

Thermal line limits

Spinning reserves

System Data

Nodal voltage limits

Reserve requirements

Real/reactive power load

Transformer tap ratio and phase-shifters

Thermal line limits and line R/X/B

Shunts

Generator Data

Apparent Power Production Limits \S

Max/min real/reactive power generation

Ramp up/down rates on real power

Minimum up/down time

Synchronous condensers

T0 state and startup lags

Minimum up/down time

Ramp up/down limits

Startup/shutdown ramp limits

Min/max real/reactive power limits

\S Extends Morales-España, Latorre, and Ramos, “Tight and compact MILP formulation for the thermal unit commitment problem,” *IEEE Trans. on Power Syst.*, vol. 28, no. 4, pp. 4897–4908, 2013.

Nodal Power Balancing is Nonconvex

- Polar Power-Voltage Power Flow Formulation (**PSV**)

$$|v_{n,t}| \sum_{m \in \mathcal{N}} |v_{m,t}| (G_{nm} \cos \theta_{nm,t} + B_{nm} \sin \theta_{nm,t}) - p_{n,t}^+ + p_{n,t}^- = 0, \quad \forall n \in \mathcal{N}$$

$$|v_{n,t}| \sum_{m \in \mathcal{N}} |v_{m,t}| (G_{nm} \sin \theta_{nm,t} - B_{nm} \cos \theta_{nm,t}) - q_{n,t}^+ + q_{n,t}^- = 0, \quad \forall n \in \mathcal{N}$$

- Rectangular Power-Voltage Power Flow Formulation (**RSV**)

$$v_{n,t}^r \sum_{m \in \mathcal{N}} (G_{nm} v_{m,t}^r - B_{nm} v_{m,t}^j) + v_{n,t}^j \sum_{m \in \mathcal{N}} (G_{nm} v_{m,t}^j + B_{nm} v_{m,t}^r) - p_{n,t}^+ + p_{n,t}^- = 0, \quad \forall n \in \mathcal{N}$$

$$v_{n,t}^j \sum_{m \in \mathcal{N}} (G_{nm} v_{m,t}^r - B_{nm} v_{m,t}^j) - v_{n,t}^r \sum_{m \in \mathcal{N}} (G_{nm} v_{m,t}^j + B_{nm} v_{m,t}^r) - q_{n,t}^+ + q_{n,t}^- = 0, \quad \forall n \in \mathcal{N}$$

- Rectangular Current Injection Formulation (**RIV**)

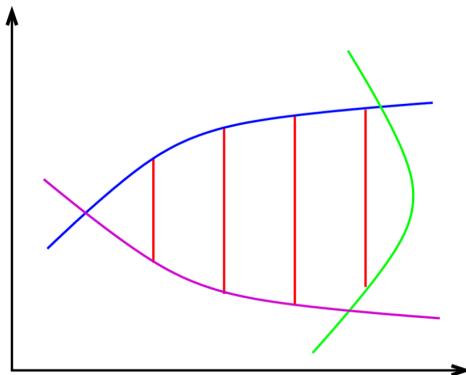
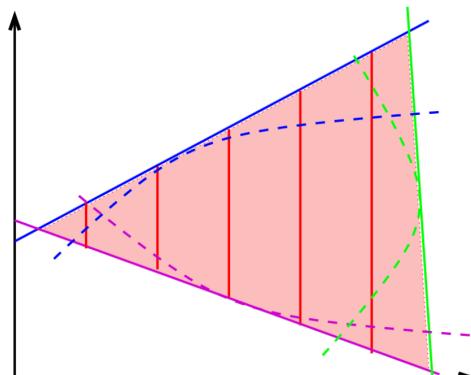
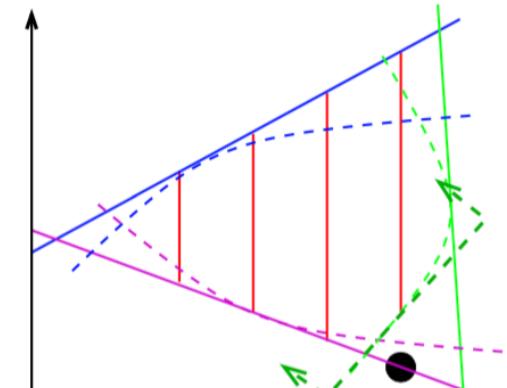
$$i_{n,t}^r - \left(\sum_{k(n,\cdot) \in \mathcal{F}} i_{k(n,m),t}^r + G_n^s v_{n,t}^r - B_n^s v_{n,t}^j \right) = 0, \quad \left(v_{n,t}^r i_{n,t}^r + v_{n,t}^j i_{n,t}^j \right) - p_{n,t}^+ + p_{n,t}^- = 0, \quad \forall n \in \mathcal{N}$$

$$i_{n,t}^j - \left(\sum_{k(n,\cdot) \in \mathcal{F}} i_{k(n,m),t}^j + G_n^s v_{n,t}^j + B_n^s v_{n,t}^r \right) = 0, \quad \left(v_{n,t}^j i_{n,t}^r - v_{n,t}^r i_{n,t}^j \right) - q_{n,t}^+ + q_{n,t}^- = 0, \quad \forall n \in \mathcal{N}$$

MINLP solved by Outer Approximation § (OA)

$$\begin{cases} \text{minimize}_x f(x), \\ \text{subject to } g(x) \leq 0, \\ x \in X, \\ x_i \in \mathbb{Z}, \forall i \in I \end{cases}$$

$f: \mathbb{R}^n \rightarrow \mathbb{R}$, $g: \mathbb{R}^n \rightarrow \mathbb{R}^m$ are twice continuously differentiable functions,
 $X \subset \mathbb{R}^n$ is a bounded polyhedral set, and
 $I \subseteq \{1, \dots, n\}$ is the index set of integer variables



§ Outer Approximation Algorithm (Duran and Grossman, 1986); Graphics (Belotti et al., 2013)

CONTRIBUTIONS LOCAL SOLUTION METHOD

Successive Linear Programming (SLP) [R1]

MIN Piecewise linear cost function with penalty factors

s.t.

Line Current Flows

$$\begin{aligned} i_{k(n,m)}^r &= \operatorname{Re}\left(Y_{1,1}^k v_n + Y_{1,2}^k v_m\right), \quad i_{k(m,n)}^r = \operatorname{Re}\left(Y_{2,1}^k v_n + Y_{2,2}^k v_m\right) \quad \forall k \in K \\ i_{k(n,m)}^j &= \operatorname{Im}\left(Y_{1,1}^k v_n + Y_{1,2}^k v_m\right), \quad i_{k(m,n)}^j = \operatorname{Im}\left(Y_{2,1}^k v_n + Y_{2,2}^k v_m\right) \quad \forall k \in K \end{aligned}$$

Network Current Balancing

$$i_n^r - \left(\sum_{k(n,:)} i_{k(n,m)}^r + G_n^{sh} v_n^r - B_n^{sh} v_n^j \right) = 0 \quad \forall n \in N$$

$$i_n^j - \left(\sum_{k(n,:)} i_{k(n,m)}^j + G_n^{sh} v_n^j + B_n^{sh} v_n^r \right) = 0 \quad \forall n \in N$$

Nodal Voltage Magnitude Limits

Outer approximation,
First-order Taylor series,
Step-size bounds,
Tangential cutting planes, &
Inequality constraints with
slack variables

Nodal Power Injections

First-order Taylor series

Generator Limits

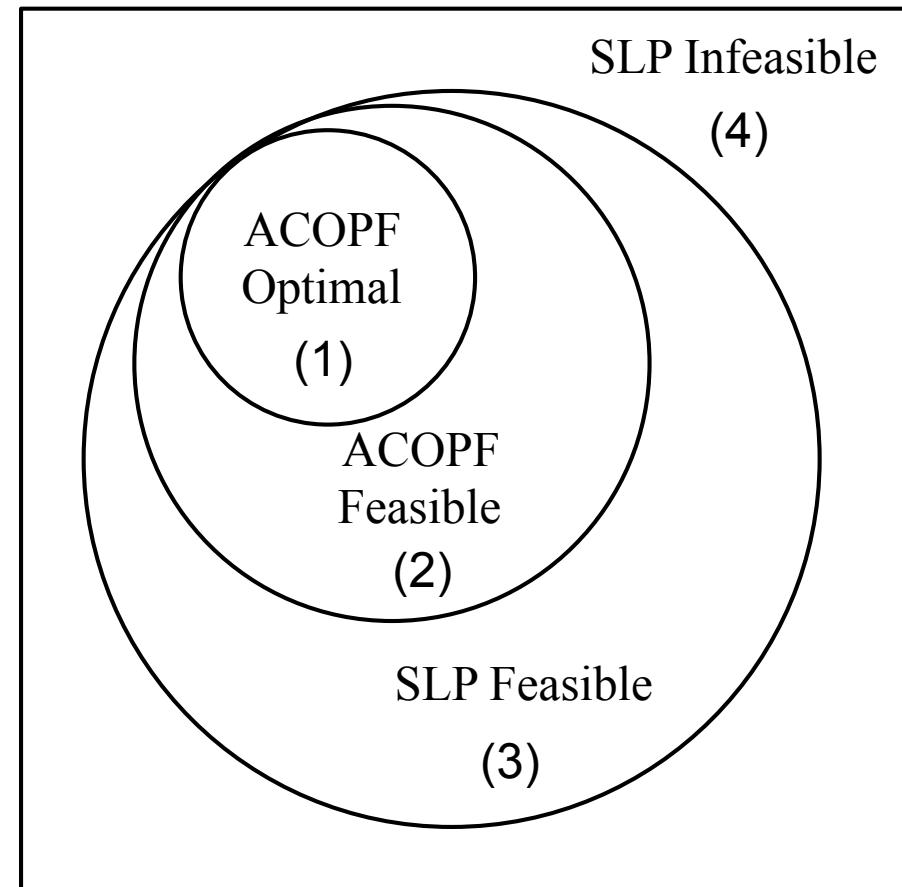
Inequality constraints with
slack variables

Thermal Line (Flowgate) Limits

Set reduction, Outer approximation,
First-order Taylor series,
Tangential cutting planes, &
Inequality constraints with
slack variables

SLP Convergence Properties §

- (1) A KKT point to the ACOPF is found
- (2) The SLP optimal solution is ACOPF feasible but not optimal
 - Still a useful solution; may be better than a DCOPF with AC feasibility or decoupled OPF solution
- (3) The SLP optimal solution is ACOPF infeasible
 - Active penalties present
 - Solution may be useful depending upon whether the violated limits are “soft” or “hard”
- (4) The SLP is infeasible
 - The ACOPF may have no solution
 - The SLP requires a better initialization



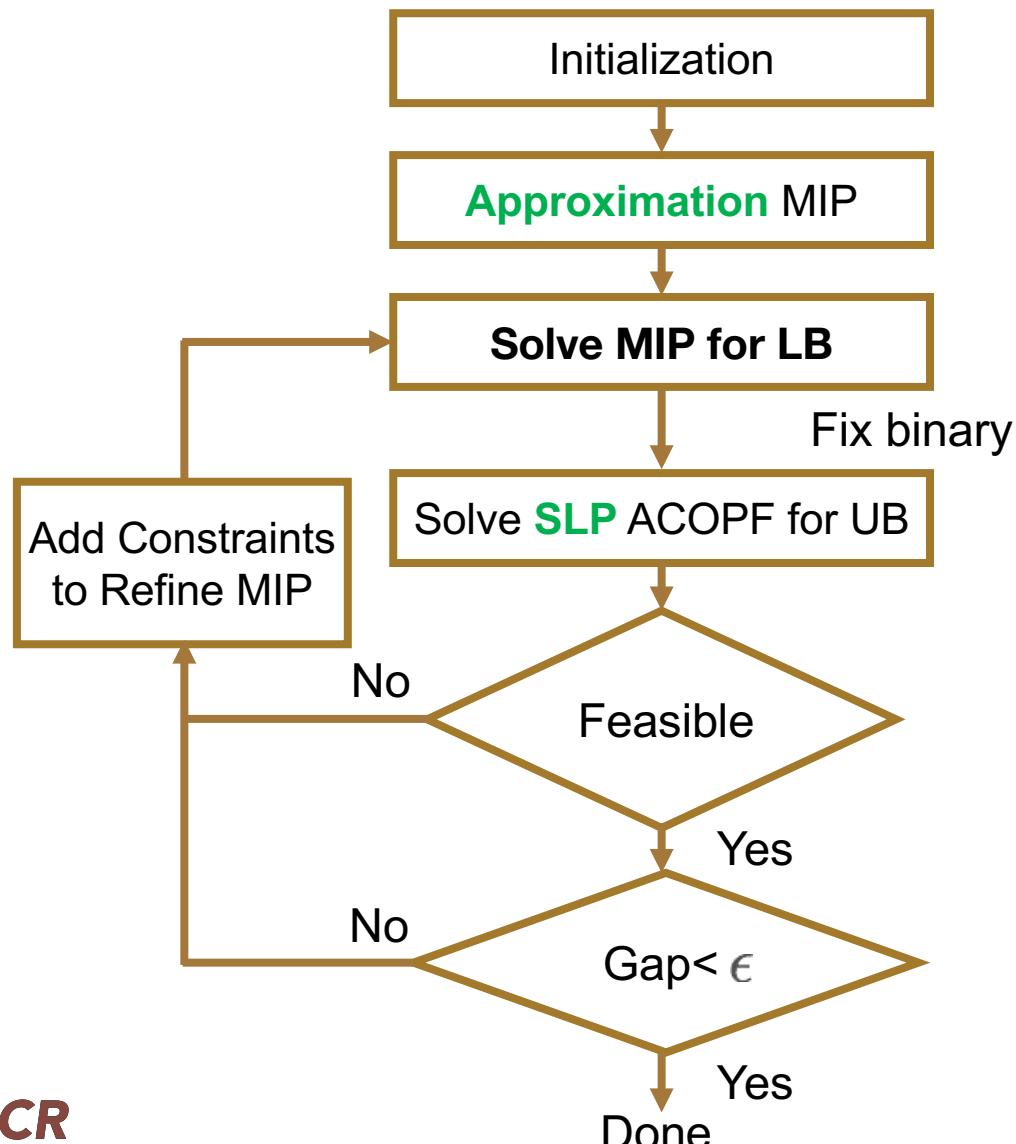
Time Complexity Performance

 $\Theta (|\mathcal{N}|^p)$

Baseline	Best-Case Simulations			All Converged Simulations		
	p	R^2	RMSE (s)	p	R^2	RMSE (s)
NLP/KNITRO	1.42	0.83	1.46	1.47	0.82	1.40
NLP/IPOPT	1.13	0.95	0.60	1.34	0.97	0.50
SLP/CPLEX	0.97	0.99	0.20	1.01	0.98	0.33
SLP/Gurobi	1.01	0.99	0.21	1.03	0.98	0.33
Thermally Constrained						
NLP/KNITRO	1.39	0.88	1.13	1.39	0.89	1.08
NLP/IPOPT	1.11	0.98	0.36	1.22	0.97	0.50
SLP/CPLEX	0.99	0.99	0.17	1.00	0.98	0.31
SLP/Gurobi	1.06	0.99	0.23	1.05	0.97	0.36

- Running time increases linearly with the network size ($p=1$ corresponds to a linear algorithmic scaling) for the SLP algorithm
- *Potentially applicable in the strict time frames of the real-time markets*

MINLP solved by Outer Approximation (OA)



Local Solution [R2]

CONTRIBUTIONS GLOBAL SOLUTION METHOD

ACOPF Second-Order Cone Relaxation § (SOCR)

$$c_{b,b} \equiv (v_b^r)^2 + (v_b^j)^2 = v_b^2$$

$$c_{b,k} \equiv v_b^r v_k^r + v_b^j v_k^j = |v_b| |v_k| \cos \theta_{b,k}$$

$$s_{b,k} \equiv v_b^r v_k^j - v_k^r v_b^j = -|v_b| |v_k| \sin \theta_{b,k}$$

$$\text{min} \quad \sum_{g \in \mathcal{G}} [A_g^2 (p_g^G)^2 + A_g^1 p_g^G + A_g^0]$$

$$\text{s.t.} \quad \sum_{l \in \mathcal{L}_b^{in}} p_l^t + \sum_{l \in \mathcal{L}_b^{out}} p_l^f + G_b^{sh} c_{b,b} + P_b^D - \sum_{g \in \mathcal{G}_b} p_g^G = 0 \quad \forall b$$

$$\sum_{l \in \mathcal{L}_b^{in}} q_l^t + \sum_{l \in \mathcal{L}_b^{out}} q_l^f - B_b^{sh} c_{b,b} + Q_b^D - \sum_{g \in \mathcal{G}_b} q_g^G = 0 \quad \forall b$$

$$p_l^f = G_l^{ff} c_{b,b} + G_l^{ft} c_{b,k} - B_l^{ft} s_{b,k} \quad \forall l$$

$$q_l^f = -B_l^{ff} c_{b,b} - B_l^{ft} c_{b,k} - G_l^{ft} s_{b,k} \quad \forall l$$

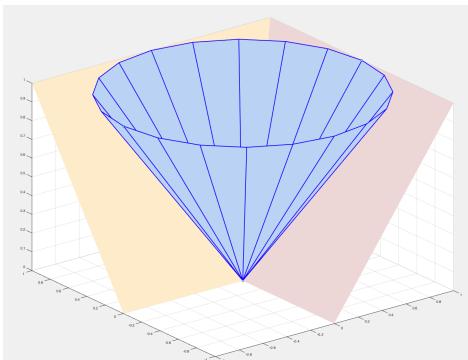
$$p_l^t = G_l^{tt} c_{k,k} + G_l^{tf} c_{k,b} - B_l^{tf} s_{k,b} \quad \forall l$$

$$q_l^t = -B_l^{tt} c_{k,k} - B_l^{tf} c_{k,b} - G_l^{tf} s_{k,b} \quad \forall l$$

$$(p_l^f)^2 + (q_l^f)^2 \leq (S_l^{max})^2, \quad (p_l^t)^2 + (q_l^t)^2 \leq (S_l^{max})^2 \quad \forall l$$

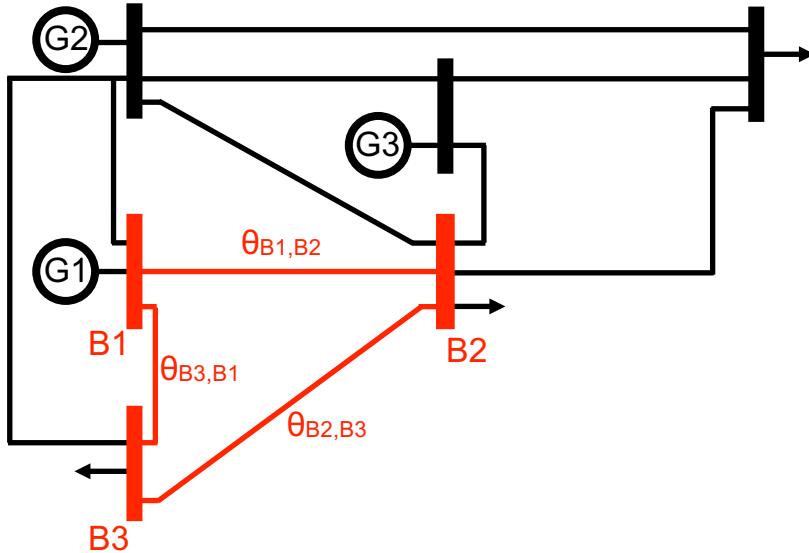
$$(V_b^{min})^2 \leq c_{b,b} \leq (V_b^{max})^2 \quad \forall b$$

$$P_g^{G,min} \leq p_g^G \leq P_g^{G,max}, \quad Q_g^{G,min} \leq q_g^G \leq Q_g^{G,max} \quad \forall g$$



§ Second-Order Cone Relaxation (Jabr, 2006; Kocuk, 2015)

Improving the Lower Bound of SOCR [R3]



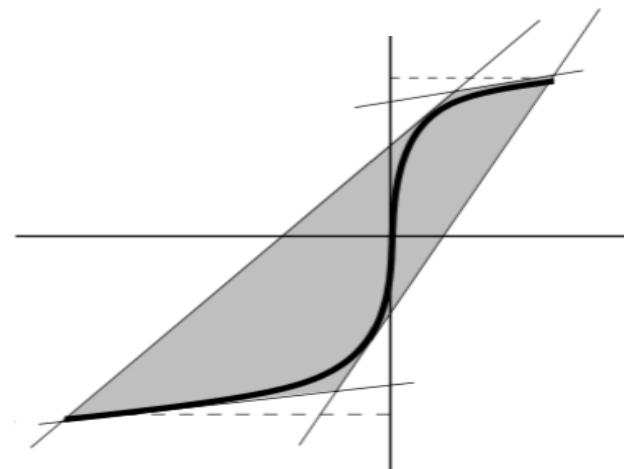
Cycle Constraints:

the sum of angle differences on each cycle equals to zero

$$\sum_{l \in \mathcal{L}_c} \theta_l = 0 \quad \forall \mathcal{L}_c$$

$$\theta_l \equiv \theta_{b,k} = -\arctan\left(\frac{s_{b,k}}{c_{b,k}}\right) \quad \forall l = (b, k)$$

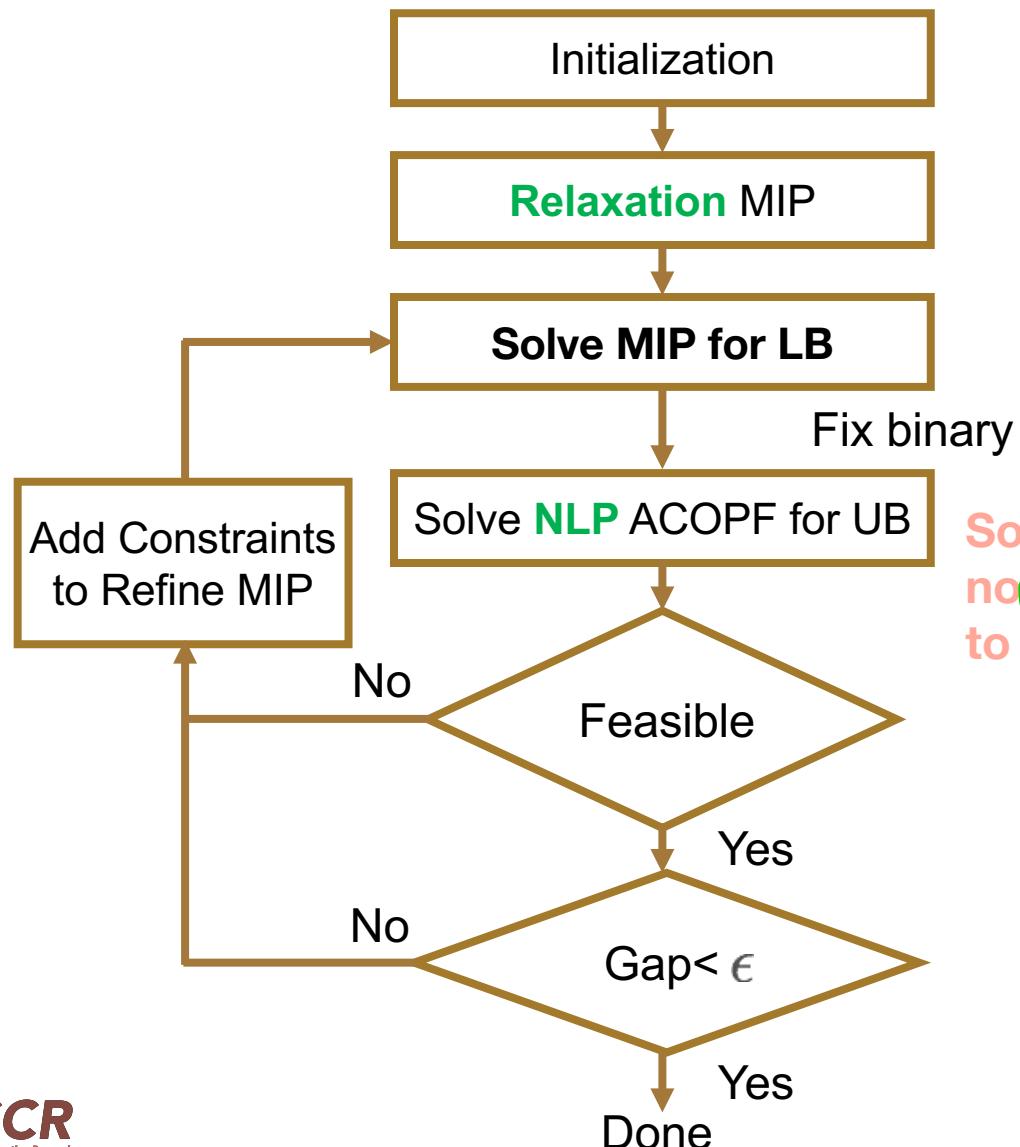
Convex Relaxation of \arctan :
Linear Over- and Under-Estimators
Optimality-Based Bound Tightening (OBBT)
Gradually Adding Cycle Constraints



Global ACOPF Performance

Case Name	Optimal Solution	Optimality Gap (%)	CPU Time (s)	Iteration Number
Case6ww	3126.36	0.008	0.26	4
Case14	8081.52	0.003	0.43	3
Case30	574.52	0.000	0.95	5
Case39	41864.18	0.005	1.21	3
Case57	41737.79	0.006	7.29	12
Case89	5817.60	0.009	46.2	44
Case118	129660.69	0.006	18.5	14
Case300	719725.10	0.009	82.7	49
NESTA Case6ww	3143.97	0.000	0.74	7
NESTA Case14	244.05	0.003	0.22	3
NESTA Case30	204.97	0.000	0.57	4
NESTA Case39	96505.52	0.009	3.00	8
NESTA Case57	1143.27	0.006	9.62	20
NESTA Case89	5819.81	0.009	55.8	57
NESTA Case118	3718.64	0.000	93.7	55
NESTA Case300	16891.28	0.000	138.2	26

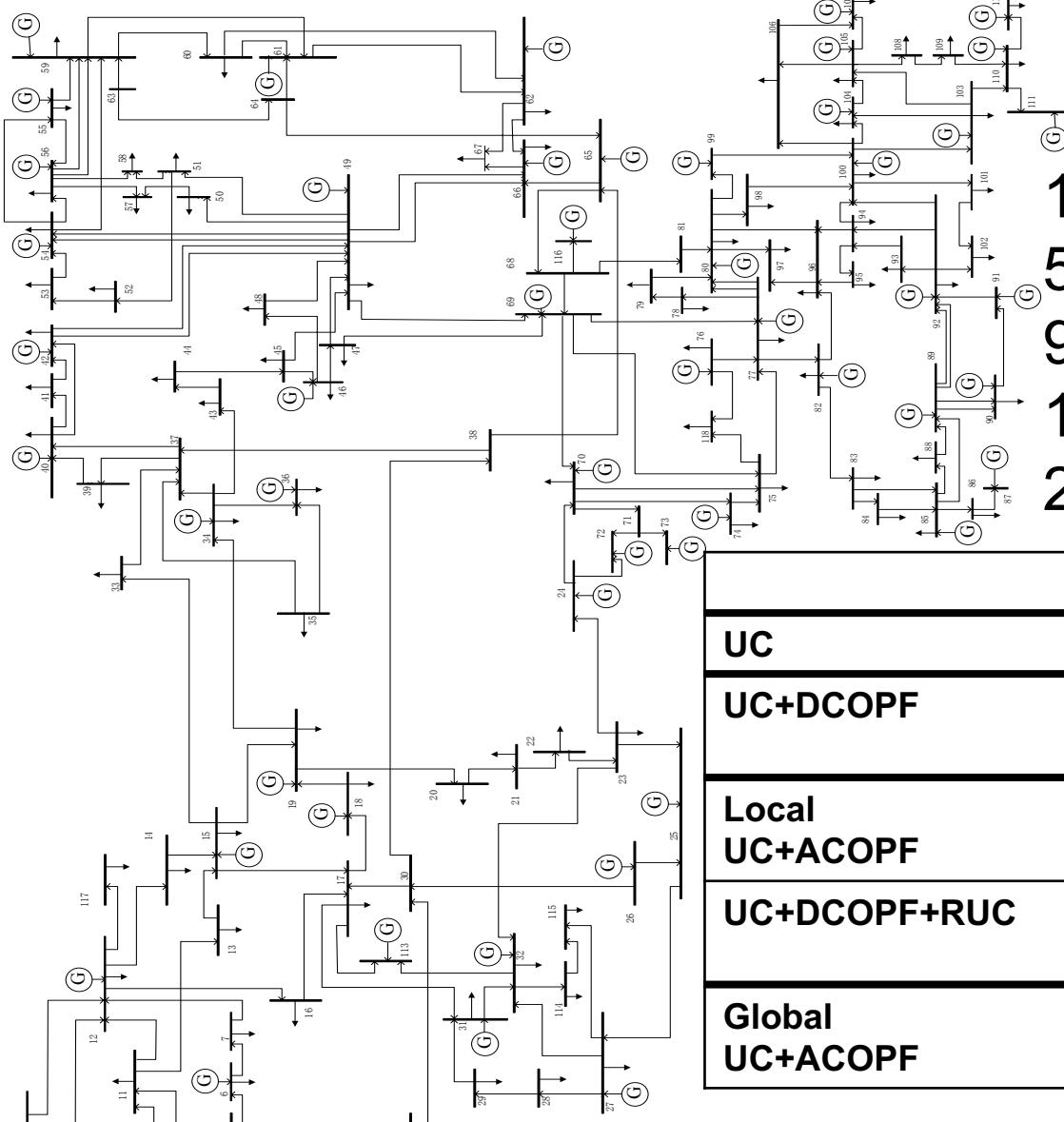
MINLP solved by Outer Approximation (OA)



Solving nonlinear,
non-convex AC OPF
to global optimality?

Global Solution [R4]

CONTRIBUTIONS UC+ACOPF RESULTS



118 nodes
54 generators
91 loads
186 network elements/lines
24-hour hourly commitment

	Cost (\$)	AC Feasible?
UC	811,658 (base)	NO
UC+DCOPF	814,715 (+0.4%)	NO
Local UC+ACOPF	843,591 (+3.9%)	YES
UC+DCOPF+RUC	844,922 (+4.1%)	YES
Global UC+ACOPF	835,926 (+3.0%)	YES

- Key Takeaway: Results indicate considerable divergence between the market settlements and stability/reliability requirements

Computational Results (Local Method)

	UC MILP	UC+DCOPF MILP	UC+ACOPF MILP	UC+ACOPF SLP	UC+DCOPF+RUC MILP	UC+DCOPF+RUC SLP
Solution Time (s)						
6-Bus	0.13	0.21	0.88(3)	0.07(50)	1.02(1, 1)	0.06(33)
RTS-79	1.86	6.76	88.71(3)	0.75(36)	10.37(1, 2)	0.45(26)
IEEE-118	5.04	21.42	110.17(2)	5.06(46)	57.2(1, 1)	3.71(33)
Cost (\$)						
6-Bus	101, 270	106, 987		101, 763		102, 523
RTS-79	823, 145	823, 894		895, 281		896, 169
IEEE-118	811, 658	814, 715		843, 591		844, 922

- Most of the OA algorithm time spent in the MILP (MIP gap tolerance 0.1%)
- UC+ACOPF: 5x-15x slower than the UC+DCOPF
- UC+DCOPF+RUC: 1.5x-5x slower than the UC+DCOPF

Local v. Global UC+ACOPF Method

Case	Problem Formulation	Upper Bound	Lower Bound	Relative Gap (%)	CPU Time (s)
6-Bus	Global	101,763	101,655	0.11%	3.6
	Local	101,763	-	0.11%	0.95
RTS-79	Global	895,096	893,967	0.13%	266.4
	Local	895,281	-	0.15%	89.46
IEEE-118	Global	835,926	833,057	0.34%	8480
	Local	843,591	-	1.25%	115.23

- **Note:** Thermal limits different in global solution method (apparent power thermal limit) and local solution method (current thermal limit) so a direct comparison (above) is *inexact*
- On the largest test case, the approximation method is over 70x faster, at the cost of 0.91% in relative optimality gap change

ONGOING WORK

Ongoing Work

- Study of global solution techniques applied to the PSV, RSV and RIV ACOPF formulations
- Implications on market settlements for including AC network constraints in the day-ahead
- Improving the performance of the MIP solution time in the OA algorithm (e.g., hybrid OA + branch-and-bound)
- Comparing the fidelity and computational performance to current market practices on larger scale, more realistic networks (GRIDDATA)

References

- [R1] A. Castillo, P. Lipka, J.-P. Watson, S.S. Oren, and R.P. O'Neill. "A Successive Linear Programming Approach to Solving the IV-ACOPF." *Transactions on Power Systems* (2015).
- [R2] A. Castillo, C. Laird, C. A. Silva-Monroy, J.-P. Watson, and R.P. O'Neill. "The Unit Commitment Problem with AC Optimal Power Flow Constraints." *Transactions on Power Systems* (2016).
- [R3] J. Liu, M. Bynum, A. Castillo, J.-P. Watson and C. Laird. "Global Solution of ACOPF Problems Using a Piecewise Outer-Approximation Approach Based on SOCP Relaxations." (2017) submitted.
- [R4] J. Liu, A. Castillo, J.-P. Watson, and C. Laird. "Global Solution Strategies for the Network-Constrained Unit Commitment (NCUC) Problem with Nonlinear AC Transmission Models." (2017) submitted.