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= Today’s Practice
= Contributions

= Qverview

= Local Solution Method
= Global Solution Method
= UC+ACOPF Results

= Ongoing Work
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Issues in Day-Ahead Markets

= QOperational Challenges

= Committing Least Cost + Maintaining Reliability

= Qut-of-Merit Reliability Commitments

= Improving convergence between day-ahead and real-time prices

= Algorithmic Challenges

= Accounting for reliability needs in dispatch and pricing optimization
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= Better physical representation of the generating units and underlying

network
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Unit Commitment in the Day-Ahead Market
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Current Practices Proposed Approach

SCUC ACOPF

UC/Security-Constrained UC

« Copper-plate (no network/single node)

* |Ignores congestion; requires cutsets to
proxy capacity limits on network

* Most tractable

SCUC DCOPF

« Real power flows only (proportional to
current)

« BO (full) or PTDF (compact) approach
Extensions:

* Accounts for losses

« Nomograms/cutsets to proxy reliability
requirements

Co-optimizes real and reactive power
dispatch

Accounts for commitments needed for
blackstart service, reactive support,
voltage support, and interface control
Nonlinear, nonconvex on meshed
networks
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The link between physics and prices Lok

= Locational marginal pricing (LMP) is the spot price of electricity

= Dual variable/Lagrange multiplier (A, ) to real power balancing at all buses
P — P + DY = (An)

ACOPF Pn = |Un| Z U | (G €08 O + B sin6,,,,,)
meN
meN meN
DCOPF with losses Pn = Z (Gnm (Of,,,m)2 /2 + Bnmenm)
me

The LMP incorporates the marginal cost of supplying the next MW of load
for a given location in time; includes

1. marginal unit cost,

2. cost of network congestion (due to thermal line limits), and
3. cost of real power losses on the network
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OVERVIEW
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UC+ACOPF: MINLP rh) p

Min Production Costs + Startup Costs + No-Load Costs
System Data

subject to Nodal voltage limits
AC Network Limits Reserve requirements
Real power balancing Real/reactive power load
Reactive power balancing Transformer tap ratio and phase-shifters
Voltage magnitude bounds Thermal line limits and line R/X/B
Thermal line limits Shunts

Spinning reserves
Generator Data

Apparent Power Production Limits § Synchronous condensers
Max/min real/reactive power generation TO state and startup lags
Ramp up/down rates on real power Minimum up/down time
Minimum up/down time Ramp up/down limits

Startup/shutdown ramp limits
Min/max real/reactive power limits

e § Extends Morales-Espania, Latorre, and Ramos, “Tight and compact MILP formulation for the thermal unit commitment
c,cC,,Cth problem,” IEEE Trans. on Power Syst., vol. 28, no. 4, pp. 4897—-4908, 2013.
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Nodal Power Balancing is Nonconvex
= Polar Power-Voltage Power Flow Formulation (PSV)

U ¢ ] Z (Ut (Grm €0S Opm ¢ + Brm sin O 1) — p:;t + ppt =0, Vn e N
meN

U ¢ ] Z (U t| (Grm SINOppy t — Bpm €08 0 1) — q;[’t +qn =0, Vn e N
meN

= Rectangular Power-Voltage Power Flow Formulation (RSV)

(U Z (Gnmv;},,t — Bpmv?, t) + v P Z (Gnmv + T Bamvy, t) = pit +0,: =0, VneN

meN meN
meN meN

= Rectangular Current Injection Formulation (RIV)

iZ,t - ( Z i?l;(n,m) t sz :Lt - be 37”) = 0, (U;,ti;,t + U%,t%,t) - p;t,t +p’r—L,t =0, Vneg N

k(n, )eF
%] E : :J s, _ J ogr ;] + - _
/Ln,t o ( Zkz(n,m),t + G Un ,t + Bn n t) - 07 (Un,tzn,t o Un,tzn,t) o qn,t + qn,t - 07 Vn € N
k(n, )eF
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MINLP solved by Outer Approximation S (OA)

fminimizex f(x),
subject to g(x) <0,

X € X,

x; € Z,Vi €l

A

\

f:R" - R, g: R" - R™are twice continuously differentiable functions,

X c R"is a bounded polyhedral set, and
I € {1,...,n}is the index set of integer variables

=
> e
>
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c””CCRh § Outer Approximation Algorithm (Duran and Grossman, 1986); Graphics (Belotti et al., 2013)
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Successive Linear Programming (SLP) [R1]
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MIN  Piecewise linear cost function with penalty factors
(5.t Line Current Flows A
r k k .7 k k
lk(n,m) = Re(Yl,lv + )71,2vm)’ lk(m,n) = Re(YZ,lvn + Y2,2vm) Vk €k
j _ k k .j _ k k
\lli(n,m) Im(Yl,lv + Yl,va )’ lli(m,n) _ Im(YZ,lvn + Y2,2vm) Vk = K)
4 ) )

Network Current Balancing
+ Gjhvr

n

o/

(X2
(X

k(n,) lk(n,m)

l'j
k(n,) k(n,m)

—B;hv;{)zO Vne N

+GIVI+ BV ) =0 VneN

Nodal Power Injections
First-order Taylor series

J

D Generator Limits

[Nodal Voltage Magnitude Limits\

Outer approximation,
First-order Taylor series,
Step-size bounds,
Tangential cutting planes, &
Inequality constraints with
slack variables

\_ j

Inequality constraints with
slack variables

~

" Thermal Line (Flowgate) Limits N
Set reduction, Outer approximation,
First-order Taylor series,
Tangential cutting planes, &
Inequality constraints with

slack variables

G
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(1) A KKT point to the ACOPF is found

(2) The SLP optimal solution is ACOPF
feasible but not optimal

= Still a useful solution; may be better than a
DCOPF with AC feasibility or decoupled OPF

solution
(3) The SLP optimal solution is ACOPF
infeasible

= Active penalties present

= Solution may be useful depending upon
whether the violated limits are “soft” or
“hard”

(4) The SLP is infeasible

= The ACOPF may have no solution
= The SLP requires a better initialization
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SLP Infeasible
(4)

ACOPF
Optimal

(1)

ACOPF
Feasible

(2)

SLP Feasible
(3)

§ Extends Theorem 10.3.1 of Bazaraa et al. (2006)




Time Complexity Performance

Best-Case Simulations

O (IN1P)
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All Converged Simulations

Baseline D R? RMSE (s) D R? RMSE (s)
NLP/KNITRO 1.42 0.83 1.46 1.47 0.82 1.40
NLP/IpopPT 1.13 0.95 0.60 1.34 0.97 0.50
SLP/CPLEX 0.97 0.99 0.20 1.01 0.98 0.33
SLP /Gurobi 1.01 0.99 0.21 1.03 0.98 0.33
Thermally Constrained
NLP/KNITRO 1.39 0.88 1.13 1.39 0.89 1.08
NLP/IpoPT 1.11 0.98 0.36 1.22 0.97 0.50
SLP/CPLEX 0.99 0.99 0.17 1.00 0.98 0.31
SLP /Gurobi 1.06 0.99 0.23 1.05 0.97 0.36

= Running time increases linearly with the network size (p=1
corresponds to a linear algorithmic scaling) for the SLP algorithm

= Potentially applicable in the strict time frames of the real-time

markets
#CCR




MINLP solved by Outer Approximation (OA) (M.

| Initialization |
v

| Approximation MIP |
v

>| Solve MIP for LB |
| Fix binary

Add Constraints
to Refine MIP

| Solve SLP ACOPF for UB |

7 Y

No

Feasible

Local Solution [R2]

No
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ACOPF Second-Order Cone Relaxation § (SOCR) () &..

min Y [A2(pS)? + AppS + A

g€eg

s.t. pr+ Z p{+G§hcb,b+PbD—Zp§;=0 Vb

b = (1) + (0])? = e enn o<
o = VUL + 0], = [up][ox] con B & z;c: g + le%ﬁ of — Biheyy + QP — ggg:,, =0 Vb
Sbk = vg'vi — vz'vg = —|vp||vk| sin Op — _ G{fcb,b n G{tcb,k . Blftsb,k Vi
qlf = —Blffcb,b o Blf‘tcb,,c — G’lﬂsb,,c Vi
= Glcpp + G o — BY sk Vi
= Bl Ckk — Bltfck,b — fosk,b Vi
(p{ )+ @) < (57)%, W) + (@) < (S7e0)® Vi
(V™))% < epp < (V) Vb
PGmin < p@ < pGmaz QGmin < (G < QGmez v g
E”CCR § Second-Order Cone Relaxation (Jabr, 2006; Kocuk, 2015)

Center for Computing Research

18




Improving the Lower Bound

Convex Relaxation of arctan:
Linear Over- and Under-Estimators
Optimality-Based Bound Tightening (OBBT)
Gradually Adding Cycle Constraints
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of SOCR [R3]  [@Ex.

Cycle Constraints:
the sum of angle differences on
each cycle equals to zero

> 6=0 VL

leﬁc

0, = 0, y=— arctan (S”—") Vi=(bk)
Ch,k




Global ACOPF Performance
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Case Name Optimal Solution Optimality Gap (%) CPU Time (s) Iteration Number
Case6bww 3126.36 0.008 0.26 4
Casel4 8081.52 0.003 0.43 3
Case30 574.52 0.000 0.95 5
Case39 41864.18 0.005 1.21 3
Case57 41737.79 0.006 7.29 12
Case89 5817.60 0.009 46.2 44
Casel 18 129660.69 0.006 18.5 14
Case300 719725.10 0.009 82.7 49
NESTA Case6ww 3143.97 0.000 0.74 7
NESTA Casel4 244.05 0.003 0.22 3
NESTA Case30 204.97 0.000 0.57 4
NESTA Case39 96505.52 0.009 3.00 8
NESTA Case57 1143.27 0.006 9.62 20
NESTA Case89 5819.81 0.009 55.8 57
NESTA Casel18 3718.64 0.000 93.7 55
NESTA Case300 16891.28 0.000 138.2 26
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MINLP solved by Outer Approximation (OA) (M.

| Initialization |
v

| Relaxation MIP |
v

>| Solve MIP for LB |
| Fix binary

Add Constraints
to Refine MIP

| Solve NLP ACOPF for UB |

7 Y

No

Feasible

Global Solution [R4]

No
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Sandia

[} =22 |EEE-1185 ([@E&,
s
; ;jf é 118 nodes
B S b0 54 generators
EmEy ] 91 loads |
AJJ | @*ﬂ 186 network elements/lines
W ﬁ?:@ﬁ 24-hour hourly commitment
Cost ($) AC Feasible?
uc 811,658 (base) NO
UC+DCOPF 814,715 NO
(+0.4%)
Local 843,591 YES
UC+ACOPF (+3.9%)
UC+DCOPF+RUC 844,922 YES
(+4.1%)
Global 835,926 YES
UC+ACOPF (+3.0%)

= Key Takeaway: Results indicate considerable divergence between the

market settlements and stability/reliability requirements
§ Data from Fu et al. (2006)



Computational Results (Local Method)
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UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC
MILP MILP MILP SLP MILP SLP
Solution Time (s)
6-Bus 0.13 0.21 0.88(3)  0.07(50) | 1.02(1,1) 0.06(33)
RTS-79 1.86 6.76 88.71(3)  0.75(36) | 10.37(1,2) 0.45(26)
TEEE-118 5.04 91.42 110.17(2)  5.06(46) | 57.2(1,1) 3.71(33)
Cost ($)
6-Bus 101, 270 106, 987 101,763 102, 523
RTS-79 823,145 823, 894 899, 281 896, 169
IEEE-118 811,658 814,715 843,591 844,922

=  Most of the OA algorithm time spent in the MILP (MIP gap tolerance 0.1%)
=  UC+ACOPF: 5x-15x slower than the UC+DCOPF
=  UC+DCOPF+RUC: 1.5x-5x slower than the UC+DCOPF
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Local v. Global UC+ACOPF Method
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Case Problem Upper Lower Relative CPU Time
Formulation Bound Bound Gap (%) (s)
Global 101,763 101,655 0.11% 3.6
6-Bus Local 101,763 ; 0.11% 0.95
Global 895,096 893,967 0.13% 266.4
RTS-79 | Local 895,281 i 0.15% 89.46
Global 835.926 833,057 0.34% 8480
IEEE-118 | | ocal 843,591 ; 1.25% 115.23

= Note: Thermal limits different in global solution method (apparent power
thermal limit) and local solution method (current thermal limit) so a direct
comparison (above) is inexact

= On the largest test case, the approximation method is over 70x faster, at the cost

of 0.91% in relative optimality gap change
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ONGOING WORK
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= Study of global solution techniques applied to the PSV, RSV and
RIV ACOPF formulations

= |mplications on market settlements for including AC network
constraints in the day-ahead

= |mproving the performance of the MIP solution time in the OA
algorithm (e.g., hybrid OA + branch-and-bound)

= Comparing the fidelity and computational performance to
current market practices on larger scale, more realistic
networks (GRIDDATA)
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= [R1] A. Castillo, P. Lipka, J.-P. Watson, S.S. Oren, and R.P. O’Neill. “A
Successive Linear Programming Approach to Solving the IV-ACOPF.”
Transactions on Power Systems (2015).

= [R2] A. Castillo, C. Laird, C. A. Silva-Monroy, J.-P. Watson, and R.P.
O’Neill. “The Unit Commitment Problem with AC Optimal Power
Flow Constraints.” Transactions on Power Systems (2016).

= [R3]J. Liu, M. Bynum, A. Castillo, J.-P. Watson and C. Laird. “Global
Solution of ACOPF Problems Using a Piecewise Outer-
Approximation Approach Based on SOCP Relaxations.” (2017)
submitted.

= [R4] J. Liu, A. Castillo, J.-P. Watson, and C. Laird. “Global Solution
Strategies for the Network-Constrained Unit Commitment (NCUC)
Problem with Nonlinear AC Transmission Models.” (2017)
submitted.
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