SAND2017- 7255PE

Sierra’s SIMD library for portable
intrinsics based vectorization

KNL workshop, 2017

Michael Tupek

@ENERGY DNISA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

What is SIMD? .

Single Instruction, Multiple Data
= SSE2 instructions: (Intel, AMD ~2004)

= 2 simd::Double, 4 floats “--

= AVX instructions (Intel, AMD)

= 4 simd::Double, 8 floats t
= AVX-512 instructions (Intel ~2014) HHH

= 8 simd::Double, 16 floats

= AltiVec (IBM) ;
= GPU (eg. CUDA): (Nvidia) HHH

= Can think of warp as 32-wide simd double

SSE2/AVX/AVX512 SIMD in Sierra-SM (@),
for nonlinear element assembly

For simple loops, compilers can
auto-vectorize:
for (inti=0; i < N; ++i) {

+
afi] = bfi] + cfi] * d[i);
H)

Complicated loops don’t auto-vectorize:
Nested loops: vector/tensor math, etc
Eigenvectors

Material models

Auto-vectorization

= Simple loops can automatically use SIMD:
for (int i=0; i < N; ++i) {
ali] = b[i] + c[i] * d[i];
}
= “Complicated” loops rarely auto-vectorized efficiently:
= Eigenvectors

= Constitutive law evaluations

= Use SIMD vector intrinsics (low level functions):

= Each intrinsic is equivalent to an assembly instruction

Outer loop vectorization)

= Very difficult for compiler to vectorize over outer loops

double ** a, **b;
for (inti=0; i < N; ++i) {
function_with_inner_loop(a[i], b[i]);

}

= Easy when using simd intrinsics and templating on double type

simd::Double **a, **b;
for (int i=0; i < N%simd_width; ++i) {
function_with_inner_loop(a[i], b[i]);

}

template <typename T>
void function_with_inner_loop(T* arrayl, T* array2) {...}

SSE2/AVX intrinsics (Intel, AMD))

__m128d (2 simd::Double) __m256d (4 simd::Double)

o e

Compute {1,2,3,4} + 2.1:
double x[4] ={1,2,3,4};

- m256d a=_m256_ loadu_pd(x); +

~m256d b=_m256_setl pd(2.1);
~ _m256d c=_m256 add pd(a,b);

double result[4];
mase_store_pd{result o) 31 415161

Sierra SSE2/AVX interface) S,

= Developers can’t know which instruction set is available, as it
differs by processor generation:
= Chama (with Intel Sandy Bridge) has AVX
= Other Sandia machines only have SSE2 (or SSE4)
= Want to be able to write code which works for SSE2, AVX and
even future AVX-512

= We provide an abstraction layer to simplify development

Sierra SSE2/AVX/AVX512 interface

_ main.cc:
Simd.h: _ _
#if defined(AVX) #include <Simd.h>

const int num_doubles = 4;

double x[nsimd::Double];
class simd::Double { m256dd};

ttelif defined(SSE2) simd::Double a = simd::load(x);
const int num_doubles = 2; simd::Double b = 2.1:
class simd::Double { m128dd};
#else /I operator overload:
const int num_doubles = 1; simd::Double ¢ = a+b;
typedef double simd::Double;
#end double output[nsimd::Double];

simd::store(output,c);

Sierra SSE2/AVX interface

= Difficult to have portable code:
simd::Double x = a+c/b;
= Overloaded math operator only available with certain
compilers (gcc, clang)
= Wrapping SIMD type in a class creates some overhead
= Expression templates slightly slower (and harder to read)
= Want to provide a library of math functions
= sqgrt, log, exp, pow, max, min, fabs, etc.
= either not implemented or implemented only with
certain compilers (intel)

SIMD functionality) i,

Standard math functions: Operator overloads:
sqrt, cbrt, log, exp, pow, fabs, +, -5/, += = *= =
copysign, min, max Also Simd Loads and
Simd boolean (mask) types: Store

<, <=, > >= == returns booleans

Bottlenecks:

simd::Bool isTrue = x < 5; _mm256_sqrt_pd() is only ~2X
faster than std::sqrt()

Simd ternary:
simd::Double z = Same with
if then_else(isTrue, 1.0, y); mm512_sqrt_pd()?

Simd reduction: Some compilers don’t
double a = reduceSum(z); implement cbrt, log, exp, etc.

Performance Improvements) .

1,000,000 evaluations of random simd::Double:

c = (a+b)*(a-b)/a;

SSE2 (on blade, gcc) AVX (on chama, Intel compiler)
= 1.83 x speed up (memory = 2.01 x speed up (AVX often
access still a slight bottleneck) uses SSE for / and sqrt)

Auto-vectorization sometimes gives similar improvements, but...
e can't use sqrt()?, log(), exp() for all compilers (may work with Intel)
« doesn’t work well for tensor operations/complicated data layouts.

SIMD Tensor class)=,

Process 4 tensors at a time (AVX):

double tensors[4*9];

// fill 4 tensor
Tensor33<simd::Double> a(tensors)
c = mult(a,b);

Eigenvector(c,vects,vals);
c[0] = a[8] + b[4];

double output[4*9];
c.Store(output);

Loading 4 2x2 tensors

double a[4*tensor_size];

e

- S

"R

simd::Double A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load(a+i, tensor_size);

Slow memory access, but necessary unless we change memory layout of a.

Performance improvements

SSE2 AVX AVX512(KNC)

= Tensor multiply: 1.80 x 3.63 x 2.42 x

= Eigenvalue: 1.97 x 3.19 x 5.25 x

= Polar Decomp: 1.7 x 2.28 x 4.89 x

Performance Improvements:

7| Netora

tensor operation which may not auto-vectorize

 SSE2 (on blade)

Tensor multiply: 1.62 x
Eigenvalue: 1.96 x
Eigenvector: 1.61 x

Polar Decomp: 1.56 x

 AVX (on chama)

Tensor multiply: 3.35 x
Eigenvalue: 2.90 x
Eigenvector: 2.35 x

Polar Decomp: 2.04 x

Improved memory layout

double a[4*tensor_size];

I

||
b 5 5 F

simd::Double A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load_better(a, i);

Fast memory access, but requires significant code refactoring.

Memory layout time comparison

Time to load, add 1.0 and store 20,000
32 length vectors

Standard memory layout for Improved layout
array of vectors/tensors

1.54 X speedup

1.7 X if we use pointer casting instead of load/store ...

Performance improvements) e,
using better memory layout

 SSE2 (on blade) AVX (on chama)
" Tensor multiply: 1.80x = Tensor multiply: 3.63 x

10% improvement 7% improvement

= Eigenvalue: 1.97 x = Eigenvalue: 3.19 x
3% improvement 8% improvement

= Polar Decomp: 1.7 x = Polar Decomp: 2.28 x
9% improvement 9% improvement

Vectorized Material Models

* Re-implemented material models
» Vector instruction require slight algorithm re-write to consider
multiple material models running with the same instructions, e.g.:
Vec4<bool> isYielding = stress_trial > stress_yield;
if (any(isYielding)) {
while (any(notConverged)) {
// compute plasticity model sub-iterations
}
} else {
/I compute elasticity model

}
Speedups:
Neo-hookean: > 2 X faster with 4-wide SIMD J2 plasticity: 1.5 — 2 X faster

Case Study: Branchless 3x3 Eigenvalue

Requires a variety of special functions:

= simd::Dou
= simd::Dou
= simd::Dou

D
D

0

e x = sqrt(y);
e x= cos(arCCOS(V)/3)}

= copysign: simd::Double x = abs(a)*sign(b);

= ternary operator: simd::Double x = istrue ? a : b;

Branches handled carefully to avoid expense

SIMD ternary operator

= Really don’t want to branch, but need:
x=(y<z)?v:w;

simd::Boolb=y<z;, //overloaded element-wise comparisons
simd::Double x = simd::if _then_else(b, v, w); // fake ternary

Implemented as:

~ _m128d istrue = _mm_cmplt_pd(y, z); // returns (2) Os or NaNs
~ m128dtl = _mm_and_pd(istrue, v); // bitwise istrue & v

~ m128d t2 = _mm_andnot_pd(istrue, w); // bitwise listrue & w
Xx=_mm_add_ pd(t1, t2);

Done using bitwise operations, very fast, no branch!

SIMD copysign .

= simd::Double x = copysign(y, z); // fabs(y)*sign(z)
= sign_mask=_mm_setl pd(-0.0);

" sign_z=_mm_and_pd(sign_mask, z);

= fabs_ y=_mm_andnot_pd(sign_mask, y);

= copysign(y, z) = _mm_xor_pd(sign_z, fabs_y);

This is all bitwise magic, but encapsulated so users don’t have
to know implementation details.

7| Netora
Code example: handling the remainder

= Suppose inputis a flat array: x[nelems];

= What if nelems is not divisible by 4? Need to handle the
remainder elements...

SRR

?

/

s »r

Code example: handling the remainder @ix=.

for (int e=0; e < nelems; e+=simdWidth) {
simd::Double xLoc;
if (not_at_end_of loop(e)) { // load all 4
xLoc = simd::load(x+e);
} else {

xLoc = simd::load_part(x+e, nelems-e); // load remainder

Alternative: cast directly to)
simd::Double*

= Qver allocate arrays to multiple of nsimd::Double

= 32 bit aligned memory allocator for vector<>
= simd::Double* X = reinterpret_cast(double* x);

SRR SIS

{

:

I

7| Netora

Code example: casting to simd::Double*

simd::Double* xLoc =simd_ptr_cast(x); //xis array of ‘3 double’
simd::Double* dotLoc = simd_ptr_cast(dot); // dot is array of double

for (int e=0; e < nelems; e+=simd::nelements) {
dotLoc[0] = 0.0;
for (inti=0;i<3;++i) {
dotLoc[0] += xLoc[i] * xLoc][i];
}
xLoc += 3;
dotLoc +=1;

>1.5 X improvement over original layout/load strategy

Real applications! =

= Sierra-SM (since 2015)

= Implemented for key kernels only
= ~2X overall improvement using AVX

= Tensor math speedups:
= 2.2 -3.6 X (Haswell)
= 2.4-53X(KNL)

= Sierra-TF (since 2017)

= Refactored ~80% of code to use Kokkos and enable simd types

= Thermal matrix assembly speedups:
= 1.6 X (Haswell)
= 3.7 X (KNL)

= Nalu (since 2017)

= |mplementation in progress

= SPARC (2018?)

Remaining challenges

= Prefetching and other common optimizations
= Effective even for bandwidth limited loops. iCache?
" |ntegration with Kokkos Views

= Already open source in Trilinos (stk::simd)
" Forintegration with Kokkos, moving to its own github

"= Have prototyped a platform portable “SimdView”

= New C++ standard proposal might replace this
functionality — a long time off

