
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sierra’s SIMD library for portable
intrinsics based vectorization

Michael Tupek

1

KNL workshop, 2017

SAND2017-7255PE

What is SIMD?

 SSE2 instructions: (Intel, AMD ~2004)

 2 simd::Double, 4 floats

 AVX instructions (Intel, AMD)

 4 simd::Double, 8 floats

 AVX-512 instructions (Intel ~2014)

 8 simd::Double, 16 floats

 AltiVec (IBM)

 GPU (eg. CUDA): (Nvidia)

 Can think of warp as 32-wide simd double

x y z w

a b c d

+

=

x+a y+b z+c w+d

Single Instruction, Multiple Data

SSE2/AVX/AVX512 SIMD in Sierra-SM
for nonlinear element assembly

x y z w

a b c d

+

=

x+a y+b z+c w+d

For simple loops, compilers can
auto-vectorize:

for (int i=0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

Complicated loops don’t auto-vectorize:

Nested loops: vector/tensor math, etc

Eigenvectors

Material models

Auto-vectorization

 Simple loops can automatically use SIMD:
for (int i=0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

 “Complicated” loops rarely auto-vectorized efficiently:
 Eigenvectors

 Constitutive law evaluations

 Use SIMD vector intrinsics (low level functions):

 Each intrinsic is equivalent to an assembly instruction

Outer loop vectorization
 Very difficult for compiler to vectorize over outer loops

double ** a, **b;

for (int i=0; i < N; ++i) {

function_with_inner_loop(a[i], b[i]);

}

 Easy when using simd intrinsics and templating on double type

simd::Double **a, **b;

for (int i=0; i < N%simd_width; ++i) {

function_with_inner_loop(a[i], b[i]);

}

template <typename T>

void function_with_inner_loop(T* array1, T* array2) {…}

SSE2/AVX intrinsics (Intel, AMD)

Compute {1,2,3,4} + 2.1:

double x[4] = {1,2,3,4};

__m256d a = _m256_loadu_pd(x);

__m256d b = _m256_set1_pd(2.1);

__m256d c = _m256_add_pd(a,b);

double result[4];

_m256_store_pd(result,c);

x y z w

__m256d (4 simd::Double)

1 2 3 4

+

=

3.1 4.1 5.1 6.1

2.1 2.1 2.1 2.1

x y

__m128d (2 simd::Double)

Sierra SSE2/AVX interface

 Developers can’t know which instruction set is available, as it
differs by processor generation:
 Chama (with Intel Sandy Bridge) has AVX

 Other Sandia machines only have SSE2 (or SSE4)

 Want to be able to write code which works for SSE2, AVX and
even future AVX-512

 We provide an abstraction layer to simplify development

Sierra SSE2/AVX/AVX512 interface

Simd.h:

#if defined(AVX)

const int num_doubles = 4;

class simd::Double { __m256d d };

#elif defined(SSE2)

const int num_doubles = 2;

class simd::Double { __m128d d };

#else

const int num_doubles = 1;

typedef double simd::Double;

#end

main.cc:

#include <Simd.h>

double x[nsimd::Double];

simd::Double a = simd::load(x);

simd::Double b = 2.1;

// operator overload:

simd::Double c = a+b;

double output[nsimd::Double];

simd::store(output,c);

Sierra SSE2/AVX interface
 Difficult to have portable code:

simd::Double x = a+c/b;

 Overloaded math operator only available with certain
compilers (gcc, clang)

 Wrapping SIMD type in a class creates some overhead

 Expression templates slightly slower (and harder to read)

 Want to provide a library of math functions

 sqrt, log, exp, pow, max, min, fabs, etc.

 either not implemented or implemented only with
certain compilers (intel)

SIMD functionality

Standard math functions:

sqrt, cbrt, log, exp, pow, fabs,

copysign, min, max

Simd boolean (mask) types:

<, <=, >, >=, == returns booleans

simd::Bool isTrue = x < 5;

Simd ternary:

simd::Double z =
if_then_else(isTrue, 1.0, y);

Simd reduction:

double a = reduceSum(z);

Operator overloads:

+, -, *, /, +=, -=, *=, /=

Also Simd Loads and
Store

Bottlenecks:

_mm256_sqrt_pd() is only ~2X
faster than std::sqrt()

Same with
_mm512_sqrt_pd()?

Some compilers don’t
implement cbrt, log, exp, etc.

Performance Improvements

SSE2 (on blade, gcc)

 1.83 x speed up (memory
access still a slight bottleneck)

AVX (on chama, Intel compiler)

 2.01 x speed up (AVX often
uses SSE for / and sqrt)

1,000,000 evaluations of random simd::Double:

Auto-vectorization sometimes gives similar improvements, but…
• can’t use sqrt()?, log(), exp() for all compilers (may work with Intel)
• doesn’t work well for tensor operations/complicated data layouts.

c = (a+b)*(a-b)/a;

SIMD Tensor class

Process 4 tensors at a time (AVX):

double tensors[4*9];

// fill 4 tensor

Tensor33<simd::Double> a(tensors)

c = mult(a,b);

Eigenvector(c,vects,vals);

c[0] = a[8] + b[4];

double output[4*9];

c.Store(output);

a1 a2 a3

a5 a6

a9a8

a4

a7

Loading 4 2x2 tensors

simd::Double A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load(a+i, tensor_size);

double a[4*tensor_size];

Slow memory access, but necessary unless we change memory layout of a.

Performance improvements

 Tensor multiply: 1.80 x 3.63 x 2.42 x

 Eigenvalue: 1.97 x 3.19 x 5.25 x

 Polar Decomp: 1.7 x 2.28 x 4.89 x

SSE2 AVX AVX512(KNC)

Performance Improvements:
tensor operation which may not auto-vectorize

 Tensor multiply: 1.62 x

 Eigenvalue: 1.96 x

 Eigenvector: 1.61 x

 Polar Decomp: 1.56 x

 Tensor multiply: 3.35 x

 Eigenvalue: 2.90 x

 Eigenvector: 2.35 x

 Polar Decomp: 2.04 x

• SSE2 (on blade) • AVX (on chama)

Improved memory layout

simd::Double A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load_better(a, i);

double a[4*tensor_size];

Fast memory access, but requires significant code refactoring.

Memory layout time comparison

Standard memory layout for
array of vectors/tensors

2.11 ms

Improved layout

1.37 ms

Time to load, add 1.0 and store 20,000
32 length vectors

1.54 X speedup

1.7 X if we use pointer casting instead of load/store …

Performance improvements
using better memory layout

 Tensor multiply: 1.80 x

10% improvement

 Eigenvalue: 1.97 x

3% improvement

 Polar Decomp: 1.7 x

9% improvement

 Tensor multiply: 3.63 x

7% improvement

 Eigenvalue: 3.19 x

8% improvement

 Polar Decomp: 2.28 x

9% improvement

• SSE2 (on blade) • AVX (on chama)

Vectorized Material Models

• Re-implemented material models

• Vector instruction require slight algorithm re-write to consider
multiple material models running with the same instructions, e.g.:

Vec4<bool> isYielding = stress_trial > stress_yield;

if (any(isYielding)) {

while (any(notConverged)) {

// compute plasticity model sub-iterations

}

} else {

// compute elasticity model

}

Speedups:

Neo-hookean: > 2 X faster with 4-wide SIMD J2 plasticity: 1.5 – 2 X faster

Case Study: Branchless 3x3 Eigenvalue

Requires a variety of special functions:

 simd::Double x = sqrt(y);

 simd::Double x = min(y , z);

 simd::Double x = cos(arccos(y)/3);

 copysign: simd::Double x = abs(a)*sign(b);

 ternary operator: simd::Double x = istrue ? a : b;

Branches handled carefully to avoid expense

SIMD ternary operator

 Really don’t want to branch, but need:

x = (y<z) ? v : w;

simd::Bool b = y < z; // overloaded element-wise comparisons

simd::Double x = simd::if_then_else(b, v, w); // fake ternary

Implemented as:

__m128d istrue = _mm_cmplt_pd(y, z); // returns (2) 0s or NaNs

__m128d t1 = _mm_and_pd(istrue, v); // bitwise istrue & v

__m128d t2 = _mm_andnot_pd(istrue, w); // bitwise !istrue & w

x = _mm_add_pd(t1, t2);

Done using bitwise operations, very fast, no branch!

SIMD copysign

 simd::Double x = copysign(y, z); // fabs(y)*sign(z)

 sign_mask = _mm_set1_pd(-0.0);

 sign_z = _mm_and_pd(sign_mask , z);

 fabs_y = _mm_andnot_pd(sign_mask, y);

 copysign(y, z) = _mm_xor_pd(sign_z, fabs_y);

This is all bitwise magic, but encapsulated so users don’t have
to know implementation details.

Code example: handling the remainder
 Suppose input is a flat array: x[nelems];

 What if nelems is not divisible by 4? Need to handle the
remainder elements…

?

Code example: handling the remainder

for (int e=0; e < nelems; e+=simdWidth) {

simd::Double xLoc;

if (not_at_end_of_loop(e)) { // load all 4

xLoc = simd::load(x+e);

} else {

xLoc = simd::load_part(x+e, nelems-e); // load remainder

}

}

Alternative: cast directly to
simd::Double*
 Over allocate arrays to multiple of nsimd::Double

 32 bit aligned memory allocator for vector<>

 simd::Double* X = reinterpret_cast(double* x);

Code example: casting to simd::Double*

simd::Double* xLoc = simd_ptr_cast(x); // x is array of ‘3 double’
simd::Double* dotLoc = simd_ptr_cast(dot); // dot is array of double

for (int e=0; e < nelems; e+=simd::nelements) {
dotLoc[0] = 0.0;
for (int i=0; i < 3; ++i) {

dotLoc[0] += xLoc[i] * xLoc[i];
}
xLoc += 3;
dotLoc += 1;

}

>1.5 X improvement over original layout/load strategy

Real applications!
 Sierra-SM (since 2015)

 Implemented for key kernels only

 ~2X overall improvement using AVX

 Tensor math speedups:

 2.2 – 3.6 X (Haswell)

 2.4 – 5.3 X (KNL)

 Sierra-TF (since 2017)

 Refactored ~80% of code to use Kokkos and enable simd types

 Thermal matrix assembly speedups:
 1.6 X (Haswell)

 3.7 X (KNL)

 Nalu (since 2017)
 Implementation in progress

 SPARC (2018?)

Remaining challenges

 Prefetching and other common optimizations

 Effective even for bandwidth limited loops. iCache?

 Integration with Kokkos Views

 Already open source in Trilinos (stk::simd)

 For integration with Kokkos, moving to its own github

 Have prototyped a platform portable “SimdView”

 New C++ standard proposal might replace this
functionality – a long time off

