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What is SIMD?

 SSE2 instructions: (Intel, AMD ~2004)

 2 simd::Double, 4 floats 

 AVX instructions (Intel, AMD)

 4 simd::Double, 8 floats

 AVX-512 instructions (Intel ~2014)

 8 simd::Double, 16 floats

 AltiVec (IBM)

 GPU (eg. CUDA): (Nvidia)

 Can think of warp as 32-wide simd double
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Single Instruction, Multiple Data



SSE2/AVX/AVX512 SIMD in Sierra-SM
for nonlinear element assembly
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For simple loops, compilers can 
auto-vectorize:

for (int i=0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

Complicated loops don’t auto-vectorize:

Nested loops: vector/tensor math, etc

Eigenvectors

Material models



Auto-vectorization

 Simple loops can automatically use SIMD:
for (int i=0; i < N; ++i) {

a[i] = b[i] + c[i] * d[i];

}

 “Complicated” loops rarely auto-vectorized efficiently:
 Eigenvectors

 Constitutive law evaluations

 Use SIMD vector intrinsics (low level functions):

 Each intrinsic is equivalent to an assembly instruction



Outer loop vectorization
 Very difficult for compiler to vectorize over outer loops

double ** a, **b;

for (int i=0; i < N; ++i) {

function_with_inner_loop( a[i], b[i] );

}

 Easy when using simd intrinsics and templating on double type

simd::Double **a, **b;

for (int i=0; i < N%simd_width; ++i) {

function_with_inner_loop( a[i], b[i] );

}

template <typename T>

void function_with_inner_loop( T* array1, T* array2) {…}



SSE2/AVX intrinsics (Intel, AMD)

Compute {1,2,3,4} + 2.1:

double x[4] = {1,2,3,4}; 

__m256d a = _m256_loadu_pd(x);

__m256d b = _m256_set1_pd(2.1);

__m256d c = _m256_add_pd(a,b);

double result[4];

_m256_store_pd(result,c);
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Sierra SSE2/AVX interface

 Developers can’t know which instruction set is available, as it 
differs by processor generation:
 Chama (with Intel Sandy Bridge) has AVX

 Other Sandia machines only have SSE2 (or SSE4)

 Want to be able to write code which works for SSE2, AVX and 
even future AVX-512

 We provide an abstraction layer to simplify development



Sierra SSE2/AVX/AVX512 interface

Simd.h:

#if defined(AVX)

const int num_doubles = 4;

class simd::Double { __m256d d }; 

#elif defined(SSE2)

const int num_doubles = 2;

class simd::Double { __m128d d };

#else

const int num_doubles = 1;

typedef double simd::Double; 

#end

main.cc:

#include <Simd.h>

double x[nsimd::Double];

simd::Double a = simd::load(x);

simd::Double b = 2.1;

// operator overload:

simd::Double c = a+b; 

double output[nsimd::Double];

simd::store(output,c);



Sierra SSE2/AVX interface
 Difficult to have portable code:

simd::Double x = a+c/b;

 Overloaded math operator only available with certain 
compilers (gcc, clang)

 Wrapping SIMD type in a class creates some overhead

 Expression templates slightly slower (and harder to read)

 Want to provide a library of math functions 

 sqrt, log, exp, pow, max, min, fabs, etc. 

 either not implemented or implemented only with 
certain compilers (intel)



SIMD functionality

Standard math functions:

sqrt, cbrt, log, exp, pow, fabs, 

copysign, min, max

Simd boolean (mask) types:

<, <=, >, >=, == returns booleans

simd::Bool isTrue = x < 5;

Simd ternary:

simd::Double z = 
if_then_else(isTrue, 1.0, y); 

Simd reduction:

double a = reduceSum(z);

Operator overloads:

+, -, *, /, +=, -=, *=, /=

Also Simd Loads and 
Store

Bottlenecks:

_mm256_sqrt_pd() is only ~2X 
faster than std::sqrt()

Same with 
_mm512_sqrt_pd()?

Some compilers don’t 
implement cbrt, log, exp, etc.



Performance Improvements

SSE2 (on blade, gcc)

 1.83 x speed up (memory 
access still a slight bottleneck)

AVX (on chama, Intel compiler)

 2.01 x speed up (AVX often 
uses SSE for / and sqrt)

1,000,000 evaluations of random simd::Double:

Auto-vectorization sometimes gives similar improvements, but…
• can’t use sqrt()?, log(), exp() for all compilers (may work with Intel)
• doesn’t work well for tensor operations/complicated data layouts.

c = (a+b)*(a-b)/a; 



SIMD Tensor class

Process 4 tensors at a time (AVX):

double tensors[4*9];

// fill 4 tensor

Tensor33<simd::Double> a(tensors)

c = mult(a,b);

Eigenvector(c,vects,vals);

c[0] = a[8] + b[4];

double output[4*9];

c.Store(output);

a1 a2 a3

a5 a6

a9a8

a4

a7



Loading 4 2x2 tensors

simd::Double A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load(a+i, tensor_size);

double a[4*tensor_size];

Slow memory access, but necessary unless we change memory layout of a.



Performance improvements

 Tensor multiply: 1.80 x 3.63 x            2.42 x

 Eigenvalue:                1.97 x 3.19 x            5.25 x

 Polar Decomp: 1.7 x 2.28 x            4.89 x   

SSE2 AVX AVX512(KNC)



Performance Improvements:
tensor operation which may not auto-vectorize

 Tensor multiply: 1.62 x

 Eigenvalue: 1.96 x

 Eigenvector: 1.61 x

 Polar Decomp: 1.56 x

 Tensor multiply: 3.35 x

 Eigenvalue: 2.90 x

 Eigenvector: 2.35 x

 Polar Decomp: 2.04 x

• SSE2 (on blade) • AVX (on chama)



Improved memory layout

simd::Double A[4];
for (int i=0; i < 4; ++i) A[i] = simd::load_better(a, i);

double a[4*tensor_size];

Fast memory access, but requires significant code refactoring.



Memory layout time comparison

Standard memory layout for 
array of vectors/tensors

2.11 ms

Improved layout

1.37 ms

Time to load, add 1.0 and store 20,000 
32 length vectors

1.54 X speedup

1.7 X if we use pointer casting instead of load/store …



Performance improvements
using better memory layout

 Tensor multiply: 1.80 x

10% improvement

 Eigenvalue: 1.97 x

3% improvement

 Polar Decomp: 1.7 x

9% improvement

 Tensor multiply: 3.63 x

7% improvement

 Eigenvalue: 3.19 x

8% improvement

 Polar Decomp: 2.28 x

9% improvement 

• SSE2 (on blade) • AVX (on chama)



Vectorized Material Models

• Re-implemented material models

• Vector instruction require slight algorithm re-write to consider 
multiple material models running with the same instructions, e.g.:

Vec4<bool> isYielding = stress_trial > stress_yield;

if ( any(isYielding) ) {

while ( any(notConverged) ) {

// compute plasticity model sub-iterations

}

} else {

// compute elasticity model

}

Speedups:

Neo-hookean: > 2 X faster with 4-wide SIMD J2 plasticity: 1.5 – 2 X faster



Case Study: Branchless 3x3 Eigenvalue

Requires a variety of special functions:

 simd::Double x = sqrt(y);

 simd::Double x = min( y , z );

 simd::Double x = cos(arccos(y)/3);

 copysign: simd::Double x = abs(a)*sign(b);

 ternary operator: simd::Double x = istrue ? a : b;

Branches handled carefully to avoid expense



SIMD ternary operator

 Really don’t want to branch, but need:

x = ( y<z ) ? v : w;

simd::Bool b = y < z;      // overloaded element-wise comparisons

simd::Double x = simd::if_then_else(b, v, w);         // fake ternary 

Implemented as:

__m128d istrue = _mm_cmplt_pd(y, z);        // returns (2) 0s or NaNs

__m128d t1 = _mm_and_pd(istrue, v);         // bitwise  istrue & v

__m128d t2 = _mm_andnot_pd(istrue, w); // bitwise !istrue & w

x = _mm_add_pd(t1, t2);

Done using bitwise operations, very fast, no branch! 



SIMD copysign

 simd::Double x = copysign(y, z); // fabs(y)*sign(z)

 sign_mask = _mm_set1_pd(-0.0);

 sign_z = _mm_and_pd( sign_mask , z );

 fabs_y = _mm_andnot_pd(sign_mask, y);

 copysign(y, z) = _mm_xor_pd(sign_z, fabs_y);

This is all bitwise magic, but encapsulated so users don’t have 
to know implementation details.



Code example: handling the remainder
 Suppose input is a flat array: x[nelems]; 

 What if nelems is not divisible by 4?  Need to handle the 
remainder elements…

?



Code example: handling the remainder

for (int e=0; e < nelems; e+=simdWidth)  {

simd::Double xLoc;

if ( not_at_end_of_loop(e) ) {                                  // load all 4 

xLoc = simd::load(x+e);

} else {

xLoc = simd::load_part(x+e, nelems-e);           // load remainder

}

} 



Alternative: cast directly to 
simd::Double*
 Over allocate arrays to multiple of nsimd::Double

 32 bit aligned memory allocator for vector<>

 simd::Double* X = reinterpret_cast(double* x);



Code example: casting to simd::Double*

simd::Double* xLoc = simd_ptr_cast(x);      // x is array of ‘3 double’
simd::Double* dotLoc = simd_ptr_cast(dot); // dot is array of double

for ( int e=0; e < nelems; e+=simd::nelements )  {
dotLoc[0] = 0.0;
for ( int i=0; i < 3; ++i )  {

dotLoc[0] += xLoc[i] * xLoc[i];
}
xLoc += 3;
dotLoc += 1;

} 

>1.5 X improvement over original layout/load strategy



Real applications!
 Sierra-SM (since 2015)

 Implemented for key kernels only

 ~2X overall improvement using AVX

 Tensor math speedups:

 2.2 – 3.6 X (Haswell)

 2.4 – 5.3 X (KNL)

 Sierra-TF (since 2017)

 Refactored ~80% of code to use Kokkos and enable simd types

 Thermal matrix assembly speedups:
 1.6 X (Haswell)

 3.7 X (KNL)

 Nalu (since 2017)
 Implementation in progress

 SPARC (2018?)



Remaining challenges

 Prefetching and other common optimizations

 Effective even for bandwidth limited loops. iCache?

 Integration with Kokkos Views

 Already open source in Trilinos (stk::simd)

 For integration with Kokkos, moving to its own github

 Have prototyped a platform portable “SimdView” 

 New C++ standard proposal might replace this 
functionality – a long time off


