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Validation data rh) e

10 rear-facing reference cells Reference Cells

on plate with module form = 3rear-facing

factor = 2 front facing
Modules

_ = 2 bifacial (east)
Calibrated to =4W/m?2 @1000 = 2 monofacial (west)

W/m? Adjustable height, tilt, albedo
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Rear surface irradiance model ) e

= View factor (configuration, shape factor) F,; 55, :
fraction of radiation from A1l that strikes A2

=  Assumes diffuse reflection of irradiance from Al

specular
reflection

reflection

= |rradiance (W) on surface A2 from source Al:

Gara2 = Ga1 X Fp1542
= Total irradiance on A2:

Gaz = Z Ga,a2 X Fa;sa2
i

By GianniG46 - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid
=11902338

= JIrradiance on a rear-surface cell from:
= Reflections from shaded ground
= Reflections from unshaded ground
= Sky diffuse
= Direct beam
= Specular reflections
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Efficiently calculating view factors
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cos computed by matrix product
Fast enough on CPU, x10 faster

Approximate integrand with value
on GPU

For each grid cell, compute VF to each receiving cell
at centroids of each cell

Grid the ground (emitting) surface

Fl—!r?

A
Implemented as massively parallel algebraic

computation
Compute once before irradiance

VFs depend on geometry NOT
modeling

Formal approach
sun position




Irradiance modeling ) e,

Irradiance reflected from a ground grid cell:
= Shaded cell: Gar = a X Dif fuseSky X Fyq1_,5y
= Unshadedcell: Gy = a X (DNI cosZ + Dif fuseSky X FA1—>sky)

Part of diffuse sky irradiance is blocked by
array objects (e.g., modules)

Fy41-sky calculated as
solid angle of
projection of Al

Dif fuseSky = DHI -
circumsolar

VF, = fraction of hemisphere of projection

Circumsolar
estimated using Hay-
Davies




Validation: cell by cell ) e,
= May5, 2017: clear skies all day

= |solated open rack, 30° tilt, clear view to
north

= ~15 W/m? negative bias

= Measurements = Model
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Validation: cell by cell ) S,

Modmed{WHmE}

All-sky conditions

Isolated open rack, 30° tilt, clear view to
north

Error envelope *=10%

April 30 -Cloudy * May 02 - Cloudy - May 05 - Clear
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Validation: cell by cell ) S,

= All-sky conditions = 20 W/m? negative bias
= |solated on block, vertical, ™ ‘Ears’:directirradiance on rear surface
clear view to north = Preceding spike: near-field reflection
— [Measurements = Model
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Observations rh) s

In general:

= Rear-surface irradiance is mostly from ground reflection
= Ground reflected irradiance is primarily from sunlit areas
Consequently:

= Rear-surface irradiance ~proportional to albedo

= Rear-surface irradiance increases as sunlit proportion of back-
field increases
= |ncrease array height, spacing
= Gaps between cells

" |nfrequent sources (direct, near-field reflections) can have
significant magnitude
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Rear surface irradiance model - results

) Retons

Laboratories
= Negative bias ~15 W/m2 ‘Noise’ from
= Model generally follows o discrete grid on
patterns in data ground Top ool
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Rear surface irradiance model - results ) feos

Grid cell color corresponds to irradiance
contributed to middle cell
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Cell to cell irradiance va
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Simulated irradiance for each of 60
cells

Peak difference between cells on the
order of 50 W/m?

Difference becomes negligible during
cloudy sky conditions

1 1 1 1 1
6 8 10 12 14 16 18
Hour of the day



Conclusions rh) s

= Cell-scale rear irradiance model with accuracy =10%
* Model shows bias, appears related to sky diffuse
fraction
= Negative bias during clear skies

= Positive bias sometimes present during cloudy conditions

= Computationally feasible but implementation
matters

= 3 cells, 10 objects, 700x700 grid, 150 time steps ~2 min on
a typical PC with CPU processing

= 14s with GPU processing
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