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Nuclear Reactor Accidents: “Core-On-The- )
Floor” &

= During a Nuclear Reactor Accident, one
possible scenario is for the reactor to melt
down and drop a hot mixture of fuel rods
and cladding on the concrete below the
reactor

= This is termed “Core-On-The-Floor,” since
the Corium, a mixture of ZrO, cladding

and UO, fuel become molten, and breach _ R
Water Ingression ollin ":::r::
the reactor Cortum : ; y i
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= The Corium can react with water and
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concrete to form hydrogen gas, Which is  casfim — —mm—

h |gh Iy com b u St' b I e Ablation and generation of off-gases

We are trying to develop predictive models of Corium spreading to incorporate
into MELCOR, Sandia’s Nuclear Reactor Safety Code




Motivation: Extend Reactor Safety Using e
Detailed Multiphysics Modeling Y

= Develop more accurate model to
help understand molten reactor
material transport in severe reactor
accidents
= Manage and mitigate reactor

containment loads through improved
designs

= Enhance ability to model Corium flow 7 MELCOR is an integrated,

engineering-level code to
model and simulate severe
reactor accidents

= Multiphase flow and heat transfer

= |mprove treatment for interfacial
chemistry and dynamics

Important Severe Accident Phenomena

= Follow surface topology and material
breakup with advanced free surface
flow algorithms

Accident initiation [IEEEG_—_———

Reactor coolant thermal hydraulics I

Loss of core coolant I

Core meltdown and fission product release N
Reactor vessel failure NG

Transport of fission products in RCS and Containment
Fission product aerosol dynamics I
Molten core/basemat interactions I
Containment thermal hydraulics I
Fission product removal processes N
Release of fission products to environment N B
Engineered safety systems - sprays, fan coolers, etc R
lodine chemistry, and more I n
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Corium Spreading Experiment =
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Journeau et al., Nuc. Eng. Design, 2003



Ramacciotti Viscosity Model =

Table 1
Properties of molten corium.

Viscosity is temperature-dependent

« It increases from water-like to ey Vv
. . . . 3a
solid between the liquidus and Density 8000 kg/m
. Liquidus Temperature 2670 °C
solidus temperatures Solidus Temperature 2575 °C®
* |t ranges from .0045Pa s above Specific Heat ggg Jk/Jl;iIKC
. Jig Fusion Heat g"
o)
2670°C and solidifies t0 147100 .. a1 conductivity 2.88 W/m/k"
Pa s below 2575°C Liquid Dynamic Viscosity 0.0045 Pa s°
(Melt Temperature at 2670 °C)
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=+-* Thomas
100000 —— Arrhenius law with C=4.8 6
® Measured viscosity 10 —&— Yeon et al. (FARO L26s)
10000 —Residual liquid phas viscosity —&— Kawahara & Oka (FARO L28S)[ oo friremommenes
¥ o0 g 10* —=—Ye etial.r(VULCANio VE-U7)
% 100 <
s R 2 10?
g 10 é
1 Z 10°
0.1 E
2, 2
0.01 = 10
1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 Q

e Tl —T 104050 02 04 06 08 10
u - l.ll-exp(25°(:'fs) fS — ﬁ Solid Fraction
1 — Is

Ramacciotti et al., Nuc. Eng. Design, 2001 Na et al., Prog. Nuc. Energy, 2017




Finite Element Methods for Moving Interfaces in

@
Natlonal
Labosainries

Fluid/Thermal Applications Tested at Sandia

Enriched Finite Element Methods

ALE

Diffuse LS

XFEM

CDFEM

» Separate, static
blocks for gas and
liquid phases

» Static discretization

* Single block with
smooth transition
between gas and
liquid phases

. Static discretization
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* Single block with
sharply enriched
elements (weak or
strong) spanning
gas and liquid
phases

* Interfacial
elements are
dynamically
enriched to
describe phases

» Separate, dynamic
blocks for gas and
liquid phases

* Interfacial elements
are dynamically
decomposed into
elements that
conform to phases
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Conformal Decomposition Finite Element e
Method (CDFEM)

= Simple Concept (Noble, et al. 2010)
= Use one or more level set fields to define materials or phases

= Decompose non-conformal elements into conformal ones
= Obtain solutions on conformal elements
= Related Work
= Lietal (2003) FEM on Cartesian Grid with Added Nodes
= |linca and Hetu (2010) Finite Element Immersed Boundary

= S.Soghrati and P.H. Geubelle (2012) Interface Enriched Finite
Element

= Properties

= Supports wide variety of interfacial conditions (identical to boundary
fitted mesh)

= Avoids manual generation of boundary fitted mesh

= Supports general topological evolution (subject to mesh resolution)
= Similar to finite element adaptivity

= Uses standard finite element assembly including data structures,
interpolation, quadrature




ICS

Capillary Hydrodynami

Formulation

Navier - Stokes

Incompressible with a pressure for each phase
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ICS

Interface Dynami

Formulation

Level Set Equation

Advection equation
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id-Air Interface
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Capillary Force
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interfacial tension
Surface viscosity type stabilization

= Laplace-Beltrami implementation avoids second derivatives

ion

I1zat

= Jump in stress due to
I(yxn +V.7)N, dF:IyVSNi dr, v, =(1-nn)v
T

Same model used in ALE simulations
F .
Interface Stabil

= Based on a paper by Hysing (2010)
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id Phase Only
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Heat Transfer

Energy Equation
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Solve heat transfer in the liquid phase only

Radiation and convect
4
qsurf — _“ hconv (T _Tref ) + hrad (T _T
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Heat transfer coefficients used for turbulent heat
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2D Corium Spreading =

T
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Corium Spreading: Variable Surface i

Tension vs. No Surface Tension =9

time = 0s I I

time = 0.05s I I

time = 0.10s

time = 0.15s

time = 0.20s




Cooling on the Bottom: Small vs. Large Heat Fluggﬂ\;

time = 0s I I
time = 0.05s l
time = 0.10s
time = 0.15s
|
E o . 2.750e+03
— [ iziszazzi

1 2.188e+03

time = 0.20s } 2.000e+03
P S o) ;




Moving contact line model ="

Wetting Line Force Navier-Slip Condition

f =7t }?=%(17w — Ucy,)

t; = 1, cos b5 + 7, sin G;

T T
09l / [—Wallvelodtty] -
08l Contact Lin i
07
0.6
=
205
[
Z 04
0.3
0.2
0.1
0 L 1
Phase 1 1 05 05 1
Distance

= Assume microscopic (static) contact angle is a constant (6;) (hydrodynamic type
method)

= For a given fluid pair, specify kinematic and physical properties, surface tension
force (y), and static contact angle (6;)

=  Pull contact line with surface tension force at Young’s equilibrium contact angle
= Select the Navier-Slip length () to fit to experimental data




3D Spreading Model (CDFEM) ()

= Column slumping similar to 2D examples

= Wetting line entrains air and has difficulty maintaining mesh
integrity

Time = 0.0000

T

2.750e+03
2.688e+03
2.625e+03
2.562e+03

2.500e+03




3D Spreading Model (CDFEM) =

= Column slumping similar to 2D examples

= Wetting line entrains air and has difficulty
maintaining mesh integrity

Time = 0.1261

T

2.750e+03
2.688e+03
2.625e+03
2.562e+03
2.500e+03




3D Spreading Model (CDFEM) Gil—=

Lahorainries




3D Corium Spreading in Trough: Level Set =
Method: Diffuse Interface oA

@

Try to smooth the wetting front using a diffuse representation

Level set method: Red phase has corium and air

Corium fills the chute at time 0 and flows with gravity into the trough
Yellow and green parts are steel

19
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3D Corium Spreading in Trough )

Time = 0.000
-

T

2.756e+03
2.717e+03
2.678e+03

2.639e+03
2.600e+03

N

» For level set, there is currently no way to apply boundary condition on the free
surface for radiative heat loss

 Cooling is applied through the steel trough 20




Experiments for Flow and Solidification ="

= Benchtop experiments were
carried out on model system

= Developed experimental
procedures for testing the
proposed concept using PbO as
a surrogate for Corium.

= Tested molten PbO at 975°C
onto silica dish.

= Surface temperatures were
monitored during the pour
experiments

21



T

Experimental Modeling — Lead Oxide Spread

« Spread of melt modeled using Aria
» Finite-element code using level set method to discretize the melt
» Spread rate influenced by surface tension and gravity forces
» Effect of heat transfer on spread rate has been modeled
» Viscosity — temperature relationship influences spread rate
» Spread is halted when external heat transfer is applied at lead
boundary
 Demonstrate Aria’s capability for modeling molten spreading and
solidification

1.273e+03
1.245e+03
1.216e+03
1.188e+03
1.160e+03

Spread of lead oxide with no heat heat

flux & temperature due to heat flux

4.000e-02
3.000e-02
2.000e-02

1.000e-02
0.000e+00

Spread of lead oxide as a function of viscosity




Experimental Modeling — CO, bubbles®&.

» CO, bubble rise can be modeled
« Initial array of CO, bubbles emanate from CaCO4;-PbO boundary
» Heat flux boundary conditions change local viscosity
» Bubbles rise via buoyant forcing and local convection inside spreading melt
» Coalescence of bubbles
» Better heat transfer model under development
» CaCO, endothermic reaction
23




Conclusions =

= We are working on modeling Corium flow after a nuclear
accident to support MELCOR, a reactor safety code

= CDFEM is used to solve the spreading of the molten Corium
material

= Problem is difficult:

= High temperatures involved with high Peclet number
= Low viscosity of melt, temperature-dependence and solidification
= Low capillary number and wetting of free surface

= Next steps:
= |ow-order turbulence model

=  Smoothing of the wetting line to improve mesh quality and reduce
numerical air entrainment
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