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 During a Nuclear Reactor Accident, one 
possible scenario is for the reactor to melt 
down and drop a hot mixture of fuel rods 
and cladding on the concrete below the 
reactor

 This is termed “Core‐On‐The‐Floor,” since 
the Corium, a mixture of ZrO2 cladding 
and UO2 fuel become molten, and breach 
the reactor

 The Corium can react with water and 
concrete to form hydrogen gas, which is 
highly combustible

Nuclear Reactor Accidents: “Core‐On‐The‐
Floor”

We are trying to develop predictive models of Corium spreading to incorporate 
into MELCOR, Sandia’s Nuclear Reactor Safety Code
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 Develop more accurate model to 
help understand molten reactor 
material transport in severe reactor 
accidents
 Manage and mitigate reactor 

containment loads through improved 
designs

 Enhance ability to model Corium flow
 Multiphase  flow and heat transfer
 Improve treatment for interfacial 

chemistry and dynamics
 Follow surface topology and material 

breakup with advanced free surface 
flow algorithms

Motivation: Extend Reactor Safety Using 
Detailed Multiphysics Modeling

MELCOR is an integrated, 
engineering-level code to 
model and simulate severe 
reactor accidents



Corium Spreading Experiment
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Journeau et al., Nuc. Eng. Design, 2003



Ramacciotti Viscosity Model

5

Na et al., Prog. Nuc. Energy, 2017

Viscosity is temperature-dependent
• It increases from water-like to 

solid between the liquidus and 
solidus temperatures

• It ranges from .0045Pa s above 
2670oC and solidifies to 147100 
Pa s below 2575oC

Ramacciotti et al., Nuc. Eng. Design, 2001



Enriched Finite Element Methods

ALE Diffuse LS XFEM CDFEM
• Separate, static 

blocks for gas and 
liquid phases

• Static discretization

• Single block with 
smooth transition 
between gas and 
liquid phases 

• Static discretization

• Single block with 
sharply enriched 
elements (weak or 
strong) spanning 
gas and liquid 
phases

• Interfacial 
elements are 
dynamically 
enriched to 
describe phases

• Separate, dynamic 
blocks for gas and 
liquid phases

• Interfacial elements 
are dynamically 
decomposed into 
elements that 
conform to phases

Finite Element Methods for Moving Interfaces in 
Fluid/Thermal Applications Tested at Sandia



Conformal Decomposition Finite Element 
Method (CDFEM)

 Simple Concept (Noble, et al. 2010)
 Use one or more level set fields to define materials or phases
 Decompose non‐conformal elements into conformal ones
 Obtain solutions on conformal elements

 Related Work
 Li et al. (2003) FEM on Cartesian Grid with Added Nodes
 Ilinca and Hetu (2010) Finite Element Immersed Boundary
 S. Soghrati and P.H. Geubelle (2012)  Interface Enriched Finite 

Element

 Properties
 Supports wide variety of interfacial conditions (identical to boundary 

fitted mesh)
 Avoids manual generation of boundary fitted mesh
 Supports general topological evolution (subject to mesh resolution)

 Similar to finite element adaptivity
 Uses standard finite element assembly including data structures, 

interpolation, quadrature



Formulation: Capillary Hydrodynamics

Navier ‐ Stokes
 Incompressible with a pressure for each phase

 Galerkin, Backward Euler, Moving mesh term

 PSPG stabilization

 SUPG stabilization
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Formulation: Interface Dynamics

Level Set Equation
 Advection equation

 Galerkin, Backward Euler

 SUPG stabilization

 Periodic renormalization
 Compute nearest distance to interface
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Models: Liquid‐Air Interface

Capillary Force
 Same model used in ALE simulations

 Jump in stress due to interfacial tension
 Laplace‐Beltrami implementation avoids second derivatives

Interface Stabilization
 Surface viscosity type stabilization

 Based on a paper by Hysing (2010)
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Heat Transfer: Liquid Phase Only

Energy Equation
 Solve heat transfer in the liquid phase only 

Heat transfer coefficients used for turbulent heat 
transfer in air

 Radiation and convection in air phase
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2D Corium Spreading
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Corium Spreading: Variable Surface 
Tension vs. No Surface Tension
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time = 0s

time = 0.05s

time = 0.15s

time = 0.10s

time = 0.20s



Cooling on the Bottom: Small vs. Large Heat Flux
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time = 0s

time = 0.05s

time = 0.15s

time = 0.10s

time = 0.20s



Moving contact line model
Wetting Line Force
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Navier-Slip Condition

 Assume microscopic (static) contact angle is a constant ሺߠ௦ሻ (hydrodynamic type 
method)

 For a given fluid pair, specify kinematic and physical properties, surface tension 
force ሺߛሻ, and static contact angle ሺߠ௦ሻ

 Pull contact line with surface tension force at Young’s equilibrium contact angle
 Select the Navier‐Slip length  ߚ to fit to experimental data
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 Column slumping similar to 2D examples
 Wetting line entrains air and has difficulty maintaining mesh 

integrity

3D Spreading Model (CDFEM)
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 Column slumping similar to 2D examples
 Wetting line entrains air and has difficulty 

maintaining mesh integrity

3D Spreading Model (CDFEM)



3D Spreading Model (CDFEM)
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3D Corium Spreading in Trough: Level Set 
Method: Diffuse Interface

• Try to smooth the wetting front using a diffuse representation
• Level set method: Red phase has corium and air
• Corium fills the chute at time 0 and flows with gravity into the trough
• Yellow and green parts are steel



3D Corium Spreading in Trough
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• For level set, there is currently no way to apply boundary condition on the free 
surface for radiative heat loss

• Cooling is applied through the steel trough



Experiments for Flow and Solidification
 Benchtop experiments were 

carried out on model system
 Developed experimental 

procedures for testing the 
proposed concept using PbO as 
a surrogate for Corium.

 Tested molten PbO at 975oC 
onto silica dish.

 Surface temperatures were 
monitored during the pour 
experiments

21



Experimental Modeling – Lead Oxide Spread

22

Spread of lead oxide as a function of viscosity 
& temperature due to heat flux

• Spread of melt modeled using Aria
• Finite-element code using level set method to discretize the melt
• Spread rate influenced by surface tension and gravity forces

• Effect of heat transfer on spread rate has been modeled
• Viscosity – temperature relationship influences spread rate
• Spread is halted when external heat transfer is applied at lead 

boundary
• Demonstrate Aria’s capability for modeling molten spreading and 

solidification

Spread of lead oxide with no heat heat 
flux



Experimental Modeling – CO2 bubbles
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• CO2 bubble rise can be modeled
• Initial array of CO2 bubbles emanate from CaCO3-PbO boundary
• Heat flux boundary conditions change local viscosity 
• Bubbles rise via buoyant forcing and local convection inside spreading melt
• Coalescence of bubbles

• Better heat transfer model under development
• CaCO3 endothermic reaction



Conclusions
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 We are working on modeling Corium flow after a nuclear 
accident to support MELCOR, a reactor safety code

 CDFEM is used to solve the spreading of the molten Corium 
material
 Problem is difficult:

 High temperatures involved with high Peclet number
 Low viscosity of melt,  temperature‐dependence and solidification
 Low capillary number and wetting of free surface

 Next steps:
 Low‐order turbulence model
 Smoothing of the wetting line to improve mesh quality and reduce 

numerical air entrainment


