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DT/DD neutron yields approximate lower bound for BR:

lo-1
• YDT IYDD = Y highly sensitive
to fuel magnetization

• Triton gyroradius: R/rL,t a BR

• Reduced model developed to
understand physics/scalings of Y 2

`-'• Two Sandia-developed codes ct
" 4 0.5

solve model using experimental cl)
measurements as inputs ct

• Consistent with simulations [4]

Uniform plasma model results for z2591

• Indicates B> 80 MG at R 50 um

• Trapped triton fraction: 25 - 70%

• Hot spot magnetic flux lost: 30 - 60%

Experimental DT/DD Numerical DT/DD & confidence interval

BR from neutron spectra Estimated trapped triton fraction
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Physics implications for MagLIF

• Electron magnetization also achieved

• Triton trapping ct-trapping in DT fuel

• Ignition-relevant regime [5,6]

DT/DD neutron yield also constrains fuel-pusher mix:

• Mix possible from beryllium liner
0.03

.........

• Mix lowers Y curves at high BR 0.02-

• Max possible BR, (BR).d, assumes ()im-

perfect flux compression

• Data suggests Be atom fraction
<10%, upper bound: -20%

0.5 1

BR (G • cm)
dashed : pdR =1 mg/cm2, nBe/ntot = cBe : 0.1

solid : pdR = 2 mg/cm2, cBe (ascending order) : 0.3, 0.2, 0.1, 0

1.5

Secondary DT neutron spectra refine understanding of B:

• Measured DT neutron energy spectra anisotropic

• Calculated spectra match data well, suggesting
narrower range: BR ti 4(+0.7) x 105G • cm

• Axial view shows double-peak, due to Doppler
shift from most reactive tritons

• Radial view shows single peak

• Spectra features highly sensitive to BR!

• Figures below show triton reaction probability
(R,i) based on initial radial position and pitch-
angle relative to magnetic field = cos 0),
source of structure in spectra easily identified
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Magnetized Liner Inertial Fusion (MagLIF):

Magnetic field essential for performance

1. Apply extemal B

3. Stagnate, burn

Roosevelt experimental
temperature/yield data [2]3.
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2. Preheat, implode

Roosevelt experimental
fuel self-emission data [2]:
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Secondary fusion reactions in pure deuterium
fuel dramatically altered by magnetic field 131
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Neutron

diagnostics

•
•
•
•
•
•
•
•

2.45 MeV

♦♦
1

•• •

Strong magnetic field causes
triton path lengths to scale
with Z instead of R (Z >> R)
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New analysis examines isobaric 1D fuel profiles:
• Power law density, temperature, Bz:
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• 1D profiles exhibit almost universally higher
DT/DD ratios than "equivalent" flat profiles

-Tb
T = T,[1 - 

j
„ 

T,

VO) r 1(3  - Tb1

T,

1
(Z) + 1

* X(r) mp (A)

*Bz cx p

• Normalizations tuned to flat profiles, using
DD primary yields or 12 keV photon yields +
either fuel areal density or total mass

• Due primarily to redistribution of flux to fuel
periphery, better fast ion trapping

• Reduces inferred lower bound for BR
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• DT/DD sensitive to pR and mix 2
challenging quantities to measure/infer. Is
there more robust method to infer BR?

• IfBR can be determined independently,
better chance of constraining mix with
DT/DD ratio

Axial:Radial FWHM ratio robust to stagnation uncertainties:
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Rfwhm demonstrates robustness to uncertainties in mix, pR, temperature, and profile shape

Magnetized tritons indicate good a-coupling in DT fuel:
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