

*Exceptional
service
in the
national
interest*

Peridynamic model for fatigue cracks

Stewart Silling
Sandia National Laboratories
Albuquerque, New Mexico

Abe Askari
The Boeing Company
Seattle, Washington

2014 SES 51st Annual Technical Meeting
Minisymposium on Computational Fracture Mechanics
Purdue University
October 1, 2014

U.S. DEPARTMENT OF
ENERGY

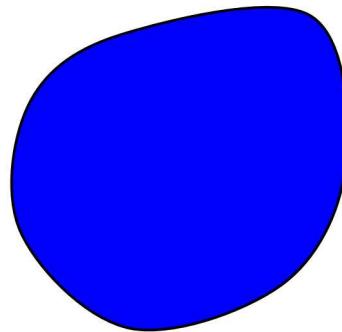
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline

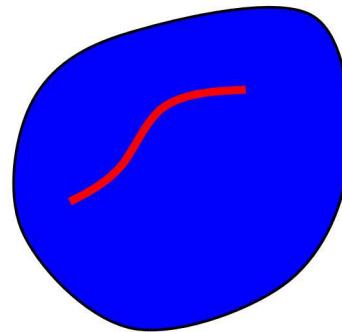
- Peridynamics: What it is
- Damage and fracture
- Fatigue model
- Calibration of parameters

Purpose of peridynamics*

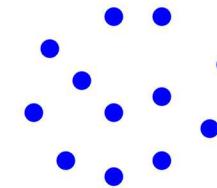
- To unify the mechanics of continuous and discontinuous media within a single, consistent set of equations.



Continuous body



Continuous body
with a defect



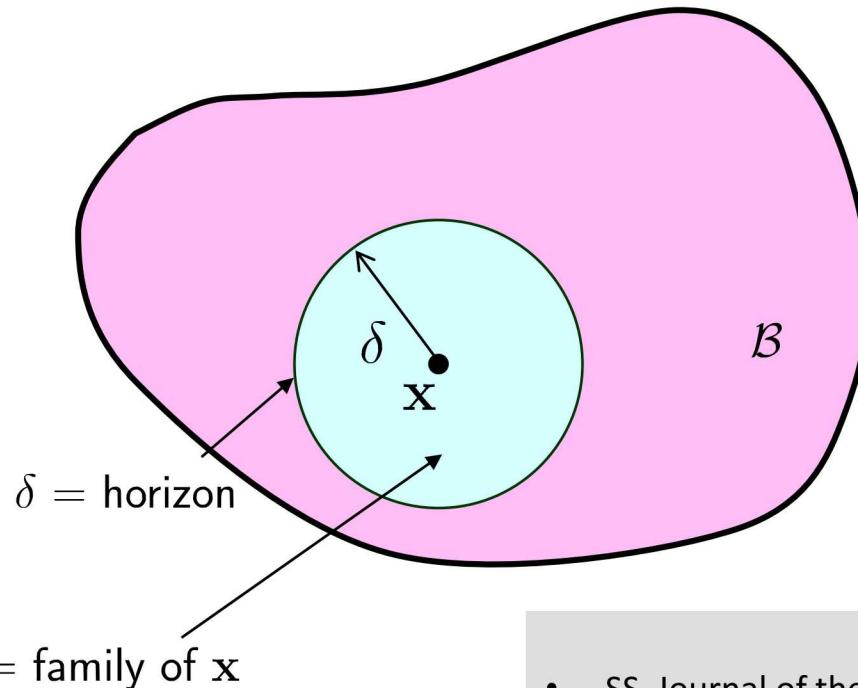
Discrete particles

- Why do this?
 - Avoid coupling dissimilar mathematical systems (A to C).
 - Model complex fracture patterns.
 - Communicate across length scales.

* Peri (near) + dyn (force)

Peridynamics basics: Horizon and family

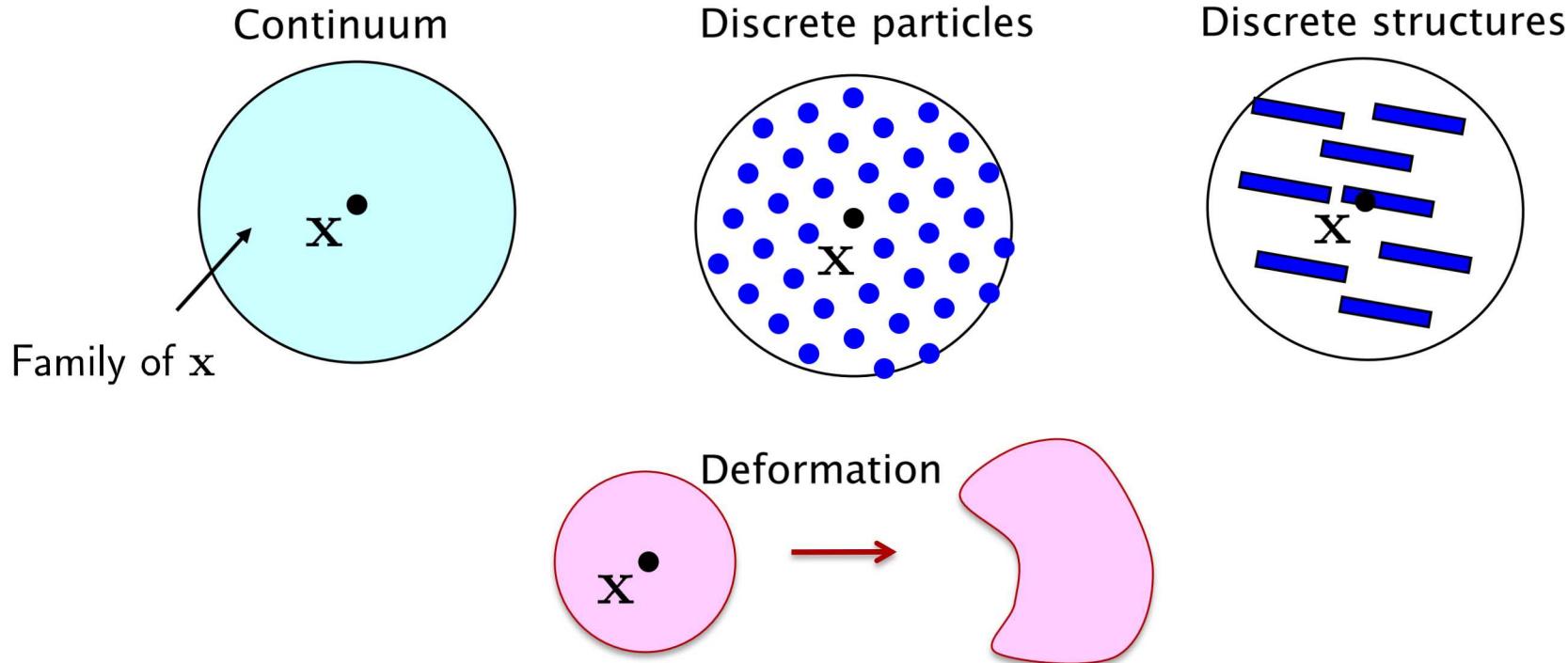
- Any point x interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of x is called the “family” of x , \mathcal{H}_x .



General references

- Silling, *Journal of the Mechanics and Physics of Solids* (2000)
- Silling and R. Lehoucq, *Advances in Applied Mechanics* (2010)
- Madenci & Oterkus, *Peridynamic Theory & Its Applications* (2014)

Peridynamic nonlocality: Strain energy at a point



- Key assumption: the strain energy density at $W(x)$ is determined by the deformation of its family.

Potential energy minimization yields the peridynamic equilibrium equation

- Potential energy:

$$\Phi = \int_{\mathcal{B}} (W - \mathbf{b} \cdot \mathbf{y}) \, dV_{\mathbf{x}}$$

where W is the strain energy density, \mathbf{y} is the deformation map, \mathbf{b} is the applied external force density, and \mathcal{B} is the body.

- Euler-Lagrange equation is the equilibrium equation:

$$\int_{\mathcal{H}_{\mathbf{x}}} \mathbf{f}(\mathbf{q}, \mathbf{x}) \, dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}) = 0$$

for all \mathbf{x} . \mathbf{f} is the *pairwise bond force density*.

Peridynamics basics: States

- A *peridynamic state* is a mapping on bonds in a family.
- We write:

$$\mathbf{u} = \underline{\mathbf{A}} \langle \xi \rangle$$

where ξ is a bond, $\underline{\mathbf{A}}$ is a state, and \mathbf{u} is some vector.

- States play a role in peridynamics similar to that of second order tensors in the local theory.

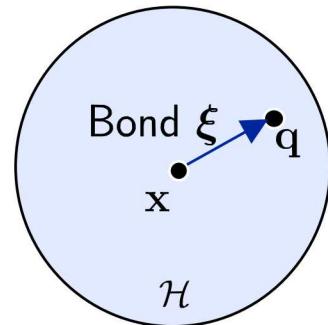
Peridynamics basics: Kinematics

- The *deformation state* is the function that maps each bond ξ into its deformed image:

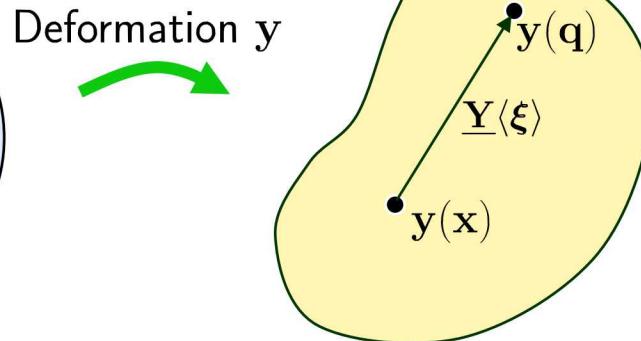
$$\underline{Y}(\xi) = \mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x})$$

where \mathbf{y} is the deformation and

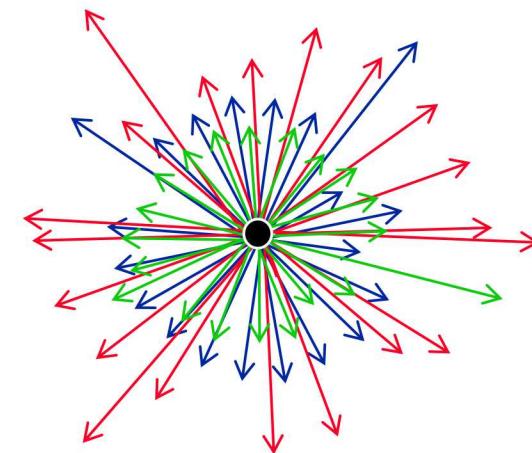
$$\xi = \mathbf{q} - \mathbf{x}.$$



Undeformed family of \mathbf{x}



Deformed family of \mathbf{x}



Deformed images of bonds:
State description allows complexity

Peridynamics basics: Force state

- $\mathbf{f}(\mathbf{x}, \mathbf{q})$ has contributions from the material models at both \mathbf{x} and \mathbf{q} .

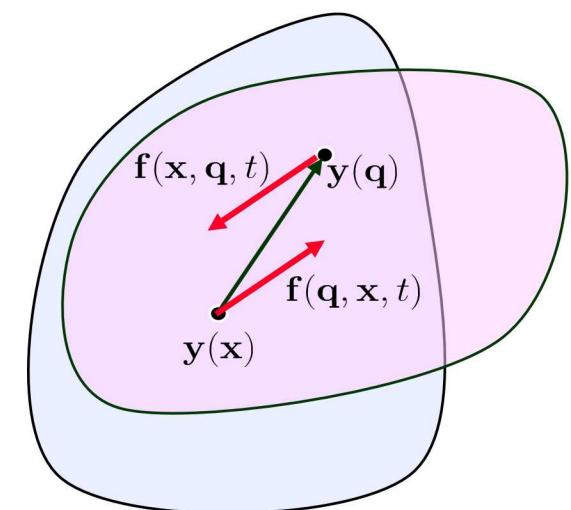
$$\mathbf{f}(\mathbf{x}, \mathbf{q}) = \mathbf{t}(\mathbf{x}, \mathbf{q}) - \mathbf{t}(\mathbf{q}, \mathbf{x})$$

$$\mathbf{t}(\mathbf{x}, \mathbf{q}) = \underline{\mathbf{T}}[\mathbf{x}] \langle \mathbf{q} - \mathbf{x} \rangle, \quad \mathbf{t}(\mathbf{x}, \mathbf{q}) = \underline{\mathbf{T}}[\mathbf{q}] \langle \mathbf{x} - \mathbf{q} \rangle$$

- $\underline{\mathbf{T}}[\mathbf{x}]$ is the *force state*: maps bonds onto bond force densities. It is found from the constitutive model:

$$\underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}})$$

where $\hat{\underline{\mathbf{T}}}$ maps the deformation state to the force state.



Peridynamics basics: Bonds and bond force density

- The vector from \mathbf{x} to any point \mathbf{q} in its family in the reference configuration is called a *bond*.

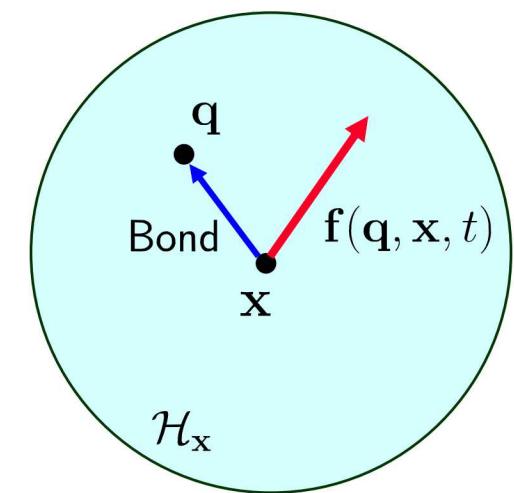
$$\boldsymbol{\xi} = \mathbf{q} - \mathbf{x}$$

- Each bond has a *pairwise force density* vector that is applied at both points:

$$\mathbf{f}(\mathbf{q}, \mathbf{x}, t).$$

- Equation of motion is an integro-differential equation, not a PDE:

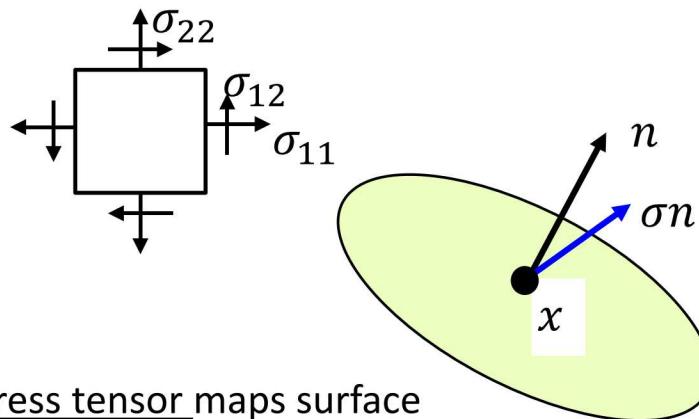
$$\rho(\mathbf{x})\ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{q}, \mathbf{x}, t) \, dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}, t).$$



Peridynamics basics: The nature of internal forces

Standard theory

Stress tensor field
(assumes continuity of forces)



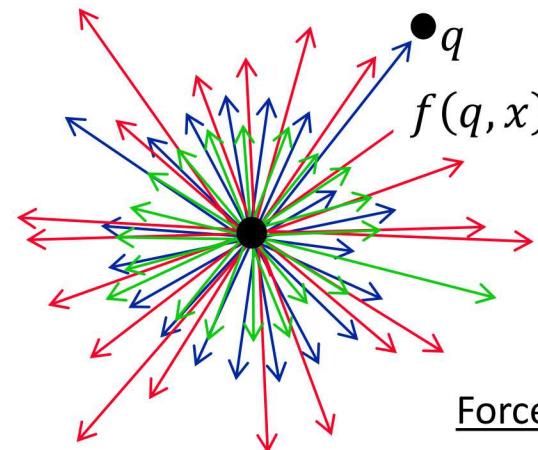
Stress tensor maps surface
normal vectors onto
surface forces

$$\rho \ddot{u}(x, t) = \nabla \cdot \sigma(x, t) + b(x, t)$$

Differentiation of surface forces

Peridynamics

Bond forces between neighboring points
(allowing discontinuity)



Force state maps bonds
onto bond forces

$$\rho \ddot{u}(x, t) = \int_{H_x} f(q, x) dV_q + b(x, t)$$

Summation over bond forces

Peridynamics basics: Elastic materials

- A peridynamic elastic material has strain energy density given by

$$W(\underline{\mathbf{Y}}).$$

- The force state is given by

$$\hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}}) = W_{\underline{\mathbf{Y}}}(\underline{\mathbf{Y}})$$

where $W_{\underline{\mathbf{Y}}}$ is the Frechet derivative of the strain energy density.

Peridynamic vs. local equations

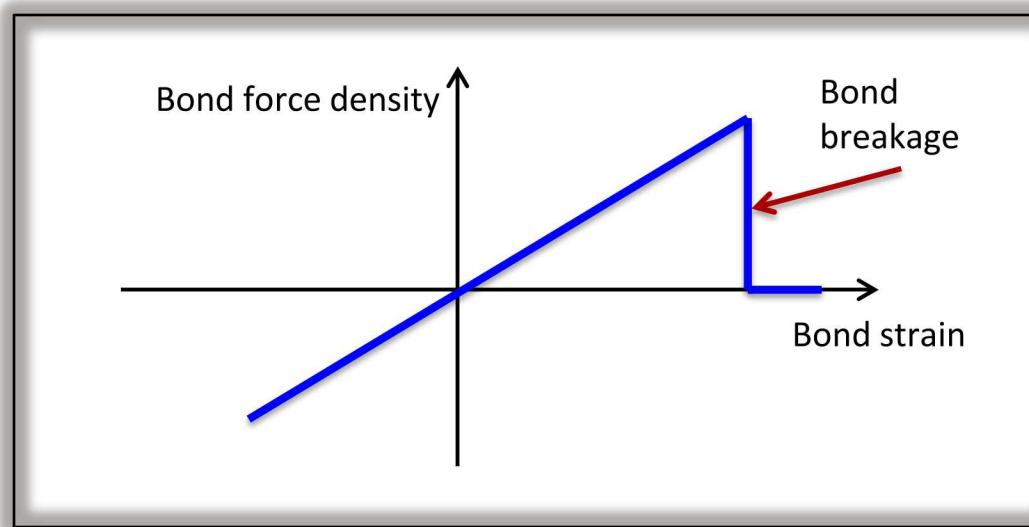
- The structures of the theories are similar, but peridynamics uses nonlocal operators.

Relation	<i>Peridynamic theory</i>	<i>Standard theory</i>
Kinematics	$\underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x})$
Linear momentum balance	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{q}, \mathbf{x}) - \mathbf{t}(\mathbf{x}, \mathbf{q}) \right) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$
Constitutive model	$\mathbf{t}(\mathbf{q}, \mathbf{x}) = \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle, \quad \underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}})$	$\boldsymbol{\sigma} = \hat{\boldsymbol{\sigma}}(\mathbf{F})$
Angular momentum balance	$\int_{\mathcal{H}} \underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle \times \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle dV_{\mathbf{q}} = \mathbf{0}$	$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$
Elasticity	$\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}} \text{ (Fréchet derivative)}$	$\boldsymbol{\sigma} = W_{\mathbf{F}} \text{ (tensor gradient)}$
First law	$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + q + r$	$\dot{\varepsilon} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}} + q + r$

$$\underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} := \int_{\mathcal{H}} \underline{\mathbf{T}}\langle \xi \rangle \cdot \dot{\underline{\mathbf{Y}}}\langle \xi \rangle dV_{\xi}$$

Bond based material models

- If each bond response is independent of the others, the resulting material model is called bond-based.
- The material model is then simply a graph of bond force density vs. bond strain.
- Damage can be modeled through bond breakage.
- Bond response is calibrated to:
 - Bulk elastic properties.
 - Critical energy release rate.



EMU numerical method

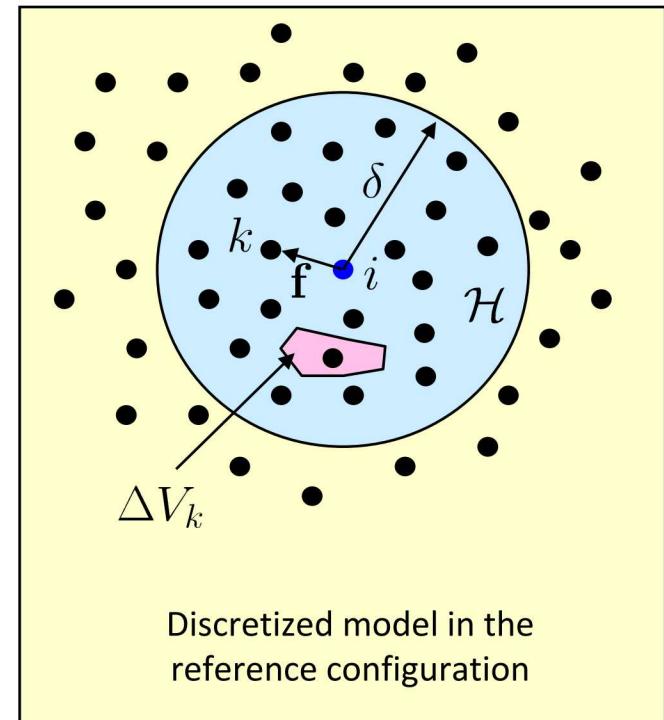
- Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

$$\rho \ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{q}, \mathbf{x}, t) \, dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}, t)$$

↓

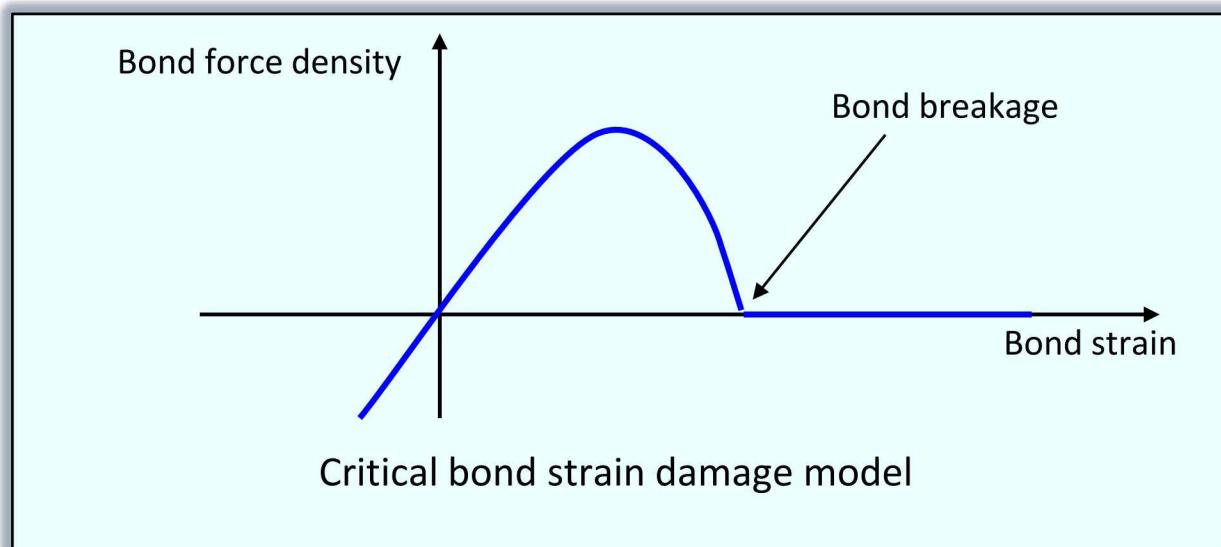
$$\rho \ddot{\mathbf{y}}_i^n = \sum_{k \in \mathcal{H}} \mathbf{f}(\mathbf{x}_k, \mathbf{x}_i, t) \, \Delta V_k + \mathbf{b}_i^n$$

- Looks a lot like MD.
- Unrelated to Smoothed Particle Hydrodynamics
 - SPH solves the local equations by fitting spatial derivatives to the current node values.

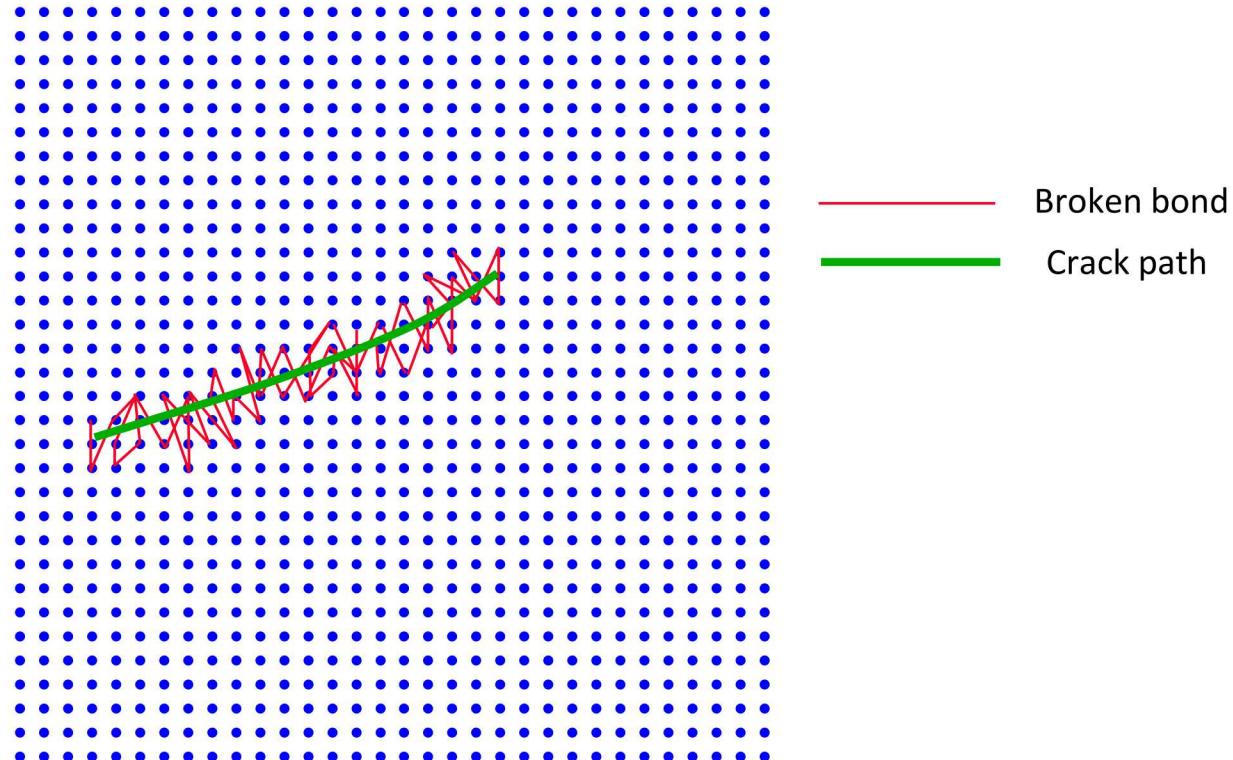


Damage due to bond breakage

- Recall: each bond carries a force.
- Damage is implemented at the bond level.
 - Bonds break irreversibly according to some criterion.
 - Broken bonds carry no force.
- Examples of criteria:
 - Critical bond strain (brittle).
 - Hashin failure criterion (composites).
 - Gurson (ductile metals).



Autonomous crack growth

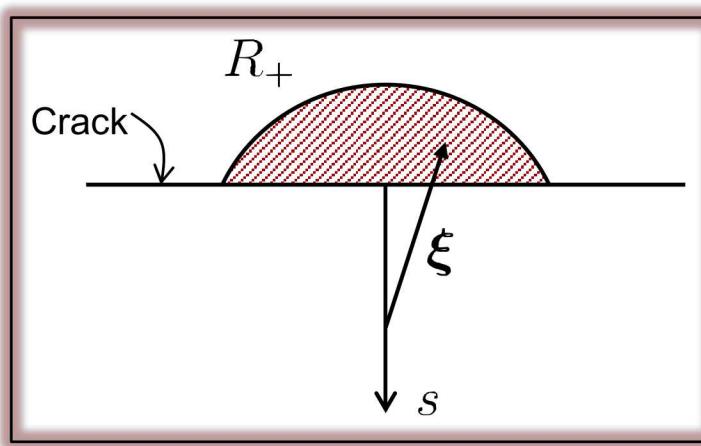
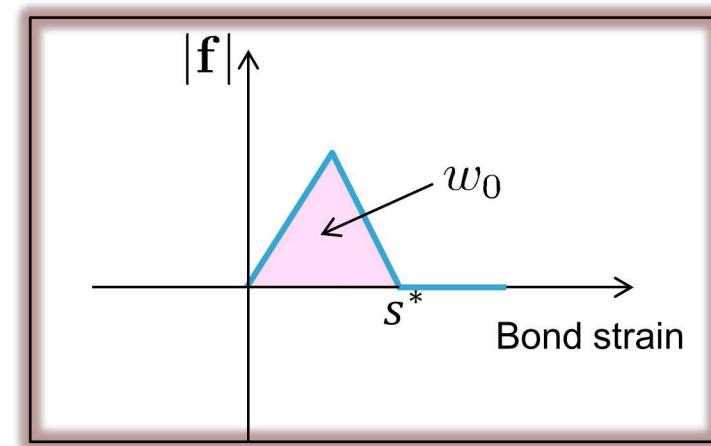


- When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

Critical bond strain: Relation to critical energy release rate

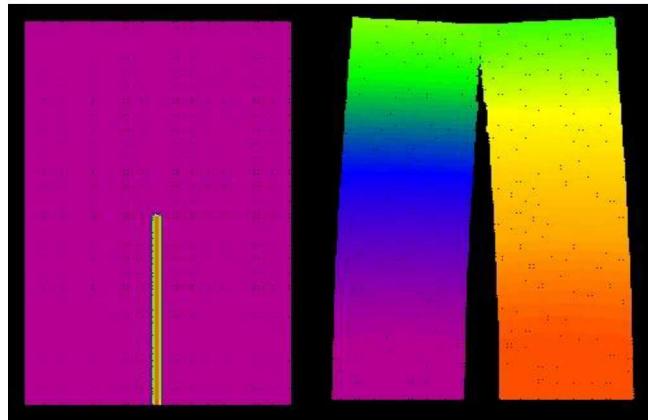
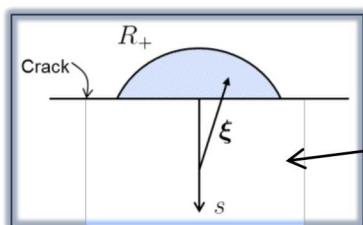
If the work required to break the bond ξ is $w_0(\xi)$, then the energy release rate is found by summing this work per unit crack area (J. Foster):

$$G = \int_0^\delta \int_{R_+} w_0(\xi) dV_\xi ds$$



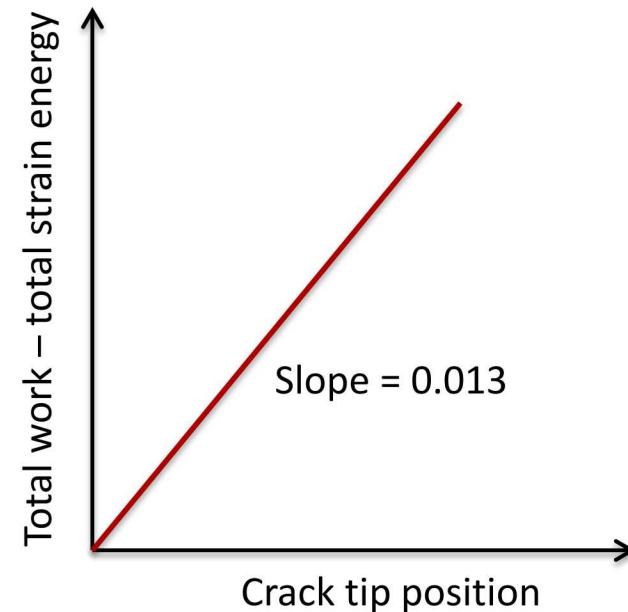
- Can then get the critical strain for bond breakage s^* in terms of G .
- Could also use the peridynamic J-integral as a bond breakage criterion.

Constant bond failure strain reproduces the Griffith crack growth criterion



From bond properties, energy release rate should be

$$G = 0.013$$



- This confirms that the energy consumed per unit crack growth area equals the expected value from bond breakage properties.

Some results about peridynamics

- For any choice of horizon, we can fit material model parameters to match the bulk properties and energy release rate.
 - Using nonlocality, can obtain material model parameters from wave dispersion curves (Weckner).
- Coupled coarse scale and fine scale evolution equations can be derived for composites (Lipton and Alali).
- A set of discrete particles interacting through any multibody potential can be represented exactly as a peridynamic body.
- Well posedness has been established under certain conditions (Mangesh, Du, Gunzburger, Lehoucq).

Cyclic strain in a bond

- For a given bond ξ , the *bond elongation* is the change in bond length:

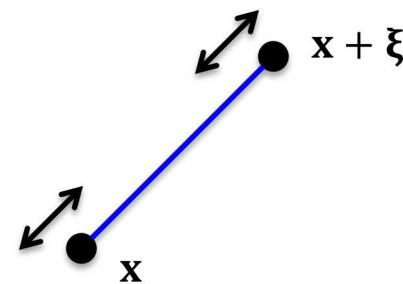
$$e = |\mathbf{Y}\langle \xi \rangle| - |\xi| = |\mathbf{y}(x + \xi) - \mathbf{y}(x)|.$$

- The *bond strain* is the change in length over initial length:

$$s = \frac{e}{|\xi|}.$$

- Let s^+ and s^- be the two extremes under cyclic loading of ξ .
- The *cyclic bond strain* is defined by

$$\varepsilon = |s^+ - s^-|.$$

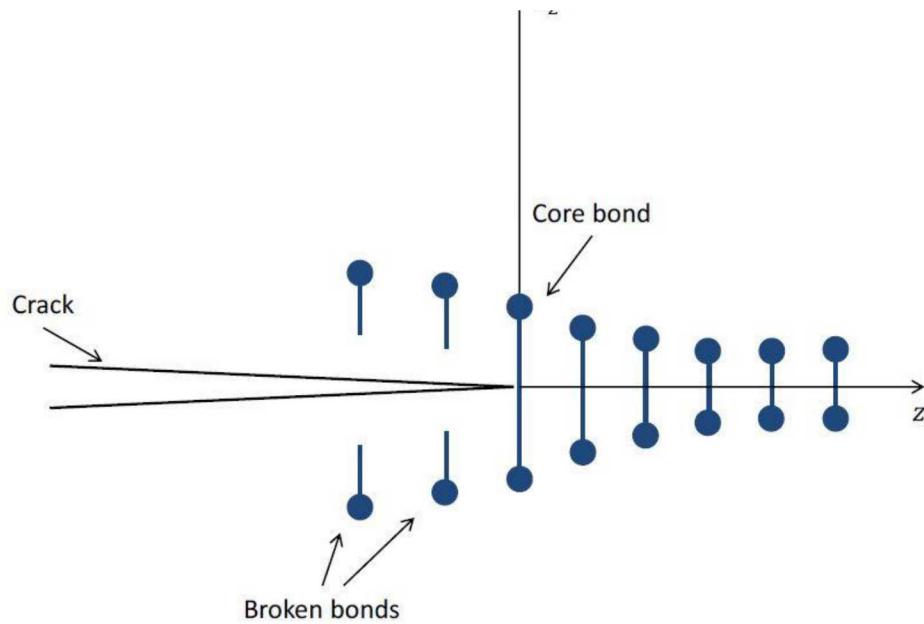
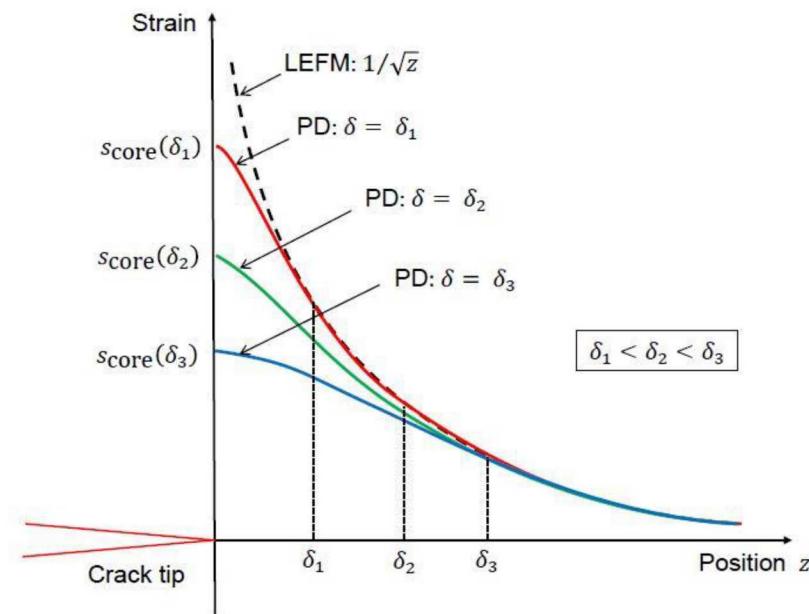


Structure of a crack tip field

- Let $\varepsilon_{\text{core}}(\delta)$ be the largest cyclic strain in any bond.
- Can show by a dimensional argument $\exists \hat{\varepsilon}_{\text{core}}$ such that

$$\varepsilon_{\text{core}}(\delta) = \hat{\varepsilon}_{\text{core}} \frac{\Delta K}{E\sqrt{\delta}}$$

where ΔK = cyclic stress intensity factor and E = modulus.



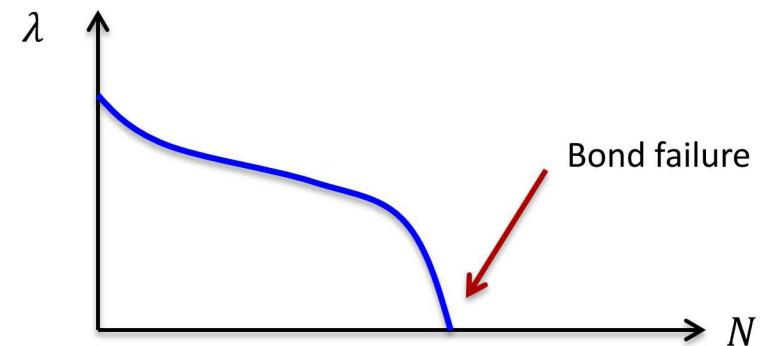
Remaining life of a bond

- Each bond in the body has a *remaining life* $\lambda(N)$ where N is the cycle number.
- The remaining life is monotonically decreasing over time.

$$\lambda(0) = 1, \quad \dot{\lambda} \leq 0.$$

- The bond fails at the first cycle N when

$$\lambda(N) \leq 0.$$



Fatigue model

- The fatigue model specifies how the remaining life of each bond depends on the loading.

$$\frac{d\lambda}{dN}(N) = -A\varepsilon^m$$

where A and m are constants and ε is the cyclic bond strain.

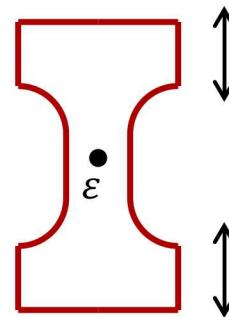
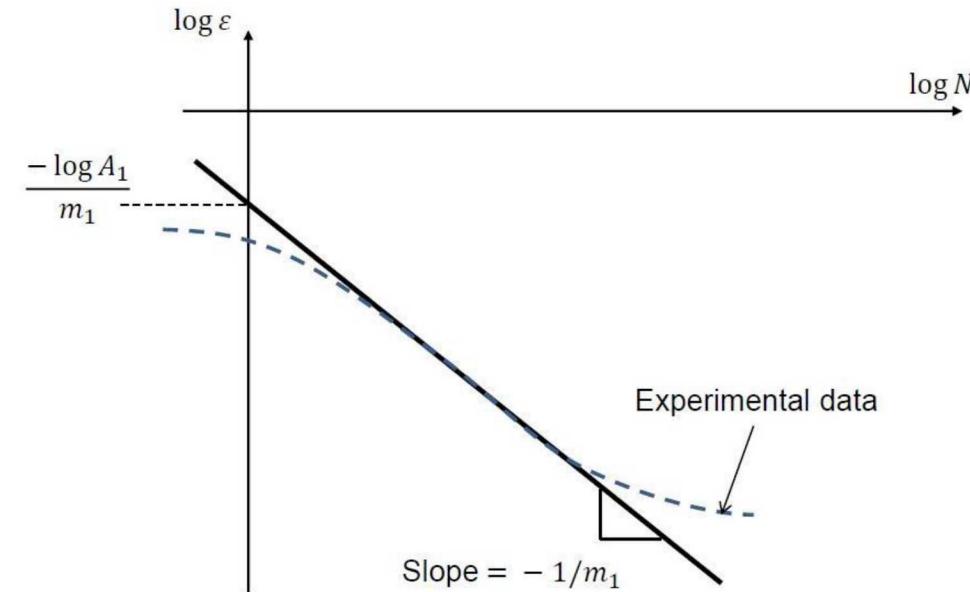
- The constants are calibrated separately for phases I and II (nucleation and growth).

Phase I calibration from $S-N$ data

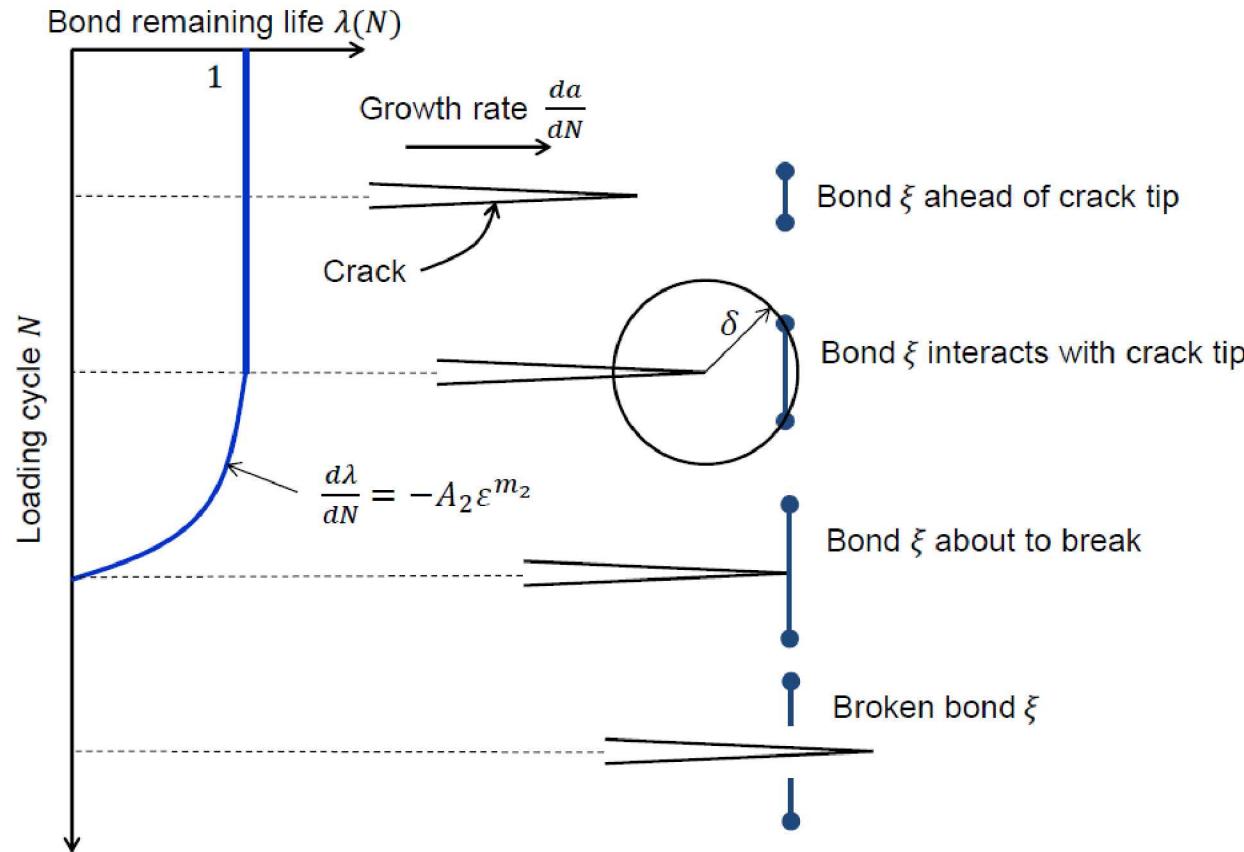
- Run many cyclic loading tests at different values of ε (constant for each test).
- For each test, compute when damage starts:

$$\frac{d\lambda}{dN}(N) = -A\varepsilon^m \quad \Rightarrow \quad N = \frac{1}{A\varepsilon^m}.$$

- Compare this to data on an ε - N plot, fit A and m .



Growth: Bonds interact with the strain field near an approaching crack



Relate crack growth to remaining life

- Evolution of remaining life:

$$\lambda(\delta) - \lambda(0) = \int_0^\delta \frac{d\lambda}{dz} dz = \int_0^\delta \frac{d\lambda}{dN} \frac{dN}{dz} dz.$$

- Recall

$$\frac{d\lambda}{dN} = -A\varepsilon^m.$$

- Denote by da/dN the crack growth rate.

$$1 - 0 = \frac{A}{da/dN} \int_0^\delta \varepsilon^m(z) dz$$

- Cyclic strain ahead of a crack:

$$\varepsilon(z) = \varepsilon_{\text{core}} f\left(\frac{z}{\delta}\right) = \frac{\Delta K}{E\sqrt{\delta}} f\left(\frac{z}{\delta}\right).$$

- Thus, for some c ,

$$\frac{da}{dN} = cA\Delta K^m$$

Phase II calibration from Paris Law data

- Now have

$$\frac{da}{dN} = cA\Delta K^m$$

where c and m are as yet unknown.

- Assume the Paris Law holds:

$$\frac{da}{dN} = C\Delta K^M$$

where C and M are constants that can be found from test data.

- Conclude

$$m = M.$$

- Need to do one computational simulation with an assumed value $C = 1$ to evaluate A .

Summary so far

- Each bond has a remaining life $\lambda(N)$:

$$\lambda(0) = 1, \quad \frac{d\lambda}{dN}(N) = -A\varepsilon^m, \quad \lambda \leq 0 \text{ means failure.}$$

- In Phase I, use A and m from S - N data.
- In Phase II, use a different calibration from Paris law data.

Time mapping permits very large N

- We can avoid modeling each cycle explicitly.
- Define the *loading ratio* by

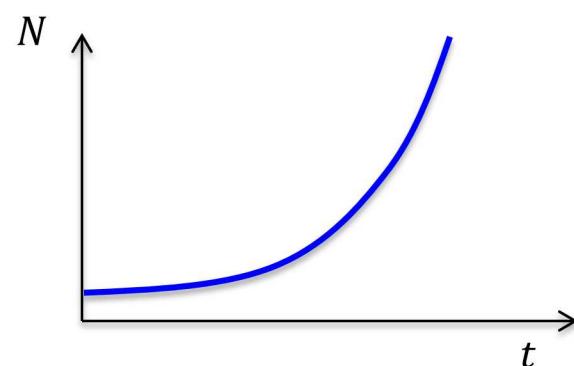
$$R = \frac{s^-}{s^+} \quad \Rightarrow \quad \varepsilon = |s^+ - s^-| = |(1 - R)s^+|.$$

- Map t to N :

$$N = e^{t/\tau}$$

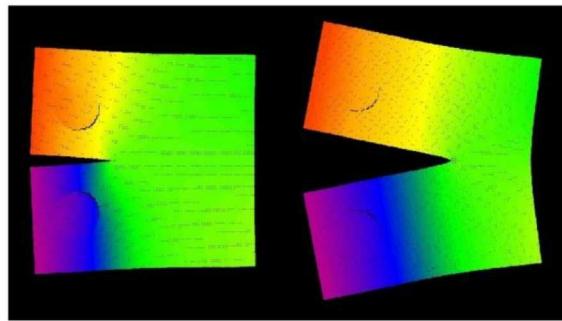
where τ is a constant chosen according to convenience.

- Fatigue model in terms of t instead of N :

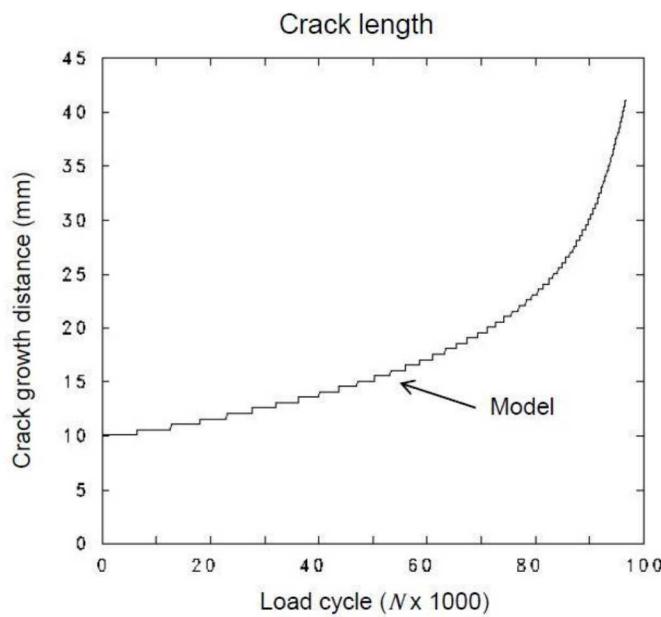
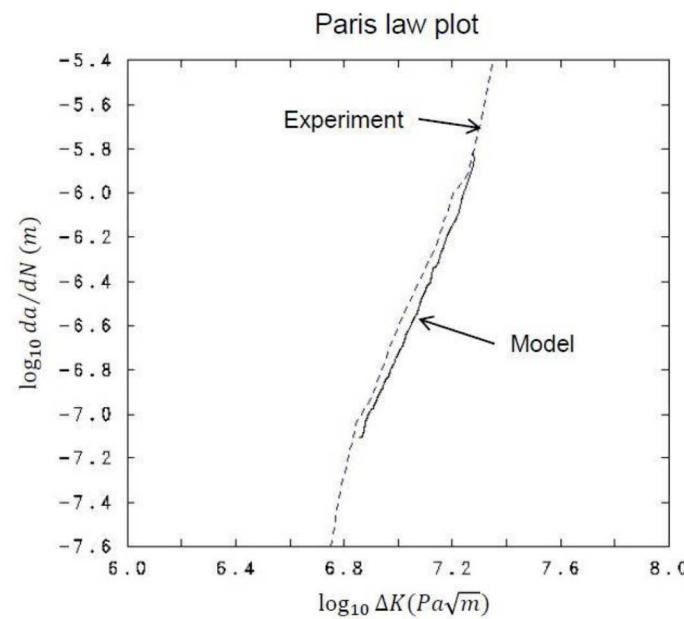


$$\frac{d\lambda}{dt} = \frac{d\lambda}{dN} \frac{dN}{dt} = \frac{-|1 - R|AN}{\tau} |s^+|^m.$$

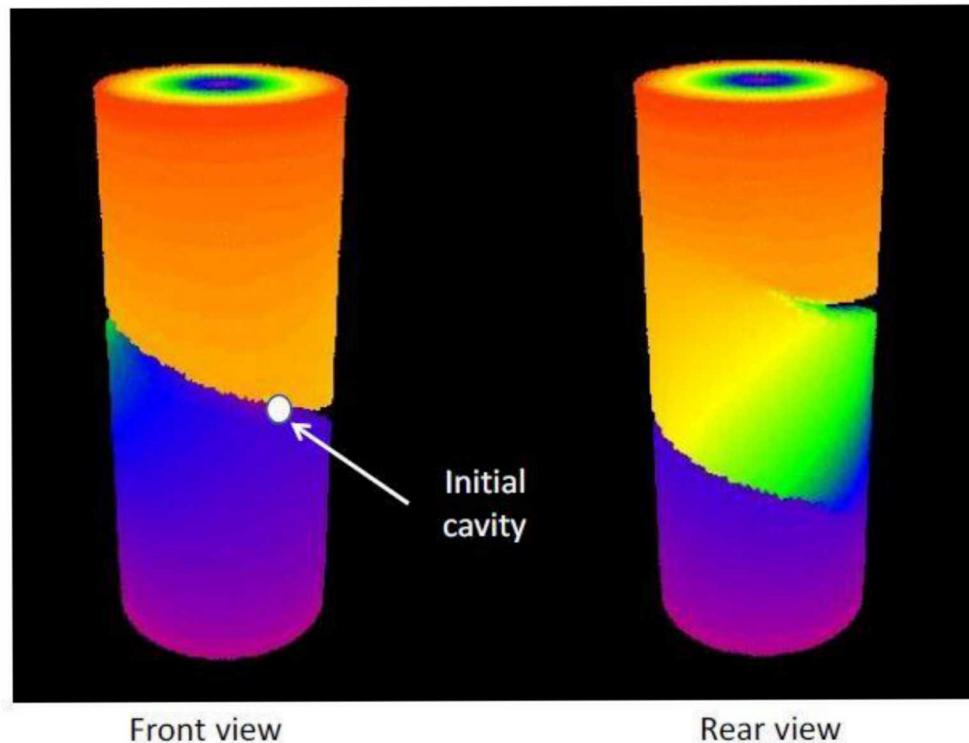
Aluminum compact test specimen



Data: T. Zhao and Y. Jiang. Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 30:834{849, 2008.



Spiral crack in a rod under torsion



Discussion

- Method retains the main advantages of peridynamics.
 - Autonomous crack growth
 - Includes both nucleation and growth phases
 - Permits interaction between multiple cracks
 - Arbitrary crack path in 3D.
- A simple enhancement allows a spectrum of loading frequencies
 - This is a peridynamic version of Miner's rule.