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Outline ) .

e Peridynamics: What it is
 Damage and fracture
e Fatigue model

e Calibration of parameters




Purpose of peridynamics* .

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body
e Why do this?
e Avoid coupling dissimilar mathematical systems (A to C).

e Model complex fracture patterns.
e Communicate across length scales.

* Peri (near) + dyn (force)




Peridynamics basics: ) s
Horizon and family

e Any point x interacts directly with other points within a distance ¢ called the “horizon.

e The material within a distance J of x is called the “family” of x, H.

@ B
0 = horizo

Hy = family of x

General references
SS, Journal of the Mechanics and Physics of Solids (2000)
SS and R. Lehoucq, Advances in Applied Mechanics (2010)
Madenci & Oterkus , Peridynamic Theory & Its Applications (2014)




Peridynamic nonlocality: h

Strain energy at a point

Continuum Discrete particles Discrete structures

Family of x

Deformation

—

* Key assumption: the strain energy density at W (X) is determined by
the deformation of its family.
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Potential energy minimization yields the ..
peridynamic equilibrium equation

e Potential energy:
B

where W s the strain energy density, y Is the deformation map, b Is the
applied external force density, and B is the body.

e Euler-Lagrange equation is the equilibrium equation:

/ f(q,x) dVy+b(x) =0

X

for all x. f is the pairwise bond force density.




Peridynamics basics: )
States

e A peridynamic state is a mapping on bonds in a family.

o We write:
u=A()

where £ is a bond, A is a state, and u is some vector.

e States play a role in peridynamics similar to that of second order tensors in
the local theory.




Peridynamics basics: ) s
Kinematics

e The deformation state is the function that maps each bond &£
into its deformed image:

where y is the deformation and
Deformatlon y
Bond < q
Deformed images of bonds:
State description allows complexity

Undeformed family of x Deformed family of x




Peridynamics basics: 7 i
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Force state

e f(x,q) has contributions from the material models at both x and q.
f(x,q) =t(x,q) — t(q,x)
t(x,q) =Txl[(a—x), t(x,q)=T[q){x—q)

e T[x]| is the force state: maps bonds onto bond force densities. It is found
from the constitutive model:

T =T(Y)

where T maps the deformation state to the force state.




Peridynamics basics: ) s
Bonds and bond force density

e The vector from x to any point q in its family in the reference configuration is called a bond.
§=q-x

e Each bond has a pairwise force density vector that is applied at both points:
f(q,x,1).

e Equation of motion is an integro-differential equation, not a PDE:

p(x)¥y(x,t) = /Hf(q,x,t) dVy + b(x,t).




Peridynamics basics: h

The nature of internal forces

Standard theory
Stress tensor field
(assumes continuity of forces)

AO'
_1922

ﬁ12
i 011 n

D on

Stress tensor maps surface
normal vectors onto
surface forces

pit(x,t) =V-o(x,t) + b(x,t)

Differentiation of surface forces

Peridynamics
Bond forces between neighboring points
(allowing discontinuity)

®q
/ f(q,x)
R/
7N
, \

pii(x,t) = j f(q,x)dVy + b(x,t)
Hy

Summation over bond forces
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Force state maps bonds
onto bond forces




Peridynamics basics: ) s
Elastic materials

e A peridynamic elastic material has strain energy density given by

W(Y).

e The force state is given by

T(Y)=Wy(Y)

where Wy is the Frechet derivative of the strain energy density.




Peridynamic vs. local equations ) .

* The structures of the theories are similar, but peridynamics uses nonlocal operators.

Relation Peridynamic theory Standard theory |

Kinematics Y(q—x) =y(q) —y(x) F(x) = %(X)

Linear momentum | vy — / (t(q, x) — t(x, q)) dVy + b(x) py(x) =V - o(x)+ b(x)
H

balance
Constitutive model t(q,x) = T{q — x), T = i(X) o =o(F)
| Angular momentum / Y(q—x) x T(q —x) dVy = 0 r— ¥
balance H
Elasticity T = Wy (Fréchet derivative) o = Wr (tensor gradient) |
First law é:I.X\+q+T =0 -F+q+r

T(E) - Y(§) dVe




Bond based material models

h
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If each bond response is independent of the others, the resulting material model is

called bond-based.

The material model is then simply a graph of bond force density vs. bond strain.

Damage can be modeled through bond breakage.
Bond response is calibrated to:

e Bulk elastic properties.

e Critical energy release rate.

Bond force densityA Bond
breakage

~
7

Bond strain




EMU numerical method ) e,

e Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

py(x,t) = /Hf(q, x,t) dVq+ b(x,1)

l

oy = (%, xi,t) AVi + bl
keH

e Looks a lot like MD.
e Unrelated to Smoothed Particle Hydrodynamics

e SPH solves the local equations by fitting spatial
derivatives to the current node values.

Discretized model in the
reference configuration




Damage due to bond breakage

Recall: each bond carries a force.
Damage is implemented at the bond level.

Bonds break irreversibly according to some criterion.
Broken bonds carry no force.

Examples of criteria:

Critical bond strain (brittle).
Hashin failure criterion (composites).
Gurson (ductile metals).

Bond force density 1
Bond breakage

.

Bond stra'in

Critical bond strain damage model
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Autonomous crack growth .

triiliiiiiiiiiiiiiiioiiiiiiNg Broken bond
TriliiiIiIIIIIIIANg NI Crack path
1 e B

e When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.




Critical bond strain:

i1

Relation to critical energy release rate

If the work required to break the bond & is wg(&), then the energy
release rate is found by summing this work per unit crack area (J.

Foster):

G=/05/R+wo<£>dvsds

Can then get the critical strain for bond breakage s* in terms of G.

Wo

N

7z

Bond strain

Could also use the peridynamic J-integral as a bond breakage criterion.
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Constant bond failure strain reproduces @mis
the Griffith crack growth criterion

~
7

Total work — total strain energy

Slope = 0.013
R From bond
i’ m properties, energy
3 | release rate ) - >
< should be Crack tip position

« This confirms that the energy consumed per unit crack growth area equals the expected
value from bond breakage properties.




Some results about peridynamics @z,

* For any choice of horizon, we can fit material model parameters to

match the bulk properties and energy release rate.
* Using nonlocality, can obtain material model parameters from wave
dispersion curves (Weckner).

* Coupled coarse scale and fine scale evolution equations can be derived
for composites (Lipton and Alali).

* A set of discrete particles interacting through any multibody potential
can be represented exactly as a peridynamic body.

* Well posedness has been established under certain conditions
(Mangesha, Du, Gunzburger, Lehoucq).




Cyclic strain in a bond ) .

e For a given bond &, the bond elongation is the change in bond length:
e=|Y(&)|— ¢ = ly(x+§&) —y(x)|

e The bond strain is the change in length over initial length:

e
8 — E
e Let s™ and s~ be the two extremes under cyclic loading of &.
e The cyclic bond strain is defined by / X+ &
e=|st —s7|.

/e

X




Structure of a crack tip field ) .

e Let ccore(d) be the largest cyclic strain in any bond.

e Can show by a dimensional argument 3 £, such that

E1t:c:-rie(6) — Ecoreg

EV§

where AK = cyclic stress intensity factor and £ = modulus.

Strain
\ LEFM: 1//z
\
Y U PD:d= &
score(61)
\
Core bond ‘\ PD:§ = 6,
o (65)
/ R PO = &,
Crack T &
\ T ? ? ? ? score(03)
[ ,
| 4 )
f/ Crack tip oy 5, 8; Position z
Broken bonds
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Remaining life of a bond

e Each bond in the body has a remaining life A(N') where N is the cycle
number.

e The remaining life is monotonically decreasing over time.

A0) =1, A <0.

e The bond fails at the first cycle N when
A(N) <0.

A A

Bond failure

> N
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Fatigue model

e The fatigue model specifies how the remaining life of each bond de-

pends on the loading.
dA

dN

where A and m are constants and ¢ is the cyclic bond strain.

(N) = —Ac™

e The constants are calibrated separately for phases I and II (nucleation

and growth).




Phase | calibration from S-/Ndata

e Run many cyclic loading tests at different values of £ (constant for
each test).

e For each test, compute when damage starts:

dx . B

e Compare this to data on an - plot, it A and m.
loge

log N

Experimental data
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Growth: Bonds interact with the strain @)
field near an approaching crack

Bond remaining life A(N)

Growth rate ==

___________________________ ————— I Bond ¢ ahead of crack tip

Bond ¢ interacts with crack tip

Loading cycle N

T Bond ¢ about to break

________________________________________ l

T Broken bond &
-------------------------------------------------- B ——

l




Relate crack growth to remaining life

e Evolution of remaining life:

_ o d\ o d\ dN
A(0) — A(0) = /0 e iy — /ﬂ N dz.

e Recall D o

aN
e Denote by da/dN the crack growth rate.

i)
1= da/%fa e (2) dz

e Cyeclic strain ahead of a crack:

() = enef (Z) = ;\I/‘Ef (2).

e Thus, for some ¢,

da

— = cAAK
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Phase Il calibration from Paris Law data ()&=,

e Now have ;
%%:xﬂ&ﬁm
{_

where ¢ and m are as yet unknown.

e Assume the Paris Law holds:

da

_ rm M
— = CAK

where (' and M are constants that can be found from test data.

e Conclude

m = M.

e Need to do one computational simulation with an assumed value C' =1
to evaluate A.




Summary so far ) i,

e Fach bond has a remaining life A(V):

dA
dN

A0) =1, (N) = —Ac™, A < 0 means failure.

e In Phase I, use A and m from S-N data.

e In Phase II, use a different calibration from Paris law data.




Time mapping permits very large N h) i,

e We can avoid modeling each cycle explicitly.

e Define the loading ratio by
R=— — e=|sT—s7|=|(1-R)sT|.
e Map t to V:
N =ét/™
where 7 is a constant chosen according to convenience.

e Fatigue model in terms of t instead of N:

N A dA\  d\dN —|1- R|AN

+‘m*

'S

dt — dN dt .
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Aluminum compact test specimen

Data: T. Zhao and Y. Jiang. Fatigue of 7075-
T651 aluminum alloy. International Journal of
Fatigue, 30:834{849, 2008.

Crack length Paris law plot
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Spiral crack in a rod under torsion

\ Initial

cavity

Front view Rear view
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Discussion

* Method retains the main advantages of peridynamics.
e Autonomous crack growth
* Includes both nucleation and growth phases
* Permits interaction between multiple cracks
e Arbitrary crack path in 3D.
* Asimple enhancement allows a spectrum of loading frequencies
e This is a peridynamic version of Miner’s rule.




