

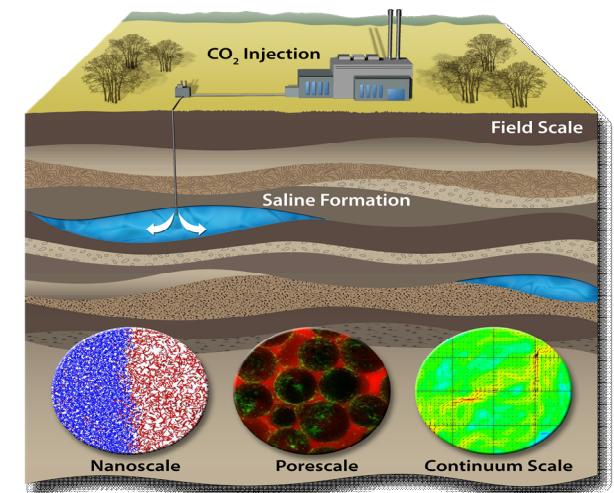
Pore-scale modeling of moving contact line problems in immiscible two-phase flow

Alec Kucala, David Noble and Mario Martinez

USNCCM14 - July 19, 2017

Introduction

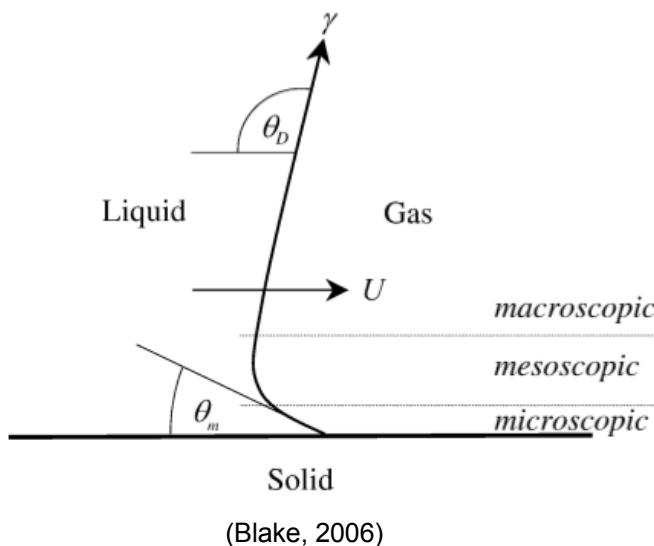
- Injection of CO₂ into reservoir rocks is a strategy of reducing greenhouse gas emissions
- Modeling CO₂ migration and capillary trapping at the pore scale is important in predicting the permeability characteristics of reservoir rocks
 - Hydrophobicity or hydrophilicity of the reservoir rock can influence contact line dynamics
- Use computational fluid dynamics to model the multi-phase flow through heterogeneous reservoir rock pores
 - Conformal decomposition finite-element method (CDFEM)
 - Dynamic contact line modeling
- Can be applied to other surface tension dominated flows



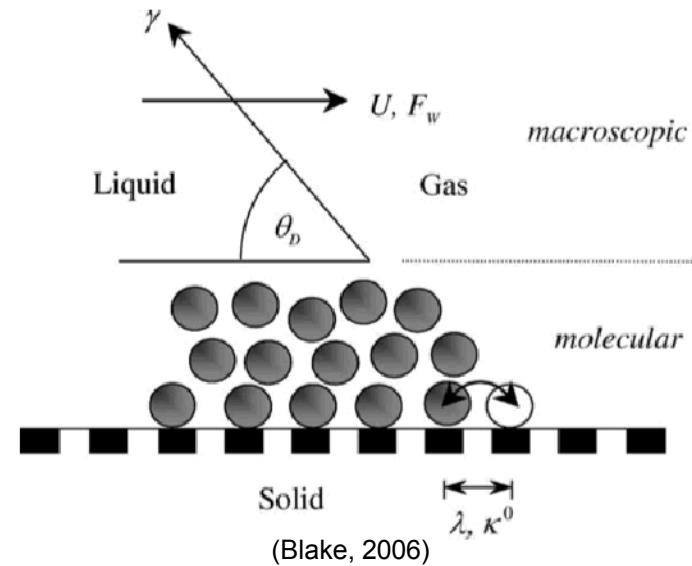
Overview of contact line models

- Two immiscible fluids in contact with a solid surface in equilibrium form a static contact angle
- When this equilibrium is disturbed, the contact angle becomes dynamic and the contact line moves
- Must model relationship between contact angle and contact line velocity as the physics are poorly understood

Hydrodynamic Models

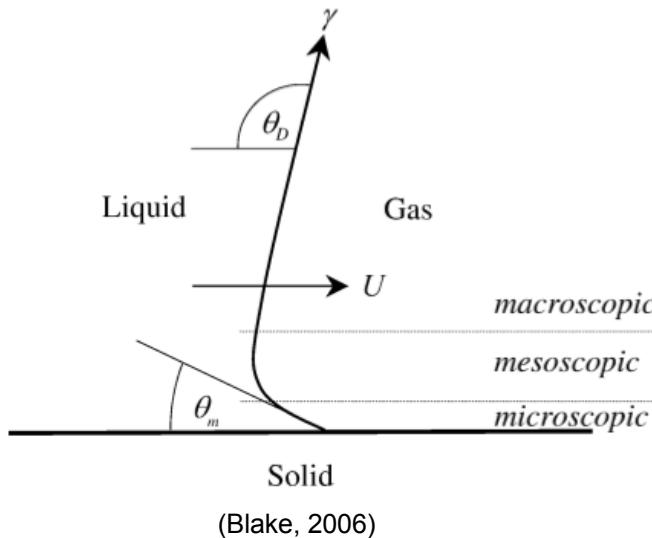


Molecular Models

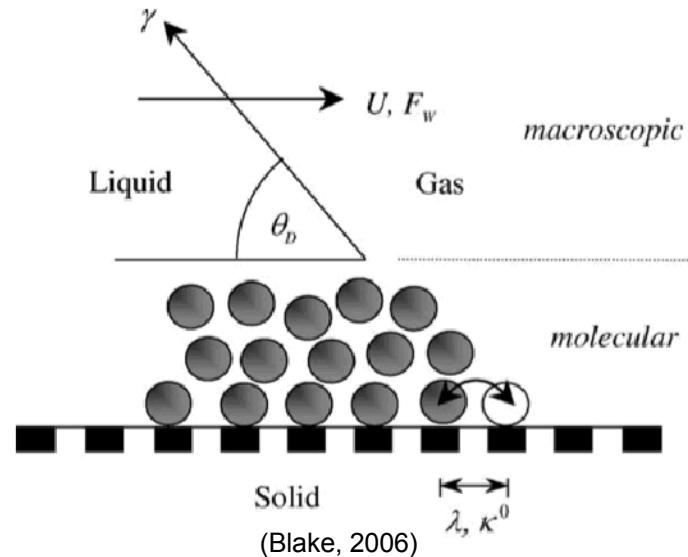


Hydrodynamic and molecular models

Hydrodynamic Models



Molecular Models

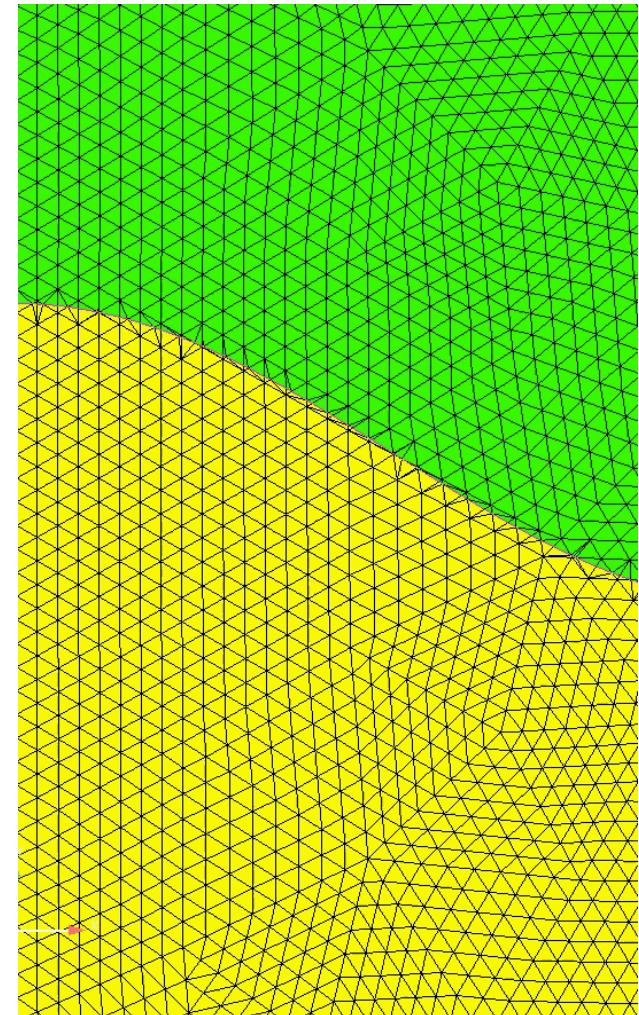


- Three length scales near the contact line: macroscopic, mesoscopic, and microscopic
- Changes in experimentally observed macroscopic dynamic contact angle is attributed to viscous bending of the interface in the mesoscopic region
- Microscopic angle is usually assumed as the static angle and velocity independent
- Voinov, 1976; Cox, 1989; Huh & Scriven, 1971.

- Two length scales: macroscopic and molecular
- Contact line motion is determined by the statistical dynamics of the molecules at the molecular scale
- Driving force of contact line is proportional to the disturbed and equilibrium contact angles.
- Blake, 1969

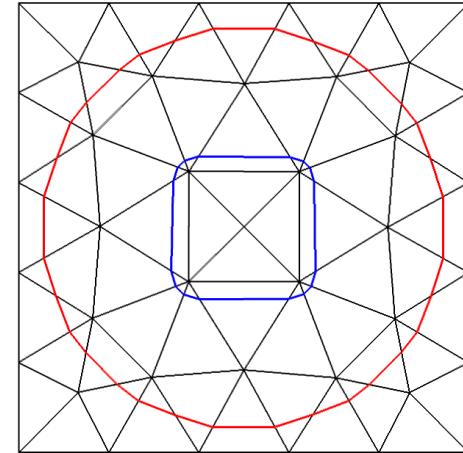
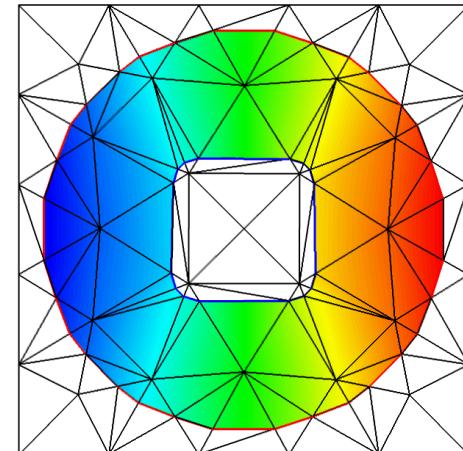
Conformal decomposition finite element analysis (CDFEM)

- Relatively new method (Noble et al., 2010) used to discretize moving interfaces that do not conform to static finite element meshes
- Used in conjunction with level sets to track interface motion
- Adds degrees of freedom by adding nodes to mesh which lie on the exact interface location
- Can apply boundary conditions directly at interface
 - Surface tension
 - Wetting line models
- Demonstrated to accurately model surface tension driven flows



CDFEM (cont.)

- Simple Concept (Noble, et al. 2010)
 - Use one or more level set fields to define materials or phases
 - Decompose non-conformal elements into conformal ones
 - Obtain solutions on conformal elements
- Related Work
 - Li et al. (2003) FEM on Cartesian Grid with Added Nodes
 - Ilinca and Hetu (2010) Finite Element Immersed Boundary
 - S. Soghrati and P.H. Geubelle (2012) Interface Enriched Finite Element
- Properties
 - Supports wide variety of interfacial conditions (identical to boundary fitted mesh)
 - Avoids manual generation of boundary fitted mesh
 - Supports general topological evolution (subject to mesh resolution)
- Similar to finite element adaptivity
 - Uses standard finite element assembly including data structures, interpolation, quadrature



Computational model

Computational model

- Utilize Galerkin triangular finite elements to discretize Navier-Stokes equation

Navier-Stokes Equation

$$\nabla \cdot \mathbf{u} = 0$$

$$\rho(\mathbf{x}) \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla \cdot (\mu(\mathbf{x}) (\nabla \mathbf{u} + \nabla \mathbf{u}^T))$$

Computational model

- Utilize Galerkin triangular finite elements to discretize Navier-Stokes equation
- Use level set equation to track two-phase interface

Navier-Stokes Equation

$$\nabla \cdot \mathbf{u} = 0$$

$$\rho(\mathbf{x}) \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla \cdot (\mu(\mathbf{x}) (\nabla \mathbf{u} + \nabla \mathbf{u}^T))$$

Level Set Equation

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0$$

Computational model

- Utilize Galerkin triangular finite elements to discretize Navier-Stokes equation
- Use level set equation to track two-phase interface
- CDFEM used to discretize the interface boundary
- Solved using Sierra multi-physics suite at SNL¹

Navier-Stokes Equation

$$\nabla \cdot \mathbf{u} = 0$$

$$\rho(\mathbf{x}) \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla \cdot (\mu(\mathbf{x}) (\nabla \mathbf{u} + \nabla \mathbf{u}^T))$$

Level Set Equation

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0$$

Interface Boundary Conditions

$$[\mathbf{u}]_\Delta = 0, \quad \mathbf{x} \in \Gamma \quad \quad \quad \textbf{(impermeability)}$$

$$[-p\mathbf{I} + \mu(\mathbf{x}) (\nabla \mathbf{u} + \nabla \mathbf{u}^T)]_\Delta \cdot \hat{\mathbf{n}} = -\gamma \kappa \hat{\mathbf{n}}, \quad \mathbf{x} \in \Gamma \quad \quad \textbf{(surface tension)}$$

Time-discretization scheme (2nd Order)

Momentum Prediction

$$\int_{\Omega^n} (\nabla \cdot \tilde{\mathbf{u}}) w_i d\Omega = 0,$$

$$\begin{aligned} & \int_{\Omega^n} \rho \left(\frac{\frac{3}{2}\tilde{\mathbf{u}} - 2\mathbf{u}^n + \frac{1}{2}\mathbf{u}^{n-1}}{\Delta t} + (\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}} \right) \cdot \mathbf{w}_i d\Omega \\ & + \int_{\Omega^n} -P\mathbf{I} + \mu (\nabla \tilde{\mathbf{u}} + \nabla \tilde{\mathbf{u}}^t) \cdot \nabla \mathbf{w}_i d\Omega \\ & + \int_{\Gamma_f^n} \sigma ((\mathbf{I} - \mathbf{n}\mathbf{n}) + \Delta t \underline{\nabla} \tilde{\mathbf{u}}) \cdot \nabla \mathbf{w}_i d\Gamma = 0, \end{aligned}$$

Time-discretization scheme (2nd Order)

Momentum Prediction

$$\begin{aligned}
 & \int_{\Omega^n} (\nabla \cdot \tilde{\mathbf{u}}) w_i d\Omega = 0, \\
 & \int_{\Omega^n} \rho \left(\frac{\frac{3}{2}\tilde{\mathbf{u}} - 2\mathbf{u}^n + \frac{1}{2}\mathbf{u}^{n-1}}{\Delta t} + (\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}} \right) \cdot \mathbf{w}_i d\Omega \\
 & + \int_{\Omega^n} -P\mathbf{I} + \mu (\nabla \tilde{\mathbf{u}} + \nabla \tilde{\mathbf{u}}^t) \cdot \nabla \mathbf{w}_i d\Omega \\
 & + \int_{\Gamma_f^n} \sigma ((\mathbf{I} - \mathbf{n}\mathbf{n}) + \Delta t \underline{\nabla} \tilde{\mathbf{u}}) \cdot \nabla \mathbf{w}_i d\Gamma = 0,
 \end{aligned}$$

Levelset Advection

Time-discretization scheme (2nd Order)

Momentum Prediction

$$\int_{\Omega^n} (\nabla \cdot \tilde{\mathbf{u}}) w_i d\Omega = 0,$$

$$\begin{aligned} & \int_{\Omega^n} \rho \left(\frac{\frac{3}{2}\tilde{\mathbf{u}} - 2\mathbf{u}^n + \frac{1}{2}\mathbf{u}^{n-1}}{\Delta t} + (\tilde{\mathbf{u}} \cdot \nabla) \tilde{\mathbf{u}} \right) \cdot \mathbf{w}_i d\Omega \\ & + \int_{\Omega^n} -P\mathbf{I} + \mu (\nabla \tilde{\mathbf{u}} + \nabla \tilde{\mathbf{u}}^t) \cdot \nabla \mathbf{w}_i d\Omega \\ & + \int_{\Gamma_f^n} \sigma ((\mathbf{I} - \mathbf{n}\mathbf{n}) + \Delta t \nabla \tilde{\mathbf{u}}) \cdot \nabla \mathbf{w}_i d\Gamma = 0, \end{aligned}$$

Levelset Advection

Momentum Correction

$$\int_{\Omega^{n+1}} (\nabla \cdot \mathbf{u}^{n+1}) w_i d\Omega = 0.$$

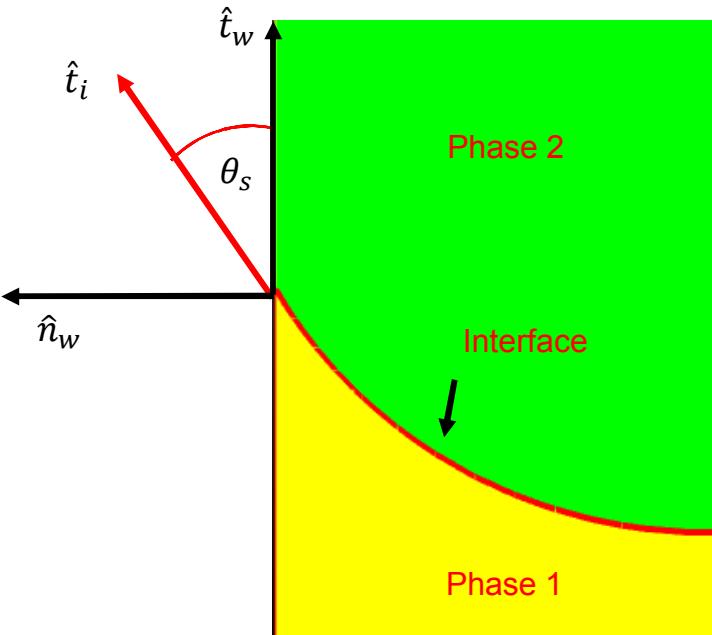
$$\begin{aligned} & \int_{\Omega^{n+1}} \rho \left(\frac{\frac{3}{2}\mathbf{u}^{n+1} - 2\mathbf{u}^n + \frac{1}{2}\mathbf{u}^{n-1}}{\Delta t} + ((\mathbf{u}^{n+1} - \dot{\mathbf{x}}) \cdot \nabla) \mathbf{u}^{n+1} \right) \cdot \mathbf{w}_i d\Omega \\ & + \int_{\Omega^{n+1}} -P\mathbf{I} + \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^t)^{n+1} \cdot \nabla \mathbf{w}_i d\Omega \\ & + \int_{\Gamma_f^{n+1}} \sigma ((\mathbf{I} - \mathbf{n}\mathbf{n}) + \Delta t \nabla (\mathbf{u}^{n+1} - \tilde{\mathbf{u}})) \cdot \nabla \mathbf{w}_i d\Gamma = 0, \end{aligned}$$

Moving contact line model

Wetting Line Force

$$\vec{f} = \gamma \hat{t}_i$$

$$\hat{t}_i = \hat{t}_w \cos \theta_s + \hat{n}_w \sin \theta_s$$



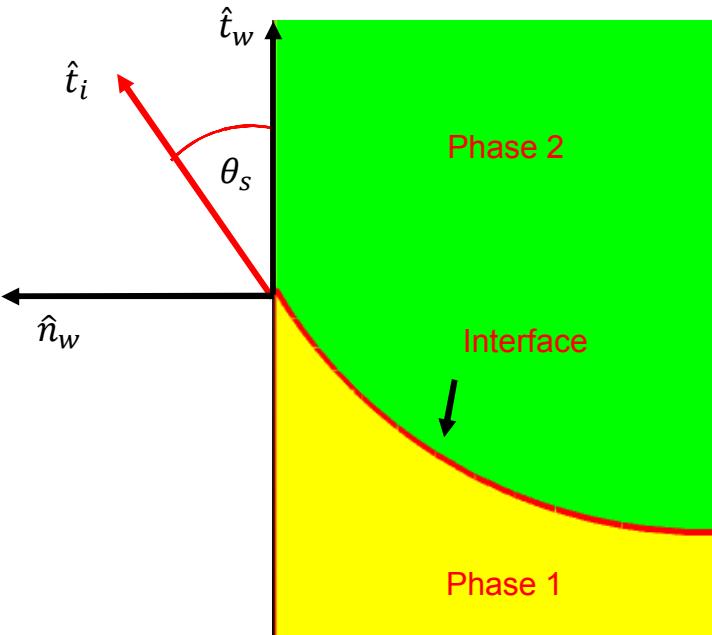
- Assume microscopic (static) contact angle is a constant (θ_s) (hydrodynamic type method)
- For a given fluid pair, specify kinematic and physical properties, surface tension force (γ), and static contact angle (θ_s)
- Pull contact line with surface tension force at Young's equilibrium contact angle

Moving contact line model

Wetting Line Force

$$\vec{f} = \gamma \hat{t}_i$$

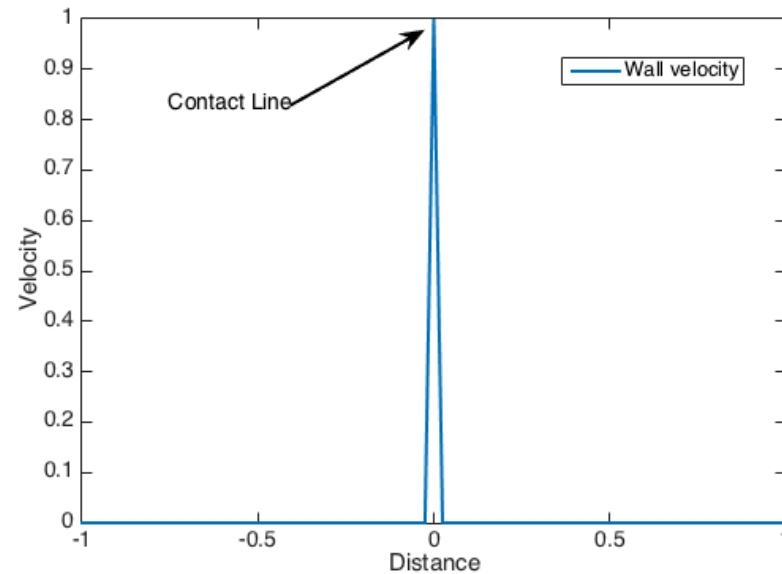
$$\hat{t}_i = \hat{t}_w \cos \theta_s + \hat{n}_w \sin \theta_s$$



Navier-Slip Condition

$$\vec{f} = \frac{\mu}{\beta} (\vec{v}_w - \vec{v}_{CL})$$

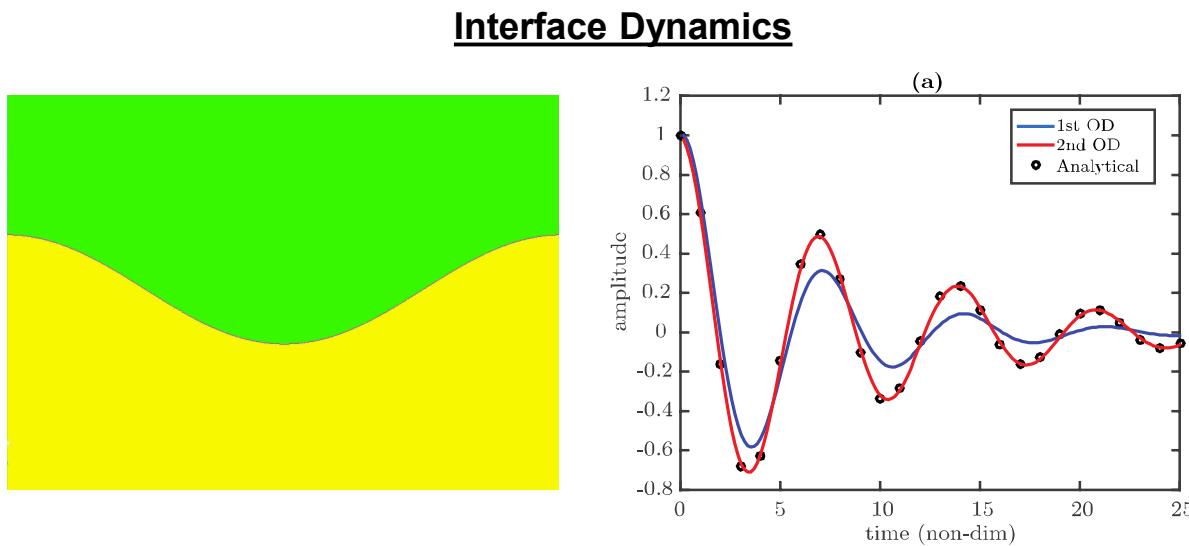
$$Flux = \int \vec{n} \cdot \vec{f} \phi^i dS$$



- Assume microscopic (static) contact angle is a constant (θ_s) (hydrodynamic type method)
- For a given fluid pair, specify kinematic and physical properties, surface tension force (γ), and static contact angle (θ_s)
- Pull contact line with surface tension force at Young's equilibrium contact angle
- Select the Navier-Slip length (β) to fit to experimental data

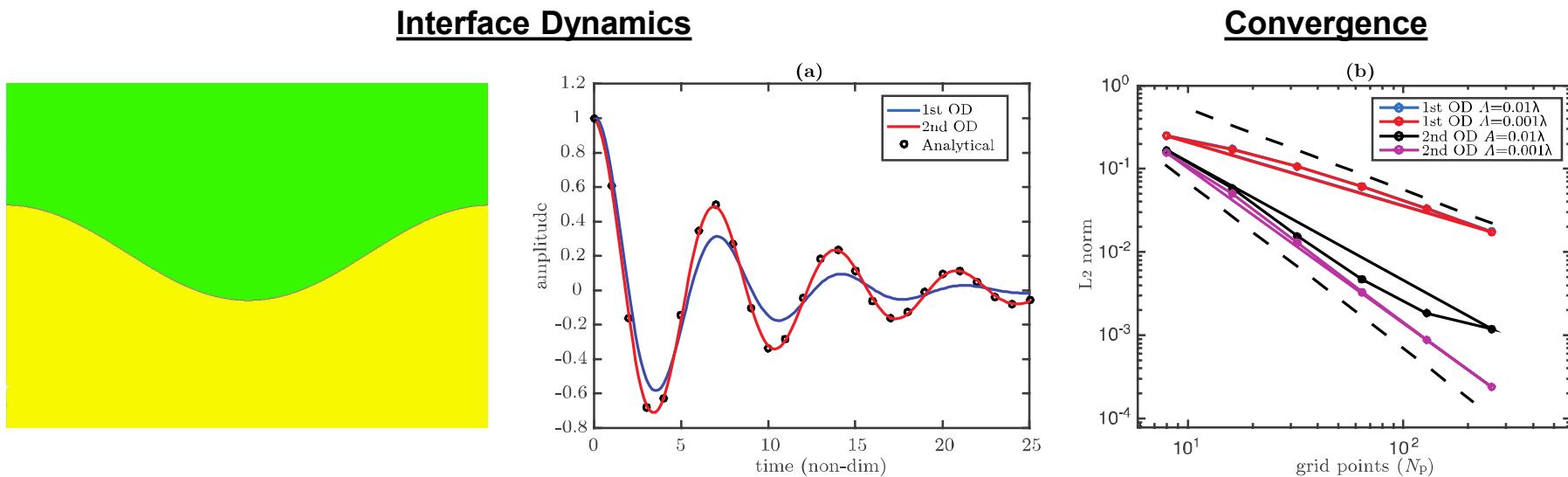
Verification and validation (capillary wave decay)

- Perturb two-phase interface with sinusoidal disturbance
- Interface shape should decay with specific frequency and rate (Prosperetti, 1981) at small amplitudes
- Accurate prediction of capillary wave frequency and amplitude decay
- CDFEM discretization of interface accurately captures surface tension dynamics
- 2nd order mesh convergence observed



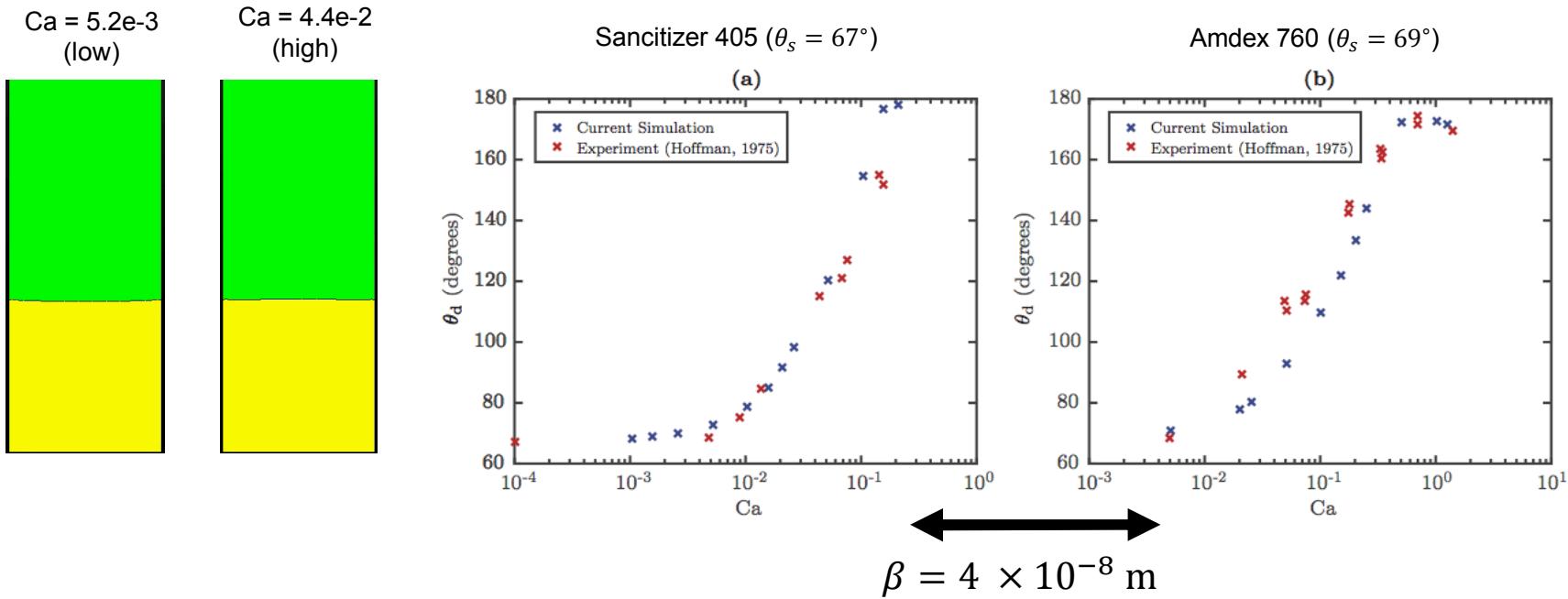
Verification and validation (capillary wave decay)

- Perturb two-phase interface with sinusoidal disturbance
- Interface shape should decay with specific frequency and rate (Prosperetti, 1981) at small amplitudes
- Accurate prediction of capillary wave frequency and amplitude decay
- CDFEM discretization of interface accurately captures surface tension dynamics
- 2nd order mesh convergence observed



Verification and validation (capillary injection)

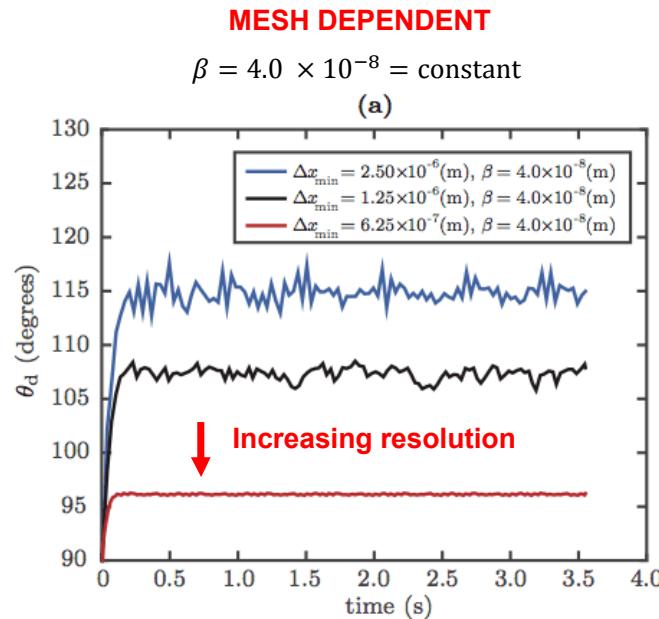
Interface Dynamics



- Injection of fluid into capillary changes dynamic contact angle
- Demonstrate ability to capture dynamic contact angle dependency on capillary number
- Once data is fitted to experiment (one point), specified slip length β becomes independent of fluid type and capillary number

Verification and validation (capillary injection cont.)

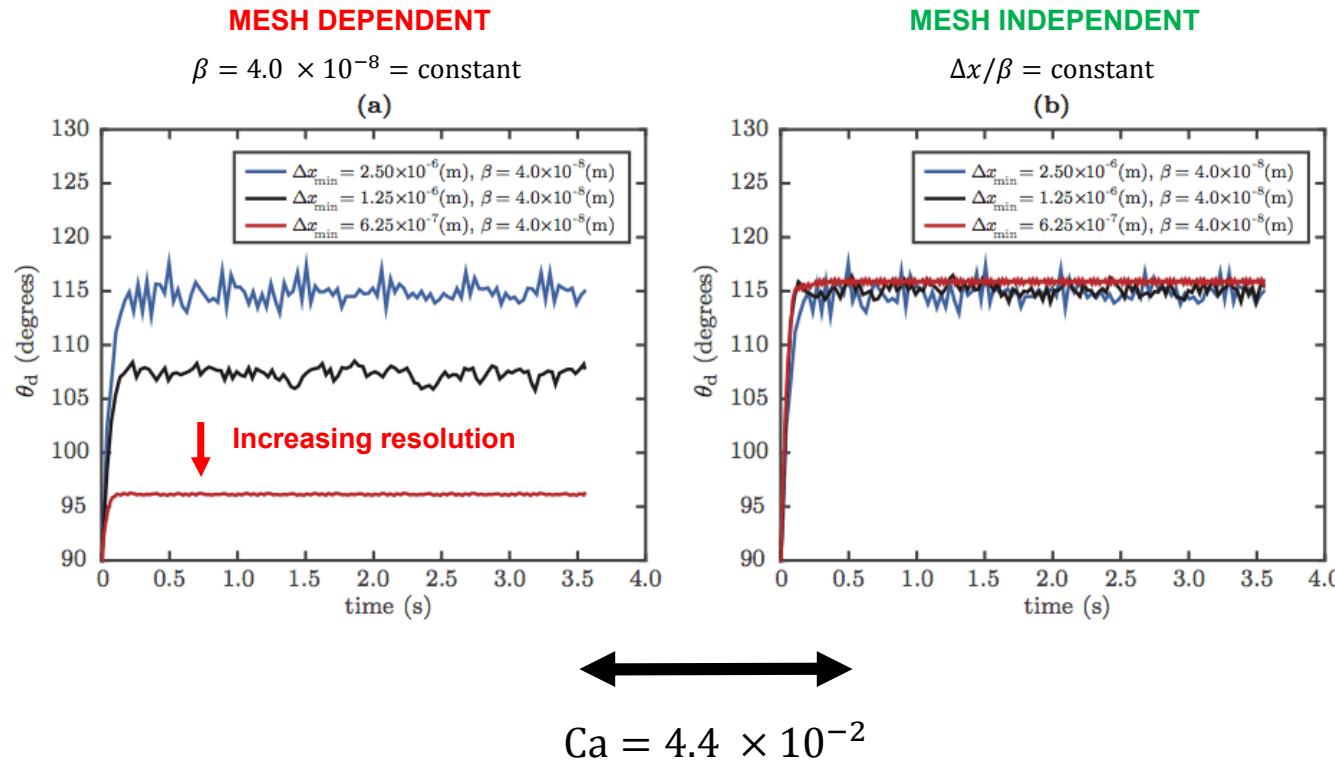
Mesh Dependency



- Solution exhibits mesh dependency (slip length must be adjusted to accommodate resolution changes)

Verification and validation (capillary injection cont.)

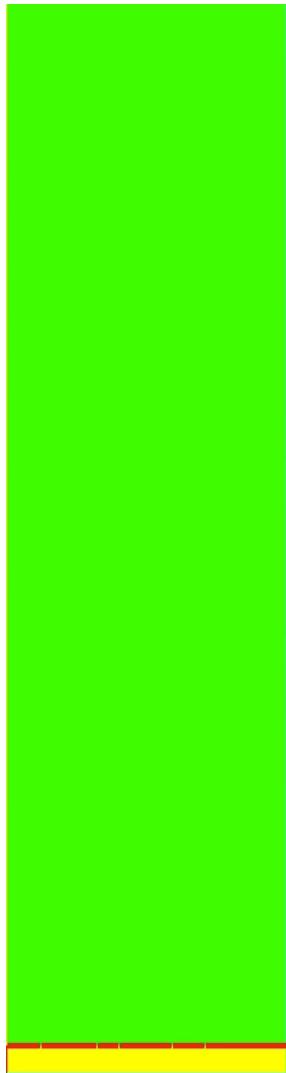
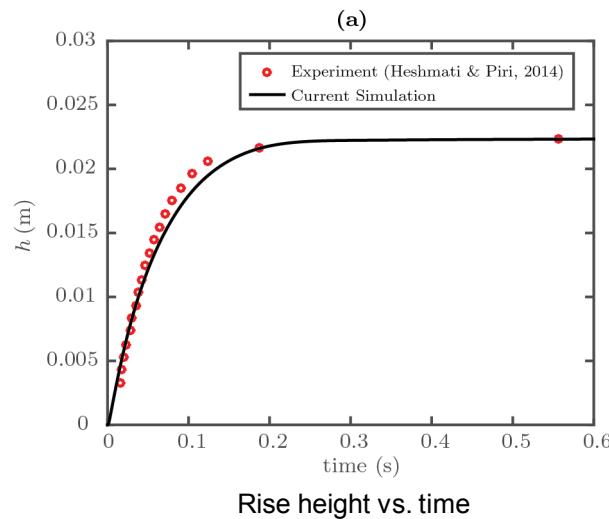
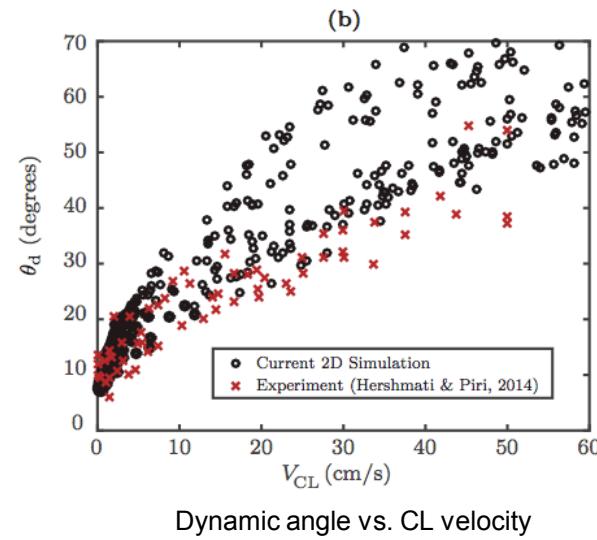
Mesh Dependency



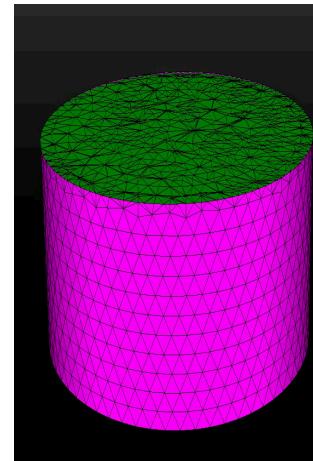
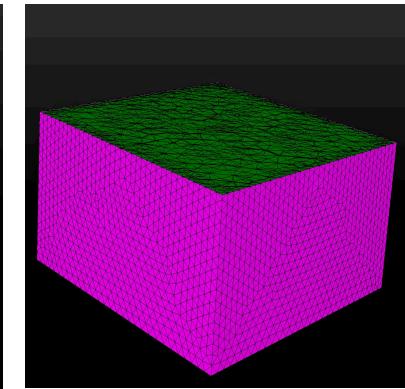
- Solution exhibits mesh dependency (slip length must be adjusted to accommodate resolution changes)
- Mesh independency alleviated once ratio between grid resolution and slip length is held constant
- Allows the use of this model for other more complicated geometries where mesh size is not known *a priori* after slip coefficient is fitted to simple experimental data.

Verification and validation (capillary rise)

2D Capillary Rise



3D Interface Shapes

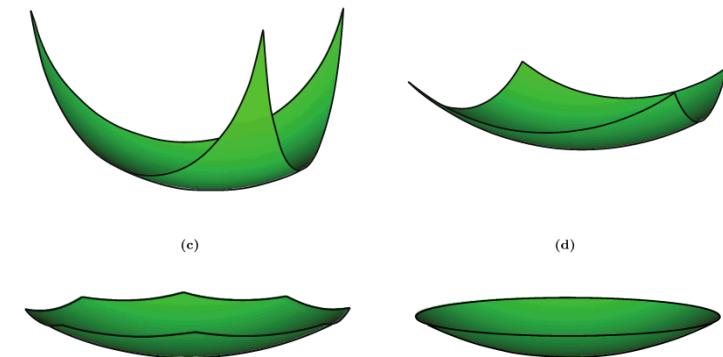


(a)

(b)

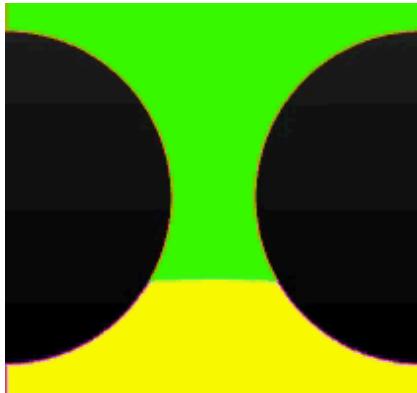
(c)

(d)

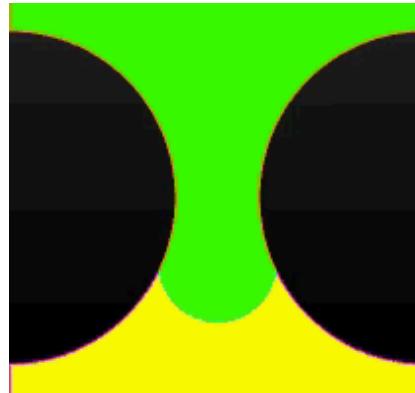


Verification and validation (pore throat)

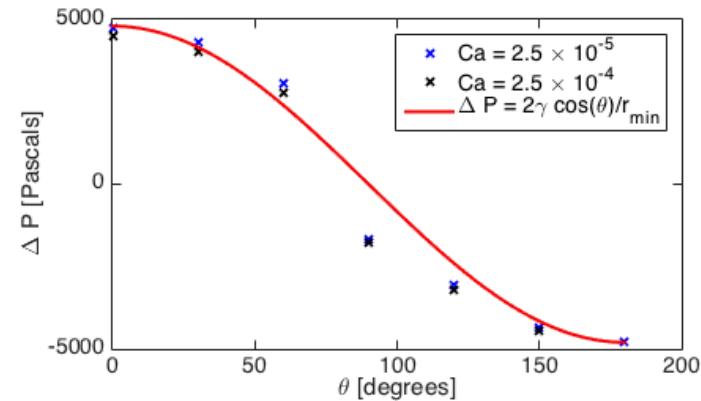
$\theta = 150^\circ$ (non-wetting)



$\theta = 30^\circ$ (wetting)



Capillary Pressure Curve

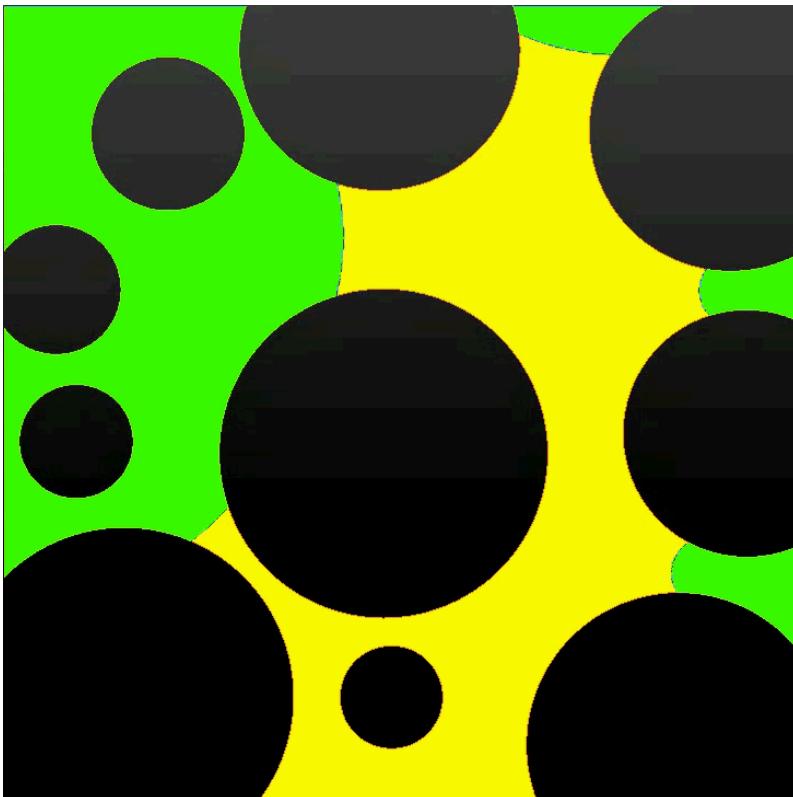


- Forced flow through a pore throat ($Ca = 1 \times 10^{-5}$)
- Important to capture the affect of wetting angle on capillary pressure as it can select preferential flow path in complicated pore lattices.
- Good agreement with predicted capillary pressure curve
 - Wetting line model is accurate
 - Surface tension is accurately represented
- Can be extended to more complicated geometries (2D, 3D)

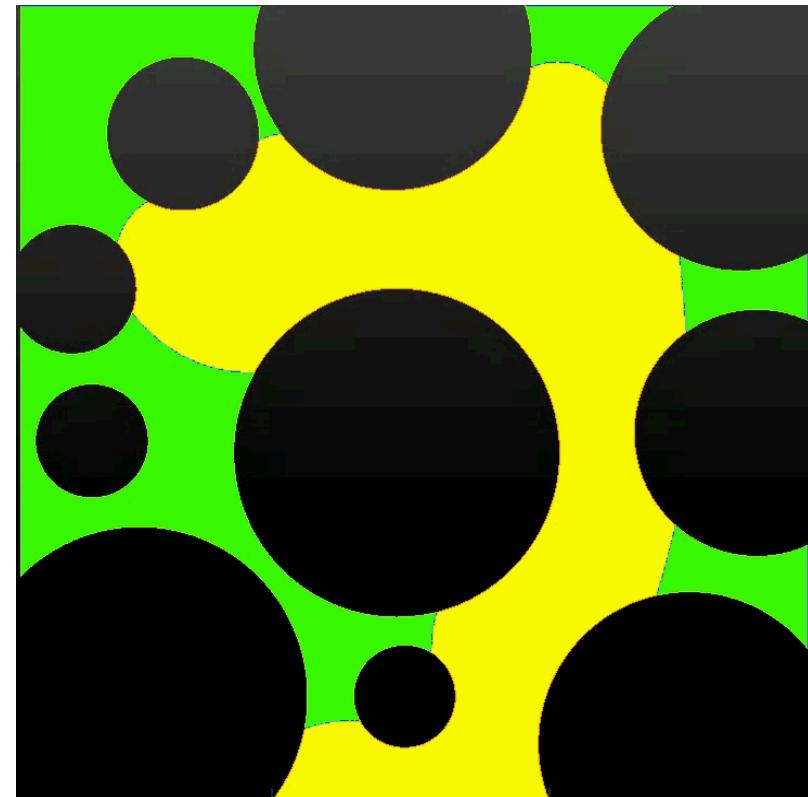
Flow through pore network

Flow Through a Pore Network

Imbibition

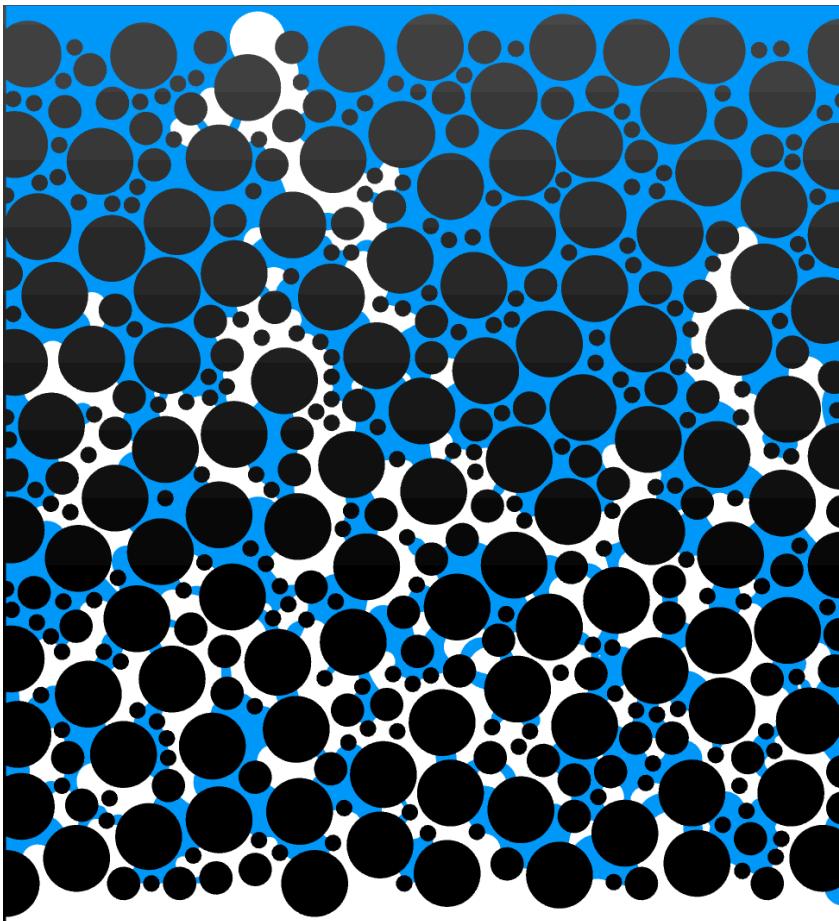


Drainage

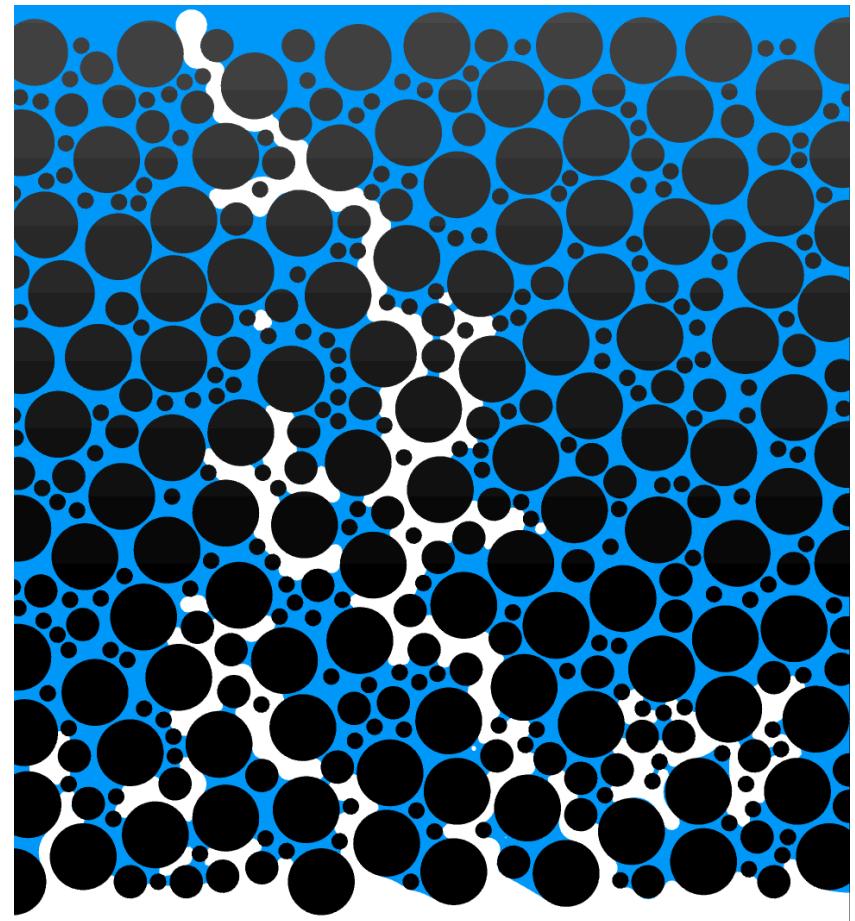


Drainage simulations through random pore network (2D)

Weakly Wetting

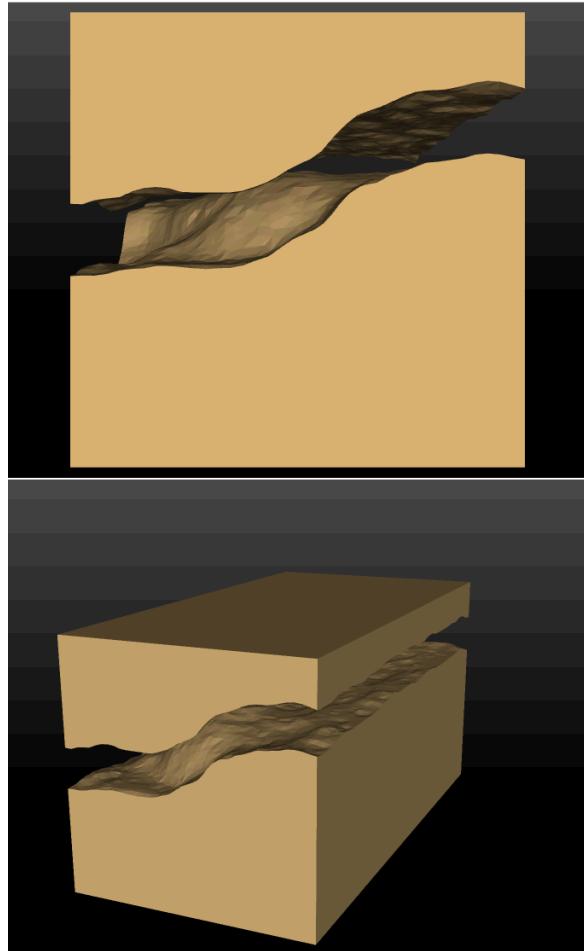
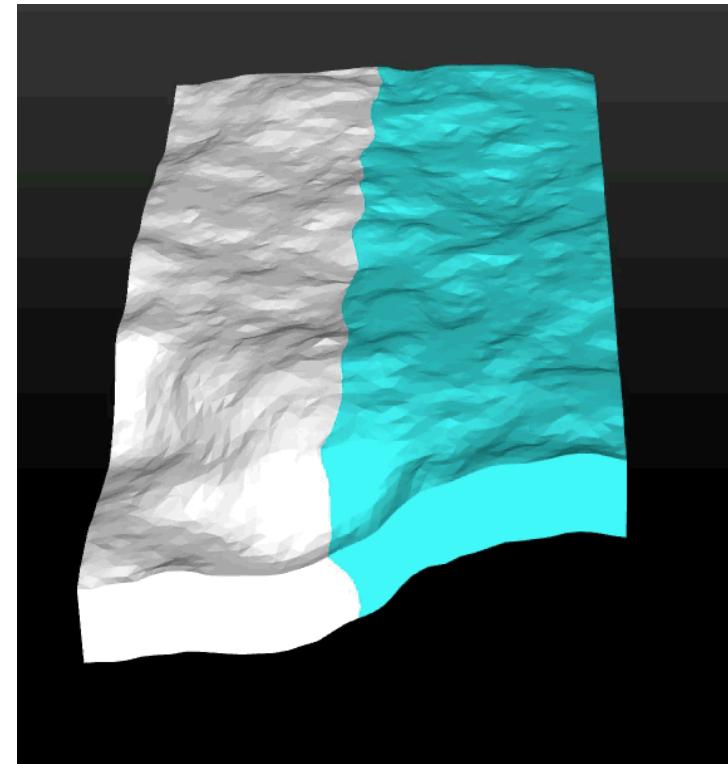


Strongly Wetting



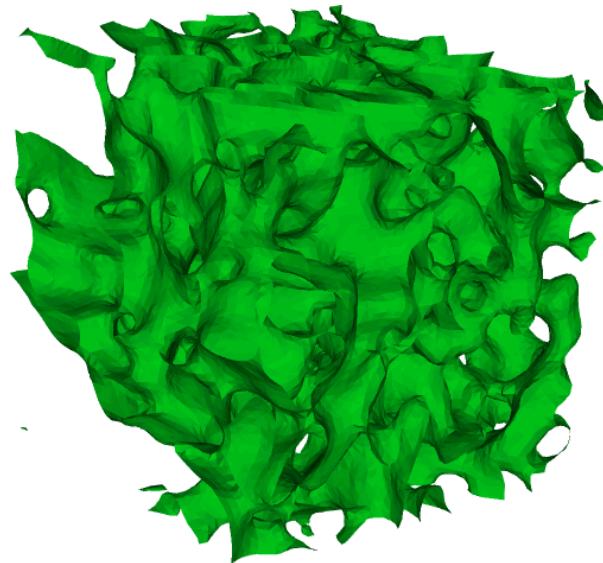
Flow through a scan of a real 3D fracture

- Micro-CT scan of real sandstone fracture
- Mesh generation using CDFEM
- Run multiphase flow on mesh



Ongoing/Future Work

- Use recently developed CDFEM framework to simulate pore-scale two-phase flow
- Complex pore networks
 - Micro CT Scan data
- Compare with core-flood experiments
- Supplement IP model development
- Predict permeability through reservoir rock based on wettability



3D micro CT scan of sandstone sample

Questions & Acknowledgements

- This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525
- Questions?