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Background and motivation

Classical model reduction methods

Most classical model-reduction methodologies were originally developed for
asymptotically stable LTI systems

Balanced truncation (Moore 81),

Hankel norm approximation (Glover 84)

Optimal H2 approximation (Gugercin et al. 08)

Galerkin projection exploiting inner-product structure (Rowley et al. 04)

Although many well-known model reduction methods can be directly applied to

systems with purely imaginary poles, they do not guarantee stability.

POD-Galerkin (Holmes et al. 12)
Balanced POD (Rowley et al. 05)
Moment matching (Bai 02, Freund 03)
Shift-reduce-shift-back (Yang et al. 93)
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Background and motivation

Stability-preserving model reduction methods

A priori a stability-preserving model reduction framework.

An energy-based inner product (Rowley et al. 04, Barone et al. 09,
Kalashnikova et al. 10 )

Lagrangian structure (Lall et al. 03, Carlberg et al. 12, Carlberg et al. 15)
Symplectic structure (Peng and Mohseni 16, Afkham and Hesthaven 17)
Port-Hamiltonian structure ( van der Schaft and Oeloff 90, Scherpen and van
der Schaft 08, Polyuga and van der Schaft 10, Gugercin et al. 12)

A posteriori stabilization step to stabilize an unstable ROM.

Optimization-based eigenvalue reassignment (Kalashnikova et al. 14)
Minimal subspace rotation (Bond and Daniel 08, Amsallem and Farhat 12)
Viscosity(Aubry et al. 88, Podvin et al. 88, Delville et al. 99)

Penalty term (Cazemier et al. 98)

Calibrate POD coefficients (Couplet et al. 05, Kalb et al. 07)
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Background and motivation

@ A novel structure-preserving model reduction method for marginally
stable LTI systems.

@ A general inner-product projection framework with inner-product
balancing.

© Analysis that demonstrates that any pure marginally stable system is
Hamiltonian.
@ A general symplectic-projection framework with symplectic balancing.

@ A geometric framework that enables a unified analysis and comparison of
inner-product and symplectic projection.

1. Peng and K. Carlberg, Structure-preserving model reduction for
marginally stable LTI systems, (2017). http://arXiv:1704.040009.



Marginally stable LTI systems Full-order model and reduced-order model

System decomposition

@ Full-order model:
T = Ax + Bu

y=Czx

(A,B,C): AeR"™", BeR"*?, and C € R*"™.
@ Full-order autonomous system:

(1)

T = Az 2
@ Reduced-order model: ) 5 5
; Z gz + Bu 3)
(A,B,C): A:=U"Ad € R*** B:=0"B e R**? C:=C® ¢ RI**,

k<K n.
@ Reduced-order autonomous system:

z= Az (4)
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Marginally stable LTI systems
& Y 4 Full-order model and reduced-order model

System decomposition

@ If the original system is marginally stable and A has a full rank, there
exists a nonsingular matrix T" such that

A=T [%S Aom] T, (1)

where A(As) < 0 and A(An) =0.
@ With z =T [z] x],]", we obtain a decoupled LTI system

alm] =[5 2]+ [
y=1[C. Cul[F2],

where T™'B = [B] BJ,]” and CT = [Cs Chnl.
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Marginally stable LTI systems
& Y 4 Full-order model and reduced-order model

System decomposition

Main algorithm

Algorithm 1 Structure-preserving model reduction for marginally

stable LTI systems

Input: A marginally stable LTI system (A, B, C).

Output: Reduced-order systems (AS,BS,CN'S) and (Am,Bm,C'm).

1: Decompose the original LTI system into an asymptotically sta-
ble subsystem (As, Bs,Cs) and a marginally stable subsystem
(A, B, Cin).

2: Apply inner-product projection to construct the low-order
asymptotically stable system fls = UTAD,, BS = V7B,
C, = Cy®,.

3: Apply symplectic projection to construct the low-order
marginally stable system jlm = U AP, Bm = U7 B,
Crn = Cpp®,y.
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Marginally stable LTI systems
& Y 4 Full-order model and reduced-order model

System decomposition

Inner-product reduction v. symplectic reduction

Asymptotically stable subsystem  Marginally stable subsystem

Autonomous system & = Az with A(4) <0 & = Az with A(4) =0
Original space Inner-product space Symplectic space
Projection Inner-product projection Symplectic projection
Reduced space Inner-product space Symplectic space

Reduced autonomous 2 = Az 2= Az

system A= U7 Ad with M(A) < 0 A= U7Ad with \(A) =0
Structure-preserving  Lyapunov inequality Hamiltonian property

Energy property

Strictly monotonically decreasin Energy conservation
of reduced system Y Y & &y

For notational simplicity, we omit the subscripts s and m.
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Inner-product lift and projection
Reduction of asymptotically stable systems Inner-product projection of dynamics
Existing and proposed algorithms

Definition (Inner-product lift)

Let (W,II) and (V,Q) be two inner-product spaces and dim(W) < dim(V).
An inner-product lift is a linear mapping ¢ : W — V that preserves
inner-product structure:

(21, 22)y = (P(21), @(22))y, Vi1,22 € W. (1)

In coordinate space, V and W can be represented by (R™, M) and (R*, N)
respectively. This inner-product lift can be expressed as ¢(2) = 2z, Vz € RE,
where (1) implies that ® € R™** satisfies

" M® =N (2)

For convenience, we write ® € O(M, N).
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Inner-product lift and projection
Reduction of asymptotically stable systems Inner-product projection of dynamics
Existing and proposed algorithms

Definition (Inner-product projection)

Let ¢ : W — V be an inner-product lift. The adjoint of ¢ is the linear mapping
PV — W satisfying

(@), 2)y = (&, 0(2))y, VZEW, 2€V. (3)

We say v is the inner-product projection induced by ¢.

In coordinate space, this inner-product projection can be expressed as
Y(2) =¥z, Vr € R", where (3) implies that ¥ € R™*" satisfies

UN = M, (4)

from which it follows that
U =MON". (5)
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Inner-product lift and projection
Reduction of asymptotically stable systems Inner-product projection of dynamics
Existing and proposed algorithms

Definition (Model reduction via inner-product projection)

A reduced-order model (A, B,C) with A= ¥"A®, B=U"B,and C = Cd is
constructed by an inner-product projection if ® € O(M,N), ¥ = M®N*,
where M € SPD(n) and N € SPD(k).

Lemma (Inner-product projection preserves asymptotic stability, Rowley et al.

04)

If the original LTI system (A, B,C) has a Lyapunov matrix © satisfying
A"O + ©A < 0 and the reduced-order model is constructed by inner-product

projection with M = ©, then the reduced-order model (A, B, C) is
asymptotically stable with Lyapunov matrix N.
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Reduction of asymptotically stable systems

Inner-product lift and proj

_tion

Inner-product projection of dynamics
Existing and proposed algorithms

Existing algorithms for computing test and trial basis
matrices

RS =USV™.
4 0= sz V2
5. 0= RU;x; V2

3.0 =RUS %

POD-Galerkin Balanced truncation Balanced POD Shift-reduce-shift-back
. , Primal snapshots S and (A,B,C)
Input Snapshot matrix X (4.5,0) Dual snapshots R Shift margin u
e O(W,, %), b ecO(W,,%1); > ecoWh %),
tput v, ¢ (I, I). .
Outpu + €O, Iy) U € O(W,, %) U e O(W.51). v e O(WH, %)
1. Compute W, and W, 1. Compute W/ and W
by the Lyapunov equation by the Lyapunov equation
2. ComPute_symmetrlc 1. Compute SVD 2. Compute_symmetrlc
1. Compute SVD factorization RS — USV™ factorization
Algorithm X =UxV". W, =887, W, = RR". w12 Wk =887, Wi = RR".
2. U =d="U. 3. Compute SVD 2.0 =5V%, 3. Compute SVD

RTS =USVT.
4.0 =sux; V2
5. = RU;x; V2
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Inner-product lift and projection
Inner-product projection of dynamics

Reduction of asymptotically stable systems
Existing and proposed algorithms

Proposed algorithms for constructing an inner-product

projection that preserves asymptotically stability

I [ Method 1 (inner-product balancing) | Method 2 Method 3
@, € O(Mo, No),
E,E € SPD(n) with o e Rk, No, N € SPD(k),
Input =QorZ =0 O satisfying satisfying My € SPD(n),
satisfying the Lyapunov equation the Lyapunov equation O satisfying the
Lyapunov equation
outost | M € SPD(n), N € SPD(R), Moo M € SPD(n),
P ® € O(M,N), ¥ € O(M',N) v epmt ® € O(M,N), U € R™*
1. —Co_mggs sxm:?gc factorization 1 Set M —0
2. Compute'SVD R7S = USV™ 1. M=0 2. Construct G € O(M, My)
Algorithm 3. 6= SViET 1/2 2 N=d"MP 3. Construct G E O(N, No)
i Y 3. U =MeN! 4. & = GooG!
4. = AUy 5 ¥=M®N!
5. M=, M ==, N=3, .
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Pure marginally stable systems

ic lift and projection
) projection of dynamics
Proposed algorithms

Reduction of pure marginally stable subsystems

Definition (Pure marginal stability)

An LTI system (A, B, C) is pure marginally stable, if A is nonsingular and
diagonalizable, and has a purely imaginary spectrum.

Definition (Hamiltonian)

An LTI system (A, B, C) is Hamiltonian if its corresponding autonomous
system is given by
z = JV.H(xz) = JLx, (1)

where J € SS(2n) and L € R®"*2" is symmetric. The matrix L defines the
(quadratic) Hamiltonian H : R*" — R, z + a7 Lz.

Theorem

The following conditions are equivalent:
O (A, B,C) is pure marginally stable.
@ (A, B,C) is Hamiltonian and marginally stable.
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Pure marginally stable systems
and projection

) projection of dynamics

Proposed algorithms

Reduction of pure marginally stable subsystems

Definition (Symplectic space)

Let V denote a vector space. A symplectic form Q: VxV — R is a
skew-symmetric, nondegenerate, bilinear function on the vector space V. The
pair (V,Q) is called a symplectic vector space.

| \

Definition (Symplectic lift, Peng and Mohseni 16)

Let (W,II) and (V, Q) be two symplectic spaces and dim(W) < dim(V). A
symplectic lift is a linear mapping ¢ : (W,II) — (V, Q) that preserves
symplectic structure:

H(ij, 732) = Q(¢(21), ¢(22)), VZ1,22 € W. (1)

In coordinate space, the symplectic lift can be expressed as ¢(2) = @z,
Vz € R?*, where (1) implies that ® € R?>"*2* satisfies

" Jo® = Ju. (2)
For convenience, we write ® € Sp(Jq, Jm).
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Pure marginally stable systems
d projection
projection of dynamics

Reduction of pure marginally stable subsystems P'roposc‘d R

Definition (Symplectic projection, Peng and Mohseni 16)

Let ¢ : (W,II) — (V,Q) be a symplectic lift. The adjoint of ¢ is the linear
mapping ¢ : (V,Q) — (W, II) satisfying

(y(2), 2) = A&, $(2)), VZEW, &£€V. 3)

We say v is the symplectic projection induced by ¢.

In coordinate space, the symplectic projection can be expressed as
() = U7, Vo € R*", where (3) implies that ¥ € R?*"*?* satisfies

UJg = Jo®, (4)

from which it follows that
U= JodJg . (5)
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Pure m / stable systems
1 projection
rojection of dynamics
Proposed algorithms

Reduction of pure marginally stable subsystems

Definition (Model reduction via symplectic projection)

A reduced-order model (A, B,C) with A= ¥"A®, B=U"B, and C = Cd is
constructed by a symplectic projection if ® € Sp(Ja, Ji) and ¥ = Jo®J; ",
where Jo € SS(2n) and Jn € SS(2k).

Lemma (Preservation of symplectic structure)

If the original LTI system (A, B,C') is Hamiltonian and the reduced-order
model is constructed b)~/ sxmglectic projection with Jo = —J —L then the
reduced-order model (A, B, C') remains Hamiltonian.

Theorem (Preservation of pure marginal stability)

Suppose the original system (A, B, C) is pure marginally stable, i.e., A= JL
with J € SS(2n) and L € SPD(2n). Then the reduced system (A, B, C)
constructed by symplectic projection with Jo = —J~' and any Ju € SS(2k)
remains pure marginally stable, i.e., A € GH(2k).
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Pure m
Symplectic liff d projection
Symplectic pr: tion of dynamics

Reduction of pure marginally stable subsystems Prepesed) 2zt

Proposed algorithms for constructing an inner-pro
projection that preserves asymptotically stability

[ I Method 1 (symplectic balancing) I Method 2 I Method 3
=2 € SPD(n), F € Sp(Ja, Jn), Do € Sp(Jan, Jor),
Input Jo € 8S(2n), Jn € SS(2k), Jn € SS(2k),
G satisfying J = GJ2,G™ Jo € SS(2n) Ja € SS(2n
Jn € SS(2k), 2nx2k 2nx2k
Output 3 € Sp(Jo, Jor). U € Sp(Jay, Jox) v e R ® € Sp(Ja,Ju), ¥ € R
1. Compute symmetrlc factorization
Z==RR", = T 1. Compute G € Sp(Jq, J2n)
. 2. Compute SVD R'S = USV™ -~ _1 | 2. Compute G € Sp(Jir, Jar)
Algorithm 3 &= STy 1,/2’, T — RUlzfl/z o 1. ¥ =JodJy 3 P — G@o(' 1
4. o= Gdiag((b, V), ¥ = G "diag(¥, ) 4.0 = JodJy!
5. Ju = Jox
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Reduction of pure marginally stable subsystems

Inner-product reduction v. symplectic reduction

Asymptotically stable subsystem

Marginally stable subsystem

Original space

Inner-product space:
(R™, M) with M € SPD(n)

Symplectic space:
(R™, Ja) with Jo € SS(m)

Autonomous system

z = Az with A(4) <0

= = Az with A\(A) =0

Key property
of full system

Lyapunov inequality:
ATM + MA <0

Hamiltonian property:
A"Jo+ JoA =0

Energy property
of full system

% (%w"]\[r) <0

% (%.LTL_L) =0

Reduced space

Inner-product space:
(R¥, N) with N € SPD(k)

Symplectic space:
(R¥, Jn) with Ju € SS(k)

Projection

Inner-product projection

Symplectic projection

Trial basis matrix

PEOMN): P MOP=N

® € Sp(Jo,Ju) : 97 Jo® = Ju

Test basis matrix

U =MON ' e R*¥F

U = Jo®J ' € R™¥F

Reduced autonomous
system

2= Az ~
A =WTAP with A\(4) <0

2= Az ~
A = U7 AD with A(A) = 0

Key property
of reduced system

Lyapunov inequality:
ATN+NA<O

Hamiltonian property:
ATJn+JnA=0

Energy property
of reduced system

G% (%Z’Nz) <0

g (%ZTZ/Z) =0 with A= —J;'L
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Numerical examples

2D mass—spring system (

miki; = ko (Wit1,j + i1, — 2ui5) — 2bti 5,

mbi,j = ky(vij+1 +vij—1 — 204 5),

(1)

0.005

-0.005
-0.01
-0.015
-0.02
-0.025
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Numerical examples

Comparison of different model-reduction methods for reduced dimension

k = 40.
| Pop | srsB [BPOD | sP1 sP2 Fulorder
model
Number of
unstarl?‘le modes 8 16 18 0 0 0
Instability margin
max(Re())) 50.480 | 10.586 | 3.695 0 0 0
Marginal-stability
preservation No No No Yes Yes Yes
Relative Statespace | joo | too | +oo 0.11156 010214 0.04358
REfative system-eneiey [ oo | +oo | +oo | 8.6868x10°° [ 48843 x 10°° | 3413 % 10°°
Inﬂenr;é?éty'me +oo 400 +oo | 1.9958 x 1073 | 1.9959 x 1072 | 1.9959 x 1072
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Numerical examples

= Benchmark
—=&—POD
—A— SRSB
—*—BPOD

® spP1

D sp2

< Full Model

o’b Q>$ ¢$ of

e S

State-space errorg(t)||

10 15

= Benchmark
—=—POD
—A—SRSB
—%—BPOD

® spP1

D sp2

< Full Model

System energy E(t)

0 5 10 15
Time t

(a) The evolution of the state-space (b) The evolution of the system en-

error [le(t)[| = [l=(t) — 2(2)]

ergy E(t)

Figure: The evolution of the state-space error |le(t)| = ||z(¢) — Z(¢)|| and
system energy E(t) for all tested methods and reduced dimension k = 40.
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Numerical examples

Relative error n

Inf}

10

=
o

L

: N

-1

m POD
—A— SRSB

* BPOD
-®-sp1

> sp2
—<— Full Model

<

\;"i"B-a--p

10 ( 30
Subspace dimension k

40

Relative error Ng

Inf} X
" . E =
10° LB ; T =
107" 3. - g
®m POD S8
1073 —A—SsRrsB i 3 * +*
~ BPOD > > > B
1073 -®-sP1 ‘o ]
> sp2 ~e
1074 —<— Full Model te- -
<
107
0 10 20 . 30 40
Subspace dimension k

(a) Relative state-space error 7 ver- (b) Relative system-energy error ng
versus subspace dimension k

sus subspace dimension k

Figure: Method performance as a function of reduced dimension k.
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Numerical examples

Conclusions

@ We propose a structure-preserving model reduction for marginally stable
linear time-invariant (LTI) systems

@ The method decomposes a marginally stable LTI system into an
asymptotically stable subsystem and a pure marginally stable subsystem

@ Inner-product projection and the Lyapunov inequality are applied to
reduce the first subsystem while preserving asymptotic stability.

@ The pure marginally stable subsystem is a Hamiltonian system.

@ Symplectic projection is applied to reduce this subsystem while preserving
pure marginal stability.

@ The accuracy, stability, and energy preservation of the proposed method
is demonstrated through two numerical examples.
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Numerical examples
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