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Introduction

Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various
metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions 1s poorly defined, although there 1s
accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to
document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in tri-
axial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure
region.

Methods

Rock Types: !
Berea Sandstone - Samples taken from a single block from Cleveland Rock Quarry in Ohio. The sandstone
consists of subangular, well-sorted grains, 75-80% quartz, 20-25% feldspar, with minor amounts of clays and
dolomite as grains and cement. 16-19% porosity, 185 micron mean grain diameter. Samples taken parrallel to
bedding laminae of mafic minerals spaced 0.5 mm apart.
Carrara Marble - Samples taken from a single block from Lorano Bianco quarry in Italy. Carrara is nearly pure
calcite with less than 1% porosity. The grain diameter 1s 250-355 microns. Undeformed marble has occational
mechanical twins, sporadic intragranular microfractures.
Indiana Limestone - Samples taken from a single block. Indiana limestone is a calcite cemented grainstone that
1s over 97% calcite. Grain size 1s over 300 microns.
Kansas Chalk - Samples taken from a single block from the Upper Cretaceous Niobrara Formation. Kansas chalk
1s over 99% calcite with 30% porosity. Grains are 0.2 - 0.55 microns in diameter. , 2
p
Load Path:
All experiments presented here are triaxial extension experiments. A small axial load 1s placed on the sample.
The confining pressure 1s increased to the desired condition, and the axial load is increased to maintain a 1 MPa
differential stress. Once the desired confining pressure 1s reached, the axial piston is reversed at a constant rate
while the confining pressure 1s held constant. The confining pressure 1s the greatest principle stress, Sigma 1,2,
and the axial stress is the least principle stress, Sigma 3. The axial strain rate is 10E-5/sec.
Sample Geometry:
The experiments presented here use a smooth notch cut, or dogbone, geometry. A precision surface grinder 1s used to
create a constant radius of curvature for the neck. The sample 1s 102 mm long, 47 mm diameter at the shouler, 30 mm
diameter at the neck, and a 88 mm radius of curvature.
Sample Assembly:
Strain gage - Micro Measurement 350 ohm grids, stacked orthogonal rosette pattern measuring 10.7 mm square, was
affixed to the neck of the sample. A groove was cut into the shoulder of the sample to run the strain gage wire under
the jacketing and throught a pore pressure port in the piston.
Jacketing - The sample was wrapped in a single layer of latex sheeting. Plasticene modeling clay filled the void in the
neck. A single layer of heat shrink polyolefin tubing enclosed the sample assembly from the confining medium. The
jacketing was held in place by tie wire.
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Comparison Against Biaxial Concrete Failure Criterion

Berea SS Data from the experiments presented here 1s combined with previous triaxial compression experiments to evaluate the applicability of a triaxial concrete model to natural
s 10 MP3 0 0 90 MP3 material. A three variable geralized failure criterion was derived by Menetrey and Willam, 1995, to extend the Hoek and Brown criterion to predict the behaivor of
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The strain gages on the sample neck were able to capture the mechanical behavior as failure localized. The measurements from the strain gages for Berea sandstone and S (ksi) 5 (ksi)
Carrara marble reflect the same trends as the external measurements: Increasing strength, stiffness, and inelastic strain with increasing confining pressure. The strain : : : :
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C - Failure strengths for Berea sandstone, Carrara marble,

Sigma 3 normalized by To

Indiana limestone, and Kansas chalk. To compare the

different strength materials, the failure strengths for each

experiment was normalized by the materials tensile

strength. All of the materials tested here show a similar
shape to the failure envelope, suggesting a characteristic

shape.

Griffith Crite

A - Fracture angles

rion

from Carrara

marble plotted against confining
pressure, compared against predictions
from the Griffith criterion. The
Griffith criterion predicts either 0° or
22.5°, Carrara marble demonstrates a

smooth increase 1n

fracture angles for

the tenile to shear transition.

B - Failure strengths for Berea
sandstone plotted in Sigma 1 versus
Sigma 3 space, compared against

predictions from th

e Qriffith, and

modified Griffith criterions. Neither
criterion 1s able to accurately predict
the observed failure strengths.

Sigma 3 (MPa)

D - Failure strengths for Berea sandstone, Carrara marble, Indiana limestone, and Kansas chalk plotted

in sigma 1 versus sigma 3 space. Earlier extension experiments on Berea sandstone and Carrara

marable by Bobich 2005 and Ramsey 2001, respectively, are also included. The failure envelopes for

the different materials are similar, suggesting this 1s a charcteristic shape applicable to all rock types.
The increase 1n tensile strength with increasing sigma 1 1s a repeatable phenomena that is seen in all
rock types tested here. The shapes of the envelopes are similar, but the UCS to To ratio i1s not. The ratio
increases with decreasing confining pressure.
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A. - B plotted against mean stress. For Berea sandstone and Carrara marble, B values are at maiximum values for the experiments at 10 MPa confining pressure, and decrease
ith increasing confining pressure. 3 decreases linearly for Carrara marble, but values are scattered for Berea sandstone.

B. - Measured and predicted fracture angles plotted against confining pressures. Predicted values are higher than measured values for all confining pressures tested. The

predicted angles for Carrara roughly mirror the behavior of the measured values. The predicted values for Berea sandstone do not follow the same trend.

C. - B and p values for Berea sandstone and Carrara marble plotted against predictions for a single yield surface model from Issen and Challa, 2008. Experiments agree with

he band type predicted by the single yield surface model, except for Carrara marble at 10 MPa, 150 MPa, and Berea sandstone at 90 MPa, and 120 MPa confining pressures,
hich are not predicted to occur.

D. - B and p values for Berea sandstone and Carrara marble plotted against predictions for a two yield surface model from Issen and Challa, 2008. Predicted band type agree
ith experimental observations except for Berea sandstone at 90 MPa and 120 MPa, and Carrara marble at 150 MPa confining pressure. The model predicts dilation bands for

hese experiments, where as observations suggest that these experiments are shear bands.
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