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Motivation
• Plenty of pores at sub-micron scale (nano-pores) in shales and carbonate rocks
have become increasingly important for emerging problems such as unconventional
gas and oil resources, enhanced oil recovery, and geologic storage of CO2
• Advances in analytical capabilities with X-ray, electron, and ion beams offer
emerging tools for characterizing pore structures, mineralogy, and reactions at the
sub-micron scale
• Multiscale imaging capabilities integration of experimental and numerical tools
to probe the structure and properties of materials across scales (e.g., core to
nanometer scale) are rapidly advanced
• Digital rock physics — data interrogation about how to take nanometer scale

information and apply it to the thin-section or larger scale for accurate prediction of
coupled geophysical, mechanical, and chemical processes

Objectives
• Determine appropriate sample volumes for carbonate rock with focused ion beam-

Scanning electron microscopy (FIB-SEM) analysis
• Develop a workflow for digital rock physics to upscale petrophysical and elastic

properties for multiphase flow and reactive transport

Multiscale Imaging and Analysis

• Selma chalk: Secondary "seal" for NETL's
SEACARB Phase II Plant Daniel site for CO2
injection into Lower Tuscaloosa

• Of interest as "leaky caprock" to mitigate injection
pressure hazard
Reservoir rock samples at the resolution
needed to compute digital rock properties

3D Solid material
(calcite + clay)

Thin section 1821 microns

Core (3' long) at depth 6202' (1.77 !dm resolution)
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- Selma; 6201.4' (1890.2m)

- Selma; 6227.5' (1898.1m)

Selma; 6217.5' (1895.1m)

- Tuscaloosa silty mudstone; 7931.6' (2417.6m)

Lower Tuscaloosa Massive Sand; 8535.5' (2601.6m)

- Lower Tuscaloosa Interbedded sandIshale; 8574.7' (2613.6m)

- Tuscaloosa Marine shale; 8581.9' (2615.8m)
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FIB-SEM image
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Reconstructed 3D pore network
showing connected and unconnected
porosity (left) and binary image (right)

15.6 nm resolution

4-- 16 microns

0.0

Pore scale modeling with lattice
Boltzmann model and directional flow

showing strong anisotropy

Image Analysis and Multiscale Sampling

• Image segmentation

Raw image:
• Uneven background
• Uneven illumination &

horizontal scan lines
• Charging effect (bright

white spots)
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Small pores captured
• Background correction
• FFT bandpass filter
• Median filter
• Thresholding

Large fractures captured
• Background correction
• Median filter
• Higher threshold value

Connectivity recovered
• Combine two binary
images
• Dilate & Erode (twice)

• Reconstruct 3-D pore structures and multi-scale pore networks
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• Principal Component
Analysis
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Principal Component Aanlysis
with Original Image
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L2 norm error = 2.44 %
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• FIB-SEM sample volume has a size of
statistical elementary volume at 10 vtm

• 4-6 representative sampling
• Reconstruction of multi-scale rocks from

nano- to core- scales

• Graph-based Spectral Segmentation
Algorithms
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Spectral Segmentation with multilayer graph
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• With the Fncut algorithm, the thin section image can be segmented into primary
clustering representing main features

• Microfracture can be treated as inclusion of local heterogeneity in addition to main
clusterings

• Based on this analysis, 4-7 spots can be selected to account for nanopore structures
which can not be resolved at the thin section scale

• Primary spots can be selected to represent one microfracture network and one around
the microfracture, one from central region, and the last one from secondary
microfracture networks

• Support vector machine (SVM) will be used for texture classification in the following
analysis

Workflow for Digital Rock Physics
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• 3D printing for flow and acoustic measurements
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• Applicability of different printing
materials for mechanical, acoustic,
and multiphase flow will be tested

• Proof of concepts such as multisclae
pore reconstruction will be tested
with 3D printed materials

• Reproducibilty of printed materials
will be tested at different printing
resolutions

Flow of "frac" fluid in proppant-containing fracture

Segmented image Lattice Boltzmann simulation

• Elastic properties will be estimated using digital rock physical method (e.g.,
Knackstedt et al., 2009)

• Undrained, drained, partially drained conditions will be tested with a set of
representative pore structures synthesized by 3D printing

• Surface properties of 3D printed materials will be altered to accommodate different
wetting properties
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