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Quantitative analysis of nano-pore geomaterials and
representative sampling for digital rock physics

Motivation

e Plenty of pores at sub-micron scale (nano-pores) 1n shales and carbonate rocks
have become increasingly important for emerging problems such as unconventional
gas and oil resources, enhanced o1l recovery, and geologic storage of CO,

e Advances in analytical capabilities with X-ray, electron, and 1on beams offer
emerging tools for characterizing pore structures, mineralogy, and reactions at the
sub-micron scale

e Multiscale imaging capabilities — integration of experimental and numerical tools
to probe the structure and properties of materials across scales (e.g., core to
nanometer scale) are rapidly advanced

e Digital rock physics — data interrogation about how to take nanometer scale

information and apply it to the thin-section or larger scale for accurate prediction of
coupled geophysical, mechanical, and chemical processes

Objectives

e Dectermine appropriate sample volumes for carbonate rock with focused 10n beam-
Scanning electron microscopy (FIB-SEM) analysis

e Develop a workflow for digital rock physics to upscale petrophysical and elastic
properties for multiphase flow and reactive transport

Multiscale Imaging and Analysis
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Reconstructed 3D pore network
showing connected and unconnected
porosity (left) and binary image (right)

Pore scale modeling with lattice
Boltzmann model and directional flow
showing strong anisotropy
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Image Analysis and Multiscale Sampling

e Image segmentation

Raw image:

= Uneven background

= Uneven illumination &
horizontal scan lines

» Charging effect (bright
white spots)

Connectivity recovered
= Combine two binary
Images

= Dilate & Erode (twice)

Small pores captured Large fractures captured
= Background correction = Background correction
= FFT bandpass filter =~ = Median filter

= Median filter = Higher threshold value

= [hresholding

e Reconstruct 3-D pore structures and multi-scale pore networks
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E e Reconstruction of multi-scale rocks from
‘5 nano- to core- scales
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e Graph-based Spectral Segmentation
Algorithms

e Principal Component
Analysis
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Workflow for Digital Rock Physics

Flow and Static
Rock Multiscale Image Effective Wave
. Transport . .
Sample image Process . Elastic Propagation
Properties .
Properties

e 3D printing for flow and acoustic measurements

3D printing with FDM with ABS

= Applicability of different printing
materials for mechanical, acoustic,
and multiphase flow will be tested

Acoustic
emission

testing
= Proof of concepts such as multisclae

pore reconstruction will be tested
2500 with 3D printed materials

= Reproducibilty of printed materials
¢ will be tested at different printing
resolutions
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e Hydraulic fracturing test Flow of “frac” fluid in proppant-containing fracture

= With the Fncut algorithm, the thin section 1mage can be segmented 1nto primary
clustering representing main features

s Microfracture can be treated as inclusion of local heterogeneity in addition to main
clusterings

= Based on this analysis, 4-7 spots can be selected to account for nanopore structures
which can not be resolved at the thin section scale

= Primary spots can be selected to represent one microfracture network and one around
the microfracture, one from central region, and the last one from secondary
microfracture networks

= Support vector machine (SVM) will be used for texture classification in the following
analysis
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Micro-CT images Segmented image Lattice Boltzmann simulation

m Elastic properties will be estimated using digital rock physical method (e.g.,
Knackstedt et al., 2009)

» Undrained, drained, partially drained conditions will be tested with a set of
representative pore structures synthesized by 3D printing

» Surface properties of 3D printed materials will be altered to accommodate different
wetting properties
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