

Exceptional service in the national interest

Flexible Optimization and Uncertainty-Enabled Design of Helical Compression Springs in Nonlinear Spring-Mass-Damper Systems

Drs. Jordan E. Massad & Sean C. Webb

Raleigh, NC

July 14, 2015

Sandia National Laboratories

Albuquerque, NM

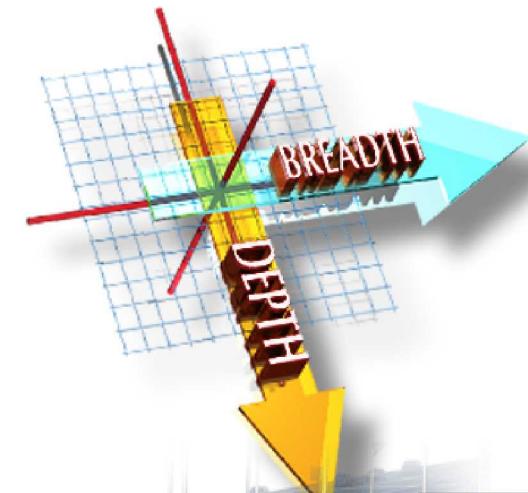
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

- Core Purpose: **help our nation secure a peaceful and free world through technology.**
- Provide objective, multidisciplinary technical assessments for complex problems.
- Focus on solutions with large science and technology content.
- Create prototypes for subsequent production and operation by industry.

U.S. DEPARTMENT OF
ENERGY

Scope & Complexity of National Security

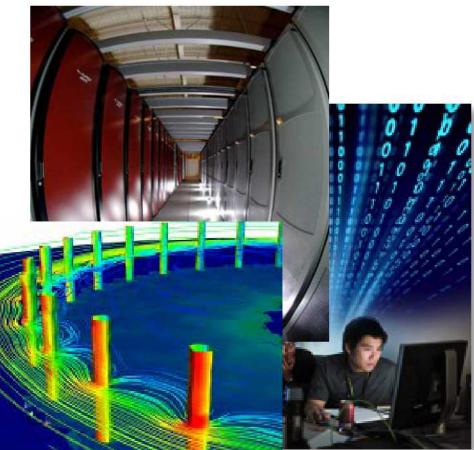


**SNL Applies both
BREADTH & **DEPTH** to
solving our nation's most
challenging
problems.**

Science & Engineering
Science & Engineering
Science & Engineering
Science & Engineering

Sandia
National
Laboratories

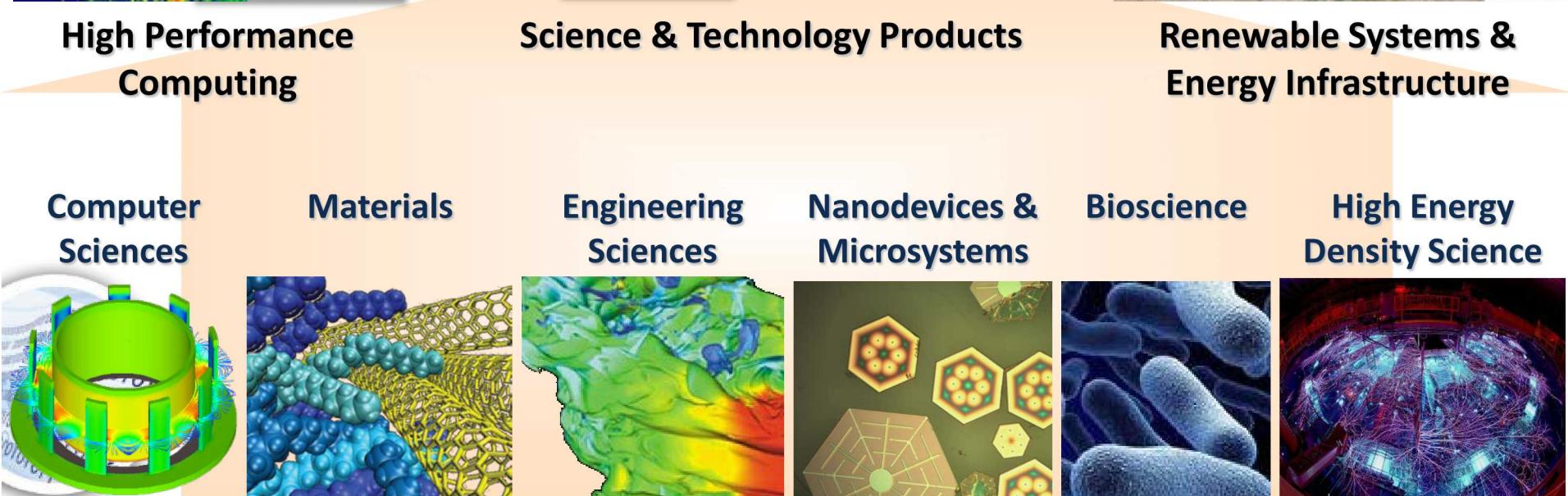
Research Disciplines Drive Capabilities



High Performance Computing

Science & Technology Products

Renewable Systems & Energy Infrastructure

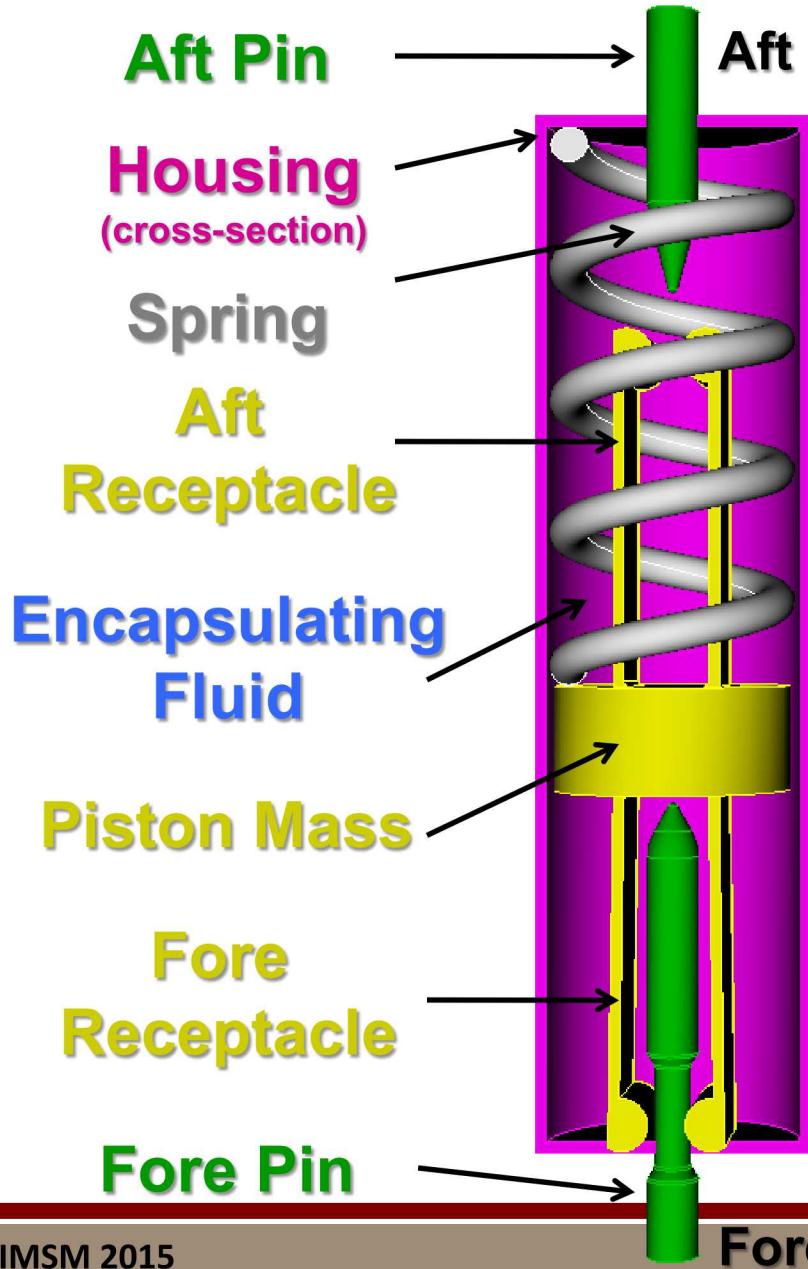


Research Disciplines

Unparalleled Test Capabilities

- From nanometers to kilometers
- From nanowatts to gigawatts
- ..and beyond.
- Extreme environments testing.

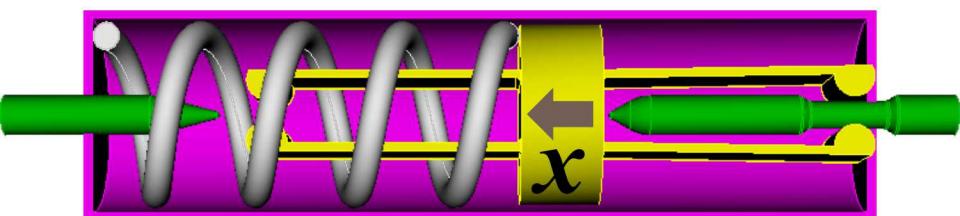
An Acceleration Switch



- Designed to close during axial acceleration along the track during a test.
- Receptacles contact pins to close and activate instrumentation.
- Housing is filled with damping liquid.
- **Preloaded spring** works against axial movement.
- Our awesome IMSM 2010 team analyzed this switch.

Model Switch Operation

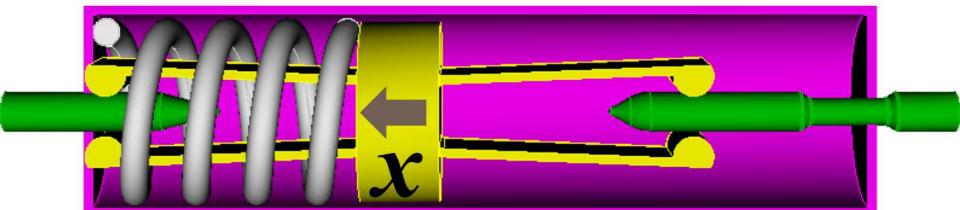
Open



Fore End

Closed

Sled Acceleration



$$m\ddot{x} = F_{sled} - (F_{spring} + F_{friction} + F_{contact} + F_{drag})$$

$$x(0) = 0, \dot{x}(0) = 0$$

Critical Parameter: Spring Force

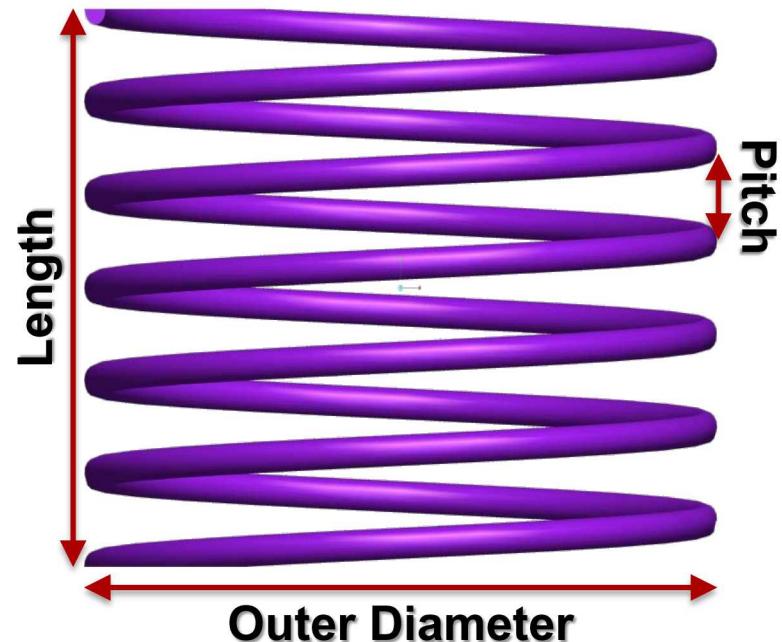
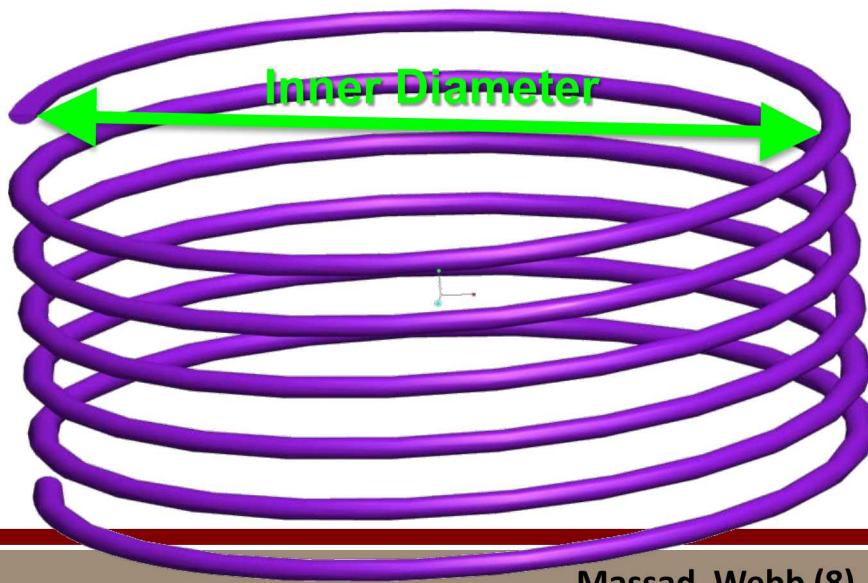
$$m\ddot{x} = F_{sled} - (F_{spring} + F_{friction} + F_{contact} + F_{drag})$$

$$F_{spring} = kx + F_{preload}$$

Helical Spring Anatomy 101

Assuming typical compression spring made of round wire.

- **Free Length:** spring height under no compression.
- **Solid Height:** spring length at full compression (all coils touch).
- **Pitch:** distance between wire centers at free length.
- **Diameters:** wire, spring outer/inner
- **Total Coils:** 1 coil = 360° turn in-plane.
- **Ground Ends:** top/bottom coils are ground flat.
- **Closed/Open Ends:** top/bottom coils attached to adjacent coil.



Key Spring Properties

Spring Rate

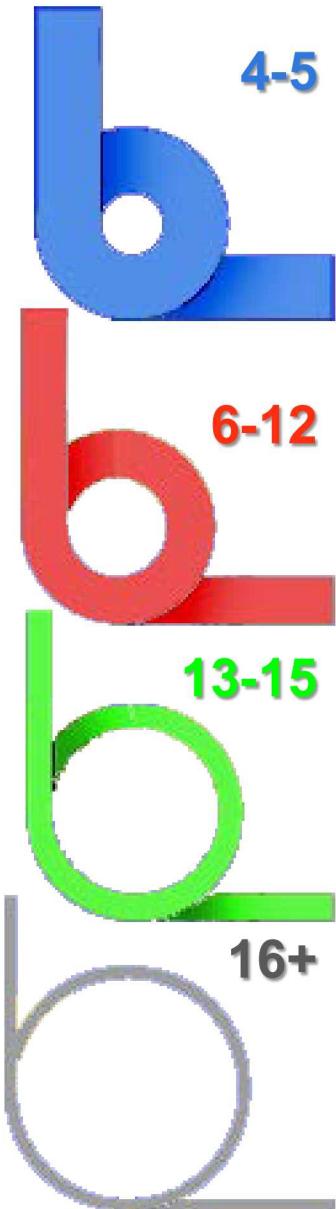
$$K = \frac{G}{8N_a (ec)} \frac{d_w^4}{(d_i + d_w)^3}$$

- Effective stiffness of spring in compression.
- Force typically varies linearly with displacement in operating range.
- **Optimal Spring:** specified force when needed, **low Spring Rate** otherwise.

Spring Index

$$C = \frac{d_i}{d_w} + 1$$

- Determines stress distribution and magnitude, and manufacturability and tolerancing.
- **Optimal Spring: low Index.**



Can we optimize the main spring?

- Low Rate (K) = **High Index**
- Low Index (C) = **High Rate**

$$K = \frac{G}{8N_a} \frac{d_w^4}{(d_i + d_w)^3}$$

$$C = \frac{d_i}{d_w} + 1$$

Strategy to keep both C and K low:

- minimize d_i to lower C ,
- then **increase** d_w to reach largest “low” K that is acceptable.
- Also, consider more active coils and lower G (new material).

Simple enough, but...

Design Constraints (just some!)

Inner/Outer Diameter Bounds

$$d_i > d_i^{\min}$$

$$d_i < d_o$$

$$d_i + 2d_w < d_o^{\max}$$

Diametral Expansion

$$d_{expand}(d_i, d_w, L_{free}, N_a; ec) < d_o^{\max}$$

Maximum Spring Rate

$$\frac{G}{8N_a} \frac{d_w^4}{(d_i + d_w)^3} \leq K_{max}$$

Maximum Spring Index

$$\frac{d_i}{d_w} + 1 \leq C_{max}$$

Force Requirement

$$(L_{free} - L_{reset}) \frac{G}{8N_a} \frac{d_w^4}{(d_i + d_w)^3} = F_{reset}$$

Coil Binding Gap

$$\frac{L_{hard} - L_{solid}(d_w, N_a; ec)}{N_t - 1} \geq g_{min}$$

Buckling Slenderness

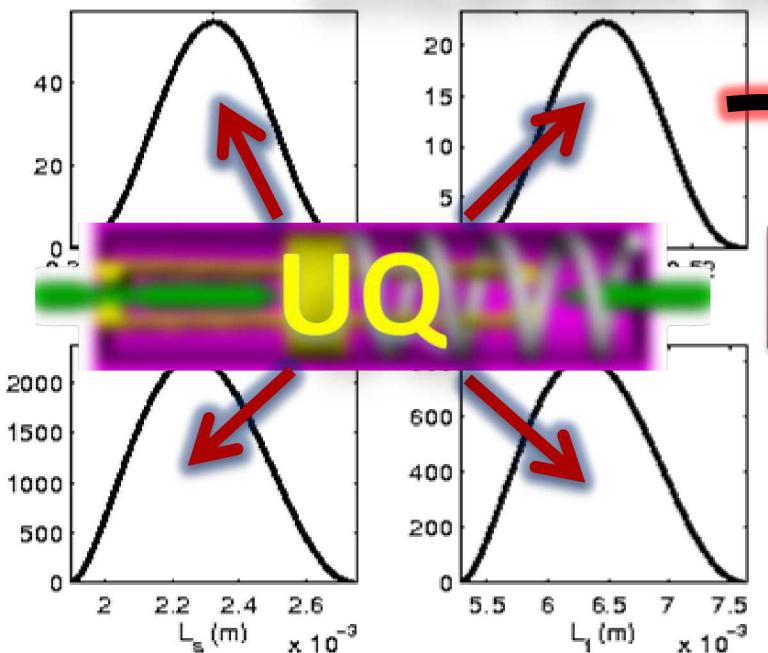
$$\frac{L_{free}}{d_i + d_w} < \pi \sqrt{\frac{2(2\nu + 1)}{\nu + 2}}$$

Maximum Shear Stress

$$UTS > \frac{G(L_{free} - L_{hard})}{4\pi N_a} \left[\frac{d_w(4d_i^2 + 9.46d_i d_w + 3d_w^2)}{d_i(d_i + d_w)^3} \right]$$

Uncertainty Analysis

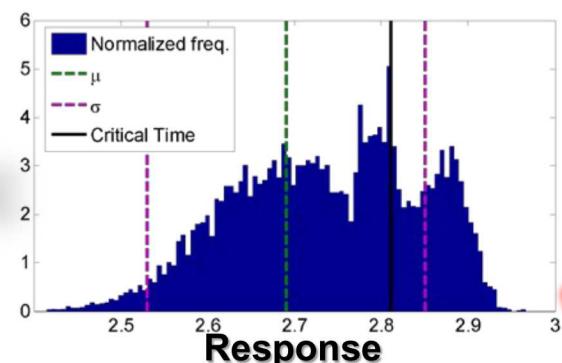
Uncertain Input



Environment

Simulation

Probabilistic Output



What Sandia Wants to Know

**Given a helical compression spring
in a spring-mass-damper system:
*What are optimal springs?***

- Questions to address include:
 - What is an algorithm that optimizes springs with interchangeable objectives and constraints?
 - Can you quantify and incorporate spring force relaxation?

*Addressing this problem can help us develop
a screening analysis for spring designs.*

- Seattle's Coffee: are there spring designs that maximize the probability of **spring** performance under uncertain conditions?
- Seattle's Best Coffee: are there spring designs that maximize the probability of the **switch** performing under uncertain conditions?

Other Class Notes

Shear Modulus (Modulus of Rigidity)

$$G = \frac{E}{2(1+\nu)}$$

homogeneous isotropic materials

E Young's Modulus
 ν Poisson Ratio

Property	302 Stainless Steel
Young's Modulus (GPa)	193
Poisson's Ratio	0.27-0.30
Shear Modulus (GPa)	77
Ultimate Tensile Strength (GPa)*	2.0
CTE (ppm/K)	17.6
Density (g/cm ³)	8.0

*Ultimate Torsional/Shear Strength is assumed to be 35-50% of Ultimate Tensile Strength

Spring Index Relations

- Defined as ratio of mean diameter to wire diameter.
- Mean diameter is average of inner and outer diameters.
- Wire diameter is related to inner and outer diameters.
- Index can be written in terms of inner and wire diameters.

$$C = \frac{d_m}{d_w}$$

$$d_m = (d_o + d_i)/2$$

$$d_w = (d_o - d_i)/2$$

$$d_m = d_w + d_i$$

$$\Rightarrow C = \frac{d_i}{d_w} + 1$$

Spring End Conditions (ec)

Closed = End Coils Welded | Open = End Coils Not Welded | Ground = End Coils Flattened

Dependent Parameter	Closed-Ground	Open-Ground
Number of Total Coils $N_t (N_a)$	$N_a + 2$	$N_a + 1$
Pitch $p_{ec} (d_w, L_{free}, N_a)$	$\frac{L_{free} - 2d_w}{N_a}$	$\frac{L_{free}}{N_a + 1}$
Solid Height $L_{solid} (d_w, N_a)$	$(N_a + 2)d_w$	$(N_a + 1)d_w$
Diametral Expansion $d_{expand} (d_i, d_w, L_{free}, N_a)$	Formula Closed	Formula Open

- N_a : “average” number of active coils estimated over spring deflection; can be chosen, but typically calculated given N_t .
- **Pitch**: used to calculate **Diametral Expansion**.
- **Solid Height**: used to calculate **Coil Binding Gap** at compressed state.
- **Diametral Expansion**: spring OD increases when spring is compressed.

Diametral Expansion (Closed Springs)

- Formula for compression spring with ends fixed against rotation about helix axis (Wahl, 1953):

$$d_{expand} (d_i, d_w, L_{free}, N_a) = d_w + \sqrt{(d_i + d_w)^2 + \frac{p_{closed} (d_w, L_{free}, N_a)^2 - d_w^2}{\pi^2}}$$

- Assumes compression from free length to solid height (maximum diameter expansion expected).
- Most commonly used relation.
- May substantially underestimate true diameter expansion (Bruns, 2012).

Diametral Expansion (Open Springs)

- Wahl (1953) has a derivation for Open springs that additionally includes Poisson ratio.
- Few (if any) use it because his equations are difficult to solve without several simplifications.
- Maintaining fewer assumptions, solution for d_{expand} reduces to roots of a cubic polynomial.
- Predicts larger expansion compared to Closed case.

$$A_3 d_{expand}^3 + A_2 d_{expand}^2 + A_1 d_{expand} + A_0 = 0$$

$$A_3 = -\pi^2 (1 + \nu) d_m$$

$$A_2 = \pi^4 (1+\nu) d_m^{-2} + 3\pi^4 (1+\nu) d_w d_m + \pi^2 p_{open}(d_w, L_{free}, N_a) \left[(1+\nu) p_{open}(d_w, L_{free}, N_a) - d_w \right]$$

$$A_l = -2\pi^4 (1+\nu) d_w d_m^2 - \pi^2 (1+3\pi^2) (1+\nu) d_w^2 d_m - 2\pi^2 d_w p_{open}(d_w, L_{free}, N_a) \left[(1+\nu) p_{open}(d_w, L_{free}, N_a) - d_w \right];$$

$$A_0 = \pi^2 \left[\pi^2 (1+\nu) + 1 \right] d_w^2 d_m^2 + \pi^2 (\pi^2 + 1) (1+\nu) d_w^3 d_m + d_w^2 p_{open}(d_w, L_{free}, N_a) \left[(\pi^2 + 1) (p_{open}(d_w, L_{free}, N_a) - d_w) + \pi^2 \nu p_{open}(d_w, L_{free}, N_a) \right]$$

$$d_m = d_i + d_w$$

Quantify Optimization

- **Minimize** J over chosen design variables, subject to all constraints.
- J is a weighted sum of normalized Spring Rate and Index.
- Normalization factors are chosen by the customer.
- Choose weights to tailor optimized designs.

Objective Function

$$J = a_K \frac{K(d_i, d_w, N_a, G)}{K_{max}} + a_C \frac{C(d_i, d_w)}{C_{max}}$$

Normalization Factors

$$K_{max}, C_{max}$$

Weights

a_K, a_C
 a_k is 0 or 1
 a_c is ~4

Design Optimization Parameters

- There are many design variables, but problem is highly constrained: optimization problem reduces to **2 essential design variables and N_a** :
 - Choose d_w since wire is manufactured at specifiable diameters.
 - Choose d_i as other optimization variable.
- L_{free} is uniquely determined given F_{reset} and L_{reset} .
- Resulting Parameters: N_a , **2 design, 5 objective, 9 constraint**.

Main Spring Design Optimization Problem

$$\min_{d_i, d_w} J(N_a; G, K_{max}, C_{max}, a_K, a_C; \\ F_{reset}, L_{reset}, L_{hard}, g_{min}, d_i^{min}, d_o^{max}, \nu, \text{UTS}, \text{ec})$$