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A Tensor is an d-Way Array
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Vector Matrix 3rd-Order Tensor

d = 1 d = 2 d = 3
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Tensor Decompositions are the
New Matrix Decompositions

Sandia
National
Laboratories

Singular value decomposition (SVD),

eigen-decomposition (EVD),

nonnegative matrix factorization
(NMF), sparse SVD, etc.

Viewpoint 1: Sum of outer products,

useful for interpretation

ti

1
Viewpoint 2: High-variance subspaces,

useful for compression

J titi 1 a

CP Model: Sum of d-way outer products,

useful for interpretation

1
CANDECOMP, PARAFAC, Canonical Polyadic, CP

Tucker Model: Project onto high-variance

subspaces to reduce dimensionality

ti1
HO-SVD, Best Rank-(R1,R2,...,RN) decomposition

Other models for compression include
hierarchical Tucker and tensor train.
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CP: Sum of Outer Products
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r A mnErnnnninn D A 
CAC or  :__

(CP)L.4111UHILd1
I polyadic Model

Data

Yi

x1 X2

MOCieL: M = Xr 0 yr 0 Zr

CompoiAbAt R.

opttovOL

Weto Ids

[À1 AR] T

X = [xi

Y = [371 YR]

Z = [zi ZR]

Factor matrizes

min
L M

z

"k Mijk)2 subject to Tilijk — r Xir Y jr Zkr

r

Key references: Hitchcock, 1927; Harshman, 1970; Carroll and Chang, 1970
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Tensor Factorization "Sorts Out"
Comingled Data
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Data measurements are recorded at

multiple sites (channels) over time.

The data is transformed via a

continuous wavelet transform.

a)

E

Frequency

/

A — X 1 0 yi zl + X2 o y2 o Z2 + g

Acar, Bingol, Bingol, Bro and Yener,

Bioinformatics, 2007

nimir12tEtai
A X1 0 yi 0 Z1 + X2 o y2 o Z2 + E
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Temporal Networks & Analysis
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.

Conference

Tasks: Principal Components, Multidimensional Scaling, Clustering,

Classification, Temporal Link Prediction

DBLP has data from 1936-2007

(used only "inproceedings" from 1991-2000)

# Authors (min 10 papers)

# Conferences

10 Years: 1991-2000

7108

1103

113k (0.14% dense)

Cijk = # papers by author i at conference j in year k

az• *k ={log(cijk) + 1 if cijk > 0

0 otherwise

Let's look at some components sorted by size from a 50-component (R=50) factorization...

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010
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DBLP Component #30 (of 50)
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Top 3 Authors: Moti Yung, Mihir Bellare, Tatsuarm liKdiTILMJ

0.4 -

0.2 -

0 i Oil 1.111..,1, 111,11111 L. ,„ [11.11„ 11, ,, 11

1  

0.5 -
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Cryptography

1  

0.5 -

0 
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Year
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Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010
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DBLP Component #19 (of 50)
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Top 3 Authors: Lionel M Ni, Prithviraj Banerjee, Howard Jay Siegel
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Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010
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DBLP Component #43 (of 50)
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Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010
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Tensor Factorizations have
Numerous Applications
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Modeling fluorescence
excitation-emission data
(chemometrics)

Signal processing

Brain imaging Furukawa, Kawasaki,

(e.g., fMRI) data lkeuchi, and Sakauchi,

• Network analysis and link EGRW '02

prediction

- Image compression and
classification; texture
analysis

Text analysis, e.g.,
multi-way LSI

Approximating Newton
potentials, stochastic
PDEs, etc.

Collaborative filtering

Higher-order graph/image
matching

Spreading
!hearsay (P)

Temporal

Antenna (hearsay (N)

Divinity (K)

Sidiropoulos, Giannakis,

Bro, IEEE Trans. Signal

Processing, 2000 000°

Hazan, Polak, and Shashua,

ICCV 2005

ERPWAVELAB

by Morten Morup

0.2

4000 .

2000

.2000

ti) =

.1(.1..0.0;t1) =

p . opj-:

. op .

Doostan, laccarino, and Etemadi,

J. Computational Physics, 2009

-:J00 ▪ I
-4000 ZIIIL

2LUJ

Duchenne, Bach, Kweon,

Ponce, TPAMI 2011

0.4

O
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Andersen and Bro,

J. Chemometrics, 2003
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CP-ALS: Fitting CP via Alternating
Least Squares

Z2

X1

Yii

+
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X2

f(X,Y,Z

XR

ijk

ijk —

ovi,ve)( (Li.mar Least somares)
stAprobLems Cat& be saved exactLu

+
strixotkre vvtaizes easu 1,1Aversi,o1A,

r

) 2

Xir yjr Zkr

Repeat until convergence:

Step 1: 11-11

Step 2: rni,r1

Step 3: Inin

ij

ij

(a • 'id'k —

(
(

•k —

• "k —

r

r

r

Xir yjr

Xir Yjr

Xir yjr

) 2

Zkr

)2

Zkr

) 2

Zkr

Harshman, 1970; Carroll & Chang, 1970
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CP-OPT: Fitting CP via all-at-once
optimization
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 Y2 YR

A

X i XR

f (X Y, Z
ij

— 2Xir Yjr Zkr)

• CP-OPT (Acar et al.): 1st-order method, better accuracy than ALS when R is too big

• CP-NLS (Paatero, Tomasi & Bro): Damped Gauss-Newton, accurate but slow

• CP-Newton (Phan et al.): Newton method, superior to CP-OPT for high order
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Ho.p,Ho.§ Ho ii(1.4) HtlA

10 i
H(2.2)

10

20 20

i :
40 i 1
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nz = 180 nz = 225

00
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20 40
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Paatero 1997; Tomasi & Bro 2005, 2006; Acar, Dunlavy, & Kolda 2011; Phan, Tichavslqt, & Cichocki 2013
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Challenges for CP Optimization
Problem
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NxPxQ

37,1 # variables = R(N + P+ Q + 1)

A

X9 XR

# data points = NPQ

Rank = minimal R to exactly
reproduce tensor

• Nonconvex: Polynomial optimization problem ivti,t1,a1,1,zati,ovt matters

• Permutation and scaling ambiguities: Can reorder the r's and arbitrarily
scale vectors within each component so long as the product of the scaling
is 1 Mau meot resv.Lari,-zati,oin„ 1,1A,olepe va Kr = R(N+ P+ Q-2)

• Rank unknown: Determining the "rank" R that yields exact fit is NP-hard
(Håstad 1990, Hillar & Lim 2009) 7> No easu soLuti,ovt, tAted to tru tA,u

• Low-rank? Best "low-rank" factorization may not exist (Silva & Lim 2006)
Neeot bowAtis otA, cot/I/Tot/Lei/its 11 x,. o y,. o z,. At. 11x/.11 1137,11 z,.

• Not nested: Best rank-(R-1) factorization may not be part of best rank-R
factorization (Kolda 2001) aomvot use greedu aLooritlim

olda - 26th Biennial Numerical Analysis Conf. - Glasgow



Example 9 x 9 x 9 Tensor of
Unknown Rank
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• Specific 9 x 9 x 9 tensor factorization problem

• Corresponds to being able to do fast matrix multiplication of two 3x3 matrices

• Rank is between 19 and 23

X1,1,1 1

X1,4,2 1

X1,7,3 1

X2,1,4 1

X2,4,5 1

X2,7,6 1

X3,1,7 1

X3,4,8 1

X3,7,9 1

X4,2,1 1

X4,5,2 1

X4,8,3 1

X5,2,4 1

X5,5,5 1

X5,8,6 1

X6,2,7 1

X6,5,8 1

X6,8,9 1

X7,3,1 1

X7,6,2 1

X7,9,3 1

X8,3,4 1

X8,6,5 1

X8,9,6 1

X9,3,7 1

X9,6,8 1

X9,9,9 1

Laderman 1976; Bini et al. 1979; Blaser 2003; Benson & Ballard, PPoPP'15
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Opportunities for the CP
Optimization Problem
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n
Y1 _3372 Y

k-rank(X) = maximum value k such
+ • • • + that any k columns of X are linearly

A
independent

X 1 - X2 XR

• Factorization is essentially unique (i.e., up to permutation and scaling) under
the condition the the sum of the factor matrix k-rank values is > 2R + d — 1
(Kruskal 1977)

k-rank(X) k-rank(Y) k-rank(Z) > 2R + 2

• If R < N,P,Q, then can use compression to reduce dimensionality before
solving CP model (CANDELINC: Carroll, Pruzdrisicy, clI1U Uskal 1980)

Efficient sparse kernels exist (Bader & Kolda, SISC 20071
Recommended as optimization test problems with tunable difficulty

Choosing higher order (illustration for order d=3)
Choosing larger dimensions
Creating higher collinearity in the factors
Adding constraints for nonnegativity, sparseness, etc.

Galli/Lea r
cos(e(xr, xs)) ti 0
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Tensor Factorizations with
Missing Data?
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http://www.madehow.com/

1111111111111111111
WINUNIME
11111=
time-frequency

Biomedical signal processing 

• EEG (electroencephalogram) signals can be
recorded using electrodes placed on the
scalp

• Missing data problem occurs when...

• Electrodes get loose or disconnected,
causing the signal to be unusable

• Different experiments have over-
lapping but not identical channels

O

1 IMP 'Mr

channel time-freq experiments

Time

Time

.
Illpilpi

Measurements

Measurements

acm we still, do thi,s Ca LotAati,m, L-F
aorta Of re wassi,t4.0?

Acar, Dunlavy, Kolda, MOrup, Scalable Tensor Factorizations with Missing Data, SDM'10
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The Missing Data Problem
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Standard Problem:
Given all entries of tensor A, find factor matrices X, Y, and Z such that...

A

1 min
/ 

:(aijk — Tnijk)21
M

ijk

Typically formulated as a
least squares problem

subject to Trlijk

r

Xir Yjr Zkr

Missing Data Problem:
Given a subset of the entries of A, find factor matrices X, Y, and Z such that...

rnin

ijkES2c

jk Mijk
2 c2 subset oy

— missing entries

N ot a viketn,cibLe to At  but strai,oht-Forward wi,th

to stati,stizaL ra AAR, preoli,cti,oin,.

Acar, Dunlavy, Kolda, Morup, Scalable Tensor Factorizations with Missing Data, SDM'10
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Brain dynamics can be captured
even extensive missing channels
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http://www.madehow.co

-\-
.iii 4392 time-freq.

(z,
(\,cb ,

6
4
 c
ha

nn
el

s 

IIIIIIIIIIIIIH
ff

AM,

+
/

Number of Missing

Channels

Replace Missing

Entries with Mean

1 0.98

10 0.82

20 0.67

30 0.45

40 0.24

+
/
'MI

Acar, Dunlavy, Kolda, WI-up, Scalable Tensor Factorizations with Missing Data, SDM'10
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Brain dynamics can be captured
even extensive missing channels

Sandia
National
Laboratories

http://www.madehow.co

-\-
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/

+
/
'MI

Number of Missing

Channels

Replace Missing

Entries with Mean

ignore Missing

Entries

1
10

20

30

40

0.98

0.82

0.67

0.45

0.24

1.00

0.98

0.95
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0.65

Acar, Dunlavy, Kolda, WI-up, Scalable Tensor Factorizations with Missing Data, SDM'10
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Brain dynamics can be captured
even extensive missing channels
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http://www.madehow.co

4"- 4392 time-frea. 

—1*  

+

_c 
IWAVIIIVAVIWAVAII
111111111111111111111
INUMMUll

No Missing Data
channel time-freq experiments

•

11111111Illill .
11111111'

Measurements

111.1.1110.1.1.011111

Measurements

.11=16

30 Chan./Exp. Missing
time-freq experiments

.1111111111
1

Measurement,

.11.1.11111.1.111hili

111.11 IIALA,
Measurements

Acar, Dunlavy, Kolda, Morup, Scalable Tensor Factorizations with Missing Data, SDM'10
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Cross-Validation to Determine
the Number of Components
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.ft

zn

x

Y2 3 R

• Create H holdout sets: QH

• For r=1,2,...
Train model for h =1,...,H

m hr = arg min (aijk — mijk)2

• Compute error for h =1,...,H

1 (hr)
e
(hr) 
= (aijk — Tnijk )

2

hl ijkeQh

Consider statistics on errors euld
to choose the ideal rank

Re
la

ti
ve

 E
rr
or
 

C

C

Example: 10 x 10 x 10 tensor of rank-
2 with component sizes of 1 and 0.1,
with 25% noise. Can we tell the

difference between the second small

component and noise?

1128

-e— 1-DlciDut
,.- Mean holdout
— Sirgle Holdout

1 2
Ra nk

3

Austin and Kolda, Statistical Rank Determination for Tensor Factorizations, in progress

15 Kolda - 26th Biennial Numerical Analysis Conf. - Glasgow 22



New "Stable" Approach: Poisson
Tensor Factorization (PTF)
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0.4D

0.35

0.3D

— 0.25

0.2D

0.15

0.1D

0.05

0.00

o 0 • =1_

• =4 _

0 =10

al.

0 5 10 15 20
k

exp(—A)Ax
P(X = x) =

x!

Yl

x1

r

ZR

Y R

X2 - XR

Xir yjr Zkr

  1 a2.ik Poisson(mijk)

aiik
ex") ij k) Tniik

Maximize this: likelihood(M) = 1-1 n-ijk •
By monotonicity of log, ijk

same as maximizing this: log-likelihood(M) = c — > — aijk log(rnijk)

Thts objecti,ve fu.vx,ottoin,i,s aLso IRYLOVVIA, as KAXLI-locto—LlebLer (KO ottvergewce.
The factorizattow automattcallu in,olkikesattve.
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Solving the Poisson Regression
Problem
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[min

X1

z2

</= Y2

X2

zR

XR

Ittijk — aiik log Mijk subject to miik =
ijk

YR 3\1= xr o y o Zr

r

[A 1 • • • AR]T

X =[xi

[yi YR]

xir yjr Zkrl
Z = [zi ZR]

r

• Highly nonconvex problem!
Assume R is given

Alternating Poisson regression
Assume (d-1) factor matrices are known and solve for the remaining one

Multiplicative updates Typically assume data tensor A is sparse and have
special methods for this

Newton or Quasi-Newton method

Chi & Kolda, SIMAX 2012; Hansen, Plantenga, & Kolda OMS 2015
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PTF for Time-Evolving
Social Network
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recipient

Enron email data from FERC investigation.

# Months

# Senders/Recipients

Links

8540 Email Messages

28 (Dec'99 — Mar'02)

108 (>10 messages each)

8500 (3% dense)

a1.3.k = # emails from sender i to recipient j in month k

Let's look at some components from a 10-component (R=10) factorization, sorted

by size...

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Enron Email Data (Component
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Legal Dept;

Mostly Female 1 0

1 0

1 0

1 0

o

-1

-2

A 0 A
Senders (sorted by freq.)

iht) A 0 0 A
• 0• A

Receivers

la5
7:5
c
a)
(A

3000
stock price peak SEC investigation # Msgs'_

/ 
2000

recipient 1000
---,--•--.--•-•--„,__,-,-10--G--•-•-_,_4,__40_.___„,__,,,--•

Ir-11-...-'10-ii-e--.4_

Each person labeled by
Zhou et al. (2007)

1999-12 2000-07 2001-02 2001-09 2002-03

Seniority Gender Department

• Senior (57%) • Female (33%) -,radin 31 
• Legal (24%) 

%ig )(El Junior (43%) A Male (67%) Other (45%)

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Enron Email Data (Component 3)
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Senior;

Mostly Male

IcT)
—0

a.)
(f)

1 0

10

10

o

-1

r

A A
Senders (sorted by freq.)

A• A
-2 A. A •

o
10

-1
10

-2
•C` 10

recipient

3000

2000

1000

Receivers

Alp A A A AA

A , • AAL  A 0-V4A AA •

stock price peak # MsgsSEC investigation
...... * ..... ....

1999-12 2000-07 2001-02 2001-09 2002-03

Seniority Gender Department
(24%)• Senior (57%) • Female (33%) • Legal g ( 31 %)

El Junior (43%) A Male (67%) 1 radin
Other (45%)

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Enron Email Data (Component 4)
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o

recipient

10
-1

Senders (sorted by freq.)

10
A4A' °O A

-2
'7\10 •

10
Receivers

-1
1 0

-2 A A& zh,

1 0

.00" .0

3000
stock price peak SEC investigation # Msgs'_

2000 ,,, • ,,, ,,,''' '''

1000 "t7

6 . . • .

1999-12 2000-07 2001-02 2001-09 2002-03

Seniority Gender Department
(24%)• Senior (57%) • Female (33%) • Legal g ( 31 %)

El Junior (43%) A Male (67%) iradin
Other (45%)

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Enron Email Data (Component 5)
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o

Other;
Mostly Female

1 0

1 0

1 0

1 0
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recipient

3000

2000
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le 0 A

, • O A

Receivers

AA

stock price peak

••••••••

1999-12
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Seniority Gender Department
• Legal (24%)• Senior (57%) • Female (33%) Trading (31'%)0 Junior (43%) A Male (67%) • Other (45%)

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Coupled Factorizations
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Applications

B

M X 0 yr o

B XWT

1
f (W X, Y, Z) =

Biology

Gene x Expression x Time

Gene x Function

Consumer information

Consumer x Purchase x Season

Consumer x Zip Code

CMTF Toolbox (uses Tensor Toolbox)

Can do ALS or all-at-once optimization

Handles missing data

A — x yr

2 1

2
B XWT

2

Acar, Dunlavy, Kolda, MLG'11; Acar et al., IEEE EMBC, 2013; Acar et al., BMC Bioinformatics, 2014
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Symmetric Tensor Factorization
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Laboratories

• d = number of modes or ways, N = size of each mode

• symmetric = entries invariant to permutation of indices

Symmetry for aijk = aikj = ajik = akij = ajki = akji Nd elements but only
3-way tensor for all i, j, k E { 1, 2, . . . , N 

Nd d! + o(Nd -1)
(d = 3) distinct elements

Best rank-1 approximation

=

Rank-R factorization

X1

X.)

/%2 -

J X2

Applications of symmetric tensors: diffusion tensor imaging (DTI/HARDI), higher-order
statistics, higher-order derivatives, relativity, signal processing, etc.
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Best Symmetric Rank-1
Approximation
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Laboratories

DRt(2

X

mootel,
M=Axoxox

min Y(aijk - xixixk
A,x

ijk

Eliminate À:

ijk

maxAxd

ijk

) 2

Nonlinear Program

Axd
max f(x) 

 x(4/
Dxd

subject to IX = 1
J

r FYI: Generaliied Eigenpair
(Chang, Pearson, Zhang 2009)

ADX(1-1

subject to (A, x) e x
N

(Axcl-1)i XjXk for i =  
ijk

"k XiXjXk =
"diagonal ones" tensor > H-eigenproblem

Qi 2005; Lim 2005; Chang, Pearson, & Zhang 2009

"identity" tensor > Z-eigenproblem
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Adaptive Shifted Power Method:
Special Optimization on a Sphere
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National
Laboratories

Theorem 

Assume wE {x1 114 = 1} ,

SZ = open nbhd of w,

f convex and C1 on SZ

Let v = Vf(w)/11V1(w)1.
IfvEQandvw,

then f(v) > f(w) j

Simple fixed point iteration is
monotonically convergent:

f (Xk)
Xk+1

IlVf()C011

rareati,K,s Local, covt,vexi,t oiA, a splieit

f(x)= f (x) + 11x11 d
For xe{x 114 =1}:

g(x) = g(x) adx,

fl(x) = H(x) adI ad(d — 2)xx-r

Use Weyl's inequality to choose a 

0 5

-0.5

Positive Stable Basins of Attraction
for 3x3x3x3 Tensors

0 5 0

-1.0954

-0 5

0.5

-0_5

1 -1
-0.5629

-0.5 0 0.5

-0.0451

Regalia & Kofidis 2002 & 2003; Kolda & Mayo 2012 & 2014
Han (2012): Optimization formulation; Cui, Dai, Nie (2014): SDP formulation
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Optimization for Symmetric CP
Tensor Decomposition
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National
Laboratories

X1

NxNxN

Option 1: Standard least squares

X2

3(2
 I ± • • • ± AR

XR

# variables = R(N + 1)
# data points = Nd/d!

Exact penalty to remove scaling ambiguity
. 2.x

min 
yd 

(a •13k — M - - u-k)
2 
+ rY (11)cr11

2 
— 
1 
)
2 s.t. M = E Ar rXd

M
ijk r r

Option 2: Distinct elements only > overall best opti,m, for timAt ciwol accuracu

(aiik — miik )2min + Py
M

i<j<k r

(Ocr12 — 1)2 s.t. M = A, 4
r

Option 3: Ignore symmetry 2-100 ti,mes faster whelk it worlqs

min
Al

ijk

Uniqueness: 2R + (d— 1) < d• k-rank(X)

(aijk — Mijk)2 s.t. NC = E Ar Xr 0 yr o Zr
r

Orthogonal
symmetric CP is
equivalent to

symmetric EVD.
(Kolda 2015)

* 7d

Kolda, Math Prog B, 2015; Algebraic geometry: Brachat et al. (2010), Oeding & Ottaviani (2011); Complex: Nie 2015
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Takeaways: aboratories

Optimization for
Tensor Decomposition

- Applications are ubiquitous in data analysis

Many optimization challenges...
Nonconvex (but one example of eliminating this)

NP-hard to determine complexity (i.e., choice of R)

Add complexity for higher order, higher dimension,
constraints, coupled problems

And opportunities...
How much and which data do we need?

Choice of objective function

Structure in derivatives

Structure in problems
(e.g., symmetry)

A

X1

Z1

Tensor Toolbox

111

Tamara G. Kolda: http://www.sandia.govhgkolda/

XR
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