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A Tensor is an d-Way Array

Vector Matrix 3rd_-Order Tensor 5th-Order Tensor
d=1 d=2 d=3 d=5

a A A

4th-Order Tensor
d=4

6/23/2015 Kolda - 26th Biennial Numerical Analysis Conf. - Glasgow



Tensor Decompositions are the DD (-
New Matrix Decompositions -

Singular value decomposition (SVD), CP Model: Sum of d-way outer products,
eigen-decomposition (EVD), useful for interpretation
nonnegative matrix factorization Y 4 V 4 V 4
(NMF), sparse SVD, etc. ~
~ + +
Viewpoint 1: Sum of outer products,
useful for interpretation CANDECOMP, PARAFAC, Canonical Polyadic, CP
o o — Tucker Model: Project onto high-variance
. I N . subspaces to reduce dimensionality

Viewpoint 2: High-variance subspaces,

useful for compression I

- HO-SVD, Best Rank-(R1,R2,...,RN) decomposition
Other models for compression include

hierarchical Tucker and tensor train.
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@ Il%z?l:tlf)r:%gries { -
CP: Sum of Outer Products T

CANDECOMP/PARAFAC or canonical polyadic (CP) Model

Zo Component R
A1 / Ao / Yo Optional
I [ ' ( welghts
. T
~ + + =[x .- ,\R]

—[x1 - xg]

X
Y=[y; - ¥g]
4 X1 <4 X9 Z::zl zR]
bata = )
: — . Factor Matrices

. 2 .
IIleltn E (a:z-jk. — mijk) subject to miik = E Ar Tip Yjir Zkr
ijk r

Key references: Hitchcock, 1927; Harshman, 1970; Carroll and Chang, 1970
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Tensor Factorization “Sorts Out” i |
Comingled Data |

Data measurements are recorded at /
multiple sites (channels) over time. o sewemee
The data is transformed via a | ]
continuous wavelet transform. e M
3 l | 8o |
b el ::\_
a Time Semples
o Time Frequency Channel
;  seiwre |
(%]
£ &
= ~ A=x10y,02] +X90y5022+ &

o)
Frequency / l
‘\

A=x10y,02z1 +X20y,02z2+ &

o — " PR—
0 20 30 4 5 & 7
Scales

Acar, Bingol, Bingol, Bro and Yener, Time Frequency Channel
Bioinformatics, 2007
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Temporal Networks & Analysis

Tasks: Principal Components, Multidimensional Scaling, Clustering,
Classification, Temporal Link Prediction

DBLP has data from 1936-2007
(used only “inproceedings” from 1991-2000)

10 Years: 1991-2000
# Authors (min 10 papers) 7108
# Conferences 1103

Author

Links 113k (0.14% dense)

cijr = # papers by author ¢ at conference j in year k

log(cijk) +1 if Cijk > 0
0 otherwise

Ajjk =

Conference Let’s look at some components sorted by size from a 50-component (R=50) factorization...

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010
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DBLP Component #30 (of 50)

Top 3 Authors: Moti Yung, Mihir Bellare, Tatsuaki Okamoto

04 i I | I 1 I | I_
0.2 J
O | | | | | |

0 1000 2000 3000 4000 5000 6000 7000
Top 3 Confs: EUROCRYPT, CRYPTO, ASIACRYPT
1 I I | I I
g5 Cryptography |
OJ | ll. |l s || l' Ll L l 1 - | | ].Tlll
0 200 400 600 800 1000
Year
1 | I | I 1 I | I | 1
0.5 -

| | | | | I | | | |
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010
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DBLP Component #19 (of 50)

Top 3 Authors: Lionel M Ni, Prithviraj Banerjee, Howard Jay Siegel

0.4 R
0.2 J
O | | | | | |

0 1000 2000 3000 4000 5000 6000 7000
Top 3 Confs: ICPP, IPPS, SC
1 I I | I I
0.5  Parallel Computing ’ .
0 1 1 - 1 L. | | -
0 200 400 600 800 1000
Year
1 | I | I I | | 1
0.5 - - - -
O | 1 | | | | | | | |
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010
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DBLP Component #43 (of 50)

Top 3 Authors: Franz Baader, Henri Prade, Didier Dubois

0.4F R
0.2 |
0 WMMMMMMMMMMM
0 1000 2000 3000 4000 5000 6000 7000
Top 3 Confs: ECAI, KR, DLOG
1 I I | I I
0.5 Artificial Intelligence -
o ii L I faki ll I i L | 1 L l. 1 L : [] |
0 200 400 600 800 1000

0.5F . - =
0

1 | | | | I | | | |
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010
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Tensor Factorizations have ) i
Numerous Applications

Modeling fluorescence
excitation-emission data
(chemometrics)

Signal processing

Laboratories \/_*"
. L{z b anu) = flzt,w) (=t) €D x 0,T]
Diversity (P) Bzt wyu) =glz,t) (=t) € 0D x[0,T]
/L Tz 0, wru) =hlza) €D,

e Dhersty () Doostan, laccarino, and Etemadi,

Diversity (K) . .
Brain imaging Sidiropoulos, Giannakis, J. Computational Physics, 2009
(e.g., fMRI) data Ikeuchi, and Sakauchi,  Bro, [EEE Trans. Signal
. . A Processing, 2000  *®
Network analysis and link el -
prediction

classification; texture H HEEB

Image compression and

analysis EDEEEE

Text analysis, e.g.

multi-waz LS’| 8- Hazan, Polak, and Shashua, Duchenne, Bach, Kweon,
ICCV 2005 Ponce, TPAMI 2011

Approximating Newton
potentials, stochastic
PDEs, etc.

Collaborative filtering

Higher-order graph/image =
matching ERPWAVELAB
by Morten Mgrup

300 350 400 450 240 260 280 300
Emission (nm) Excitation (nm)

Andersen and Bro,
J. Chemometrics, 2003
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CP-ALS: Fitting CP via Alternating @iz -
Least Squares o

Z Zy ZR ’
w4 v, W4 Y, ‘\nd Yr convex (Linear Least squares)
subproblems cawn be solved exactly
~ + foot
A T
Structure makes easy lnversion
X1 X2 XR
2
f(X,Y,Z) = E (az’jk = E Tir Yir Zkr)
i1k r

Repeat until convergence:

2
Step 1: minZ(aijk - inr Yjr zkr)
T

ijk

2
Step 2: m‘}nZ(azjk — Z Lir Yjr Zkr)
T

ijk ,
Step 3: mzin § (aijk - E Lir Yjr Zkr)
i7k r

Harshman, 1970; Carroll & Chang, 1970
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CP-OPT: Fitting CP via all-at-once R
optimization |
gl ol

2
A ! o FX,Y,Z) = Z(az’jk - Zﬂiir Yjr Zkr)

ijk

Q

X1 X2 XR

e CP-OPT (Acar et al.): 1st-order method, better accuracy than ALS when R is too big
e CP-NLS (Paatero, Tomasi & Bro): Damped Gauss-Newton, accurate but slow
 CP-Newton (Phan et al.): Newton method, superior to CP-OPT for high order

Structured , )
» Structured Hesslan can be writtew as
acooLawn ; #
7,)_ AN block diagonal plus low-rank correction
9 Hn.)"(ﬂé H"‘? Mo ! e g ) A 0 0 ==
106 1o g~ B 10 10 10f7 10
A | S IR . J zu
20f .. | i
i sof K& Hc"s’g 30 H®Y 30 20 30
30 wl _'_'J' ‘‘‘‘‘ —xl _'_": '''''''''' =" -'-w 0 a0
. e 50 L : ; W2 50 Hte 50 o 20 40 0 20 40 60
405, '~: e oinm b o e nz=180 nz=225
ol 60 ! ! 60 80
50 it " 70 H(sm : : "(5.5' 70 H[SIS) 70
B e R iR 0 20 '40 60 0 20 40 60 0 20 40
TR nz = 4635 nz =225 nz = 225

Paatero 1997; Tomasi & Bro 2005, 2006; Acar, Dunlavy, & Kolda 2011; Phan, Tichavsky, & Cichocki 2013
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Challenges for CP Optimization @iz,

P ro b I e m Laboratories

NRXPxQ o | o 2
e W L "“4/2?/2 ‘ /ﬁ’R # variables= R(N+ P+ (@ + 1)
o + s AL & # data points = NPQ

A
‘ 7 — . .
L A B - Rank = minimal R to exactly
reproduce tensor

= Nonconvex: Polynomial optimization problem = nitialization matters

= Permutation and scaling ambiguities: Can reorder the r’s and arbitrarily
scale vectors within each component so long as the product of the scaling
is 1 => May wneed regularization, # independent vars = R(N+P+Q-2)

= Rank unknown: Determining the “rank” R that yields exact fit is NP-hard
(Hastad 1990, Hillar & Lim 2009) = No easy solution, need to try many

= Low-rank? Best “low-rank” factorization may not exist (Silva & Lim 2006)
= Need bounds on components [|Ar X 0y, 0 2| = [Ar] |%r || Iy, || |2 ]

= Not nested: Best rank-(R-1) factorization may not be part of best rank-R
factorization (Kolda 2001) = Ccannot use greedy algorithm

I ——— e e e S
6/23/2015 Kolda - 26th Biennial Numerical Analysis Conf. - Glasgow




Example 9 x 9 x 9 Tensor of ) i
Laboratories \/_*_
Unknown Rank

e Specific 9 x 9 x 9 tensor factorization problem
* Corresponds to being able to do fast matrix multiplication of two 3x3 matrices
* Rankis between 19 and 23

x11,1 =1 Ta21 =1 x731 =1
x1’4’2 — x4?572 — 1 'CU77672 — 1
1,73 = Ta83 =1 X793 =1
332’1’4 - x5a294 — 1 x87374 — ]-
X245 = 555 = 1 rg65 = 1
X276 = 586 = 1 rg96 = 1
I3,1,7 = e 27 =1 rg37 =1
T348 = Ze 58 = 1 Tgeg = 1
X379 = 689 = 1 X999 =1

Laderman 1976; Bini et al. 1979; Blaser 2003; Benson & Ballard, PPoPP’15
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Opportunities for the CP M
Optimization Problem

®
y / i - .,
'/ T ’
i/ \
‘1 Sh)
| I

Z]

— NG 7 AR B
/:,3’1 /:}’2 /ﬁ""f k-rank(X) = maximum value & such

~ + 4+ 4 that any k columns of X are linearly

A
independent

J X1 X2 XR

= Factorization is essentially unique (i.e., up to permutation and scaling) under
the condition the the sum of the factor matrix k-rank valuesis > 2R+d -1
(Kruskal 1977)

k-rank(X) + k-rank(Y') 4+ k-rank(Z) > 2R + 2

= If R<K N,P,Q, then can use compression to reduce dimensionality before
solving CP model (CANDELINC: Carroll, Pruzansky, and Kruskal 1980)

= Efficient sparse kernels exist (Bader & Kolda, SISC 2007)

= Recommended as optimization test problems with tunable difficulty
= Choosing higher order (illustration for order d=3)
= Choosing larger dimensions collinear
= Creating higher collinearity in the factors COS(@(XT, Xs)) ~ 0
= Adding constraints for nonnegativity, sparseness, etc.

6/23/2015 Kolda - 26th Biennial Numerical Analysis Conf. - Glasgow



Tensor Factorizations with () e
Missing Data?

http://wwwmadehow.co\rn/

Biomedical sighal processing

Laboratories \ V"

‘I /— /— /_
= + +

time-frequency channel time-freq  experiments

* EEG (electroencephalogram) signals can be
recorded using electrodes placed on the

scalp

* Missing data problem occurs when...

* Electrodes get loose or disconnected,
causing the signal to be unusable

» Different experiments have over-
lapping but not identical channels

Measurements

can we still do this caleulation if
data are missing?

Acar, Dunlavy, Kolda, Mgrup, Scalable Tensor Factorizations with Missing Data, SDM’10

6/23/2015
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The Missing Data Problem

Standard Problem:
Given all entries of tensor A, find factor matrices X, Y, and Z such that...

[ -
2 : 2 Typically formulated as a
{mln CLZ Gk — Mk )

least squares problem
\

17k

A
% subject to  mji = Z Bir Yir Bhr
T

Missing Data Problem:
Given a subset of the entries of A, find factor matrices X, Y, and Z such that...

5 ) 9 __ Subset of
95 mJ\/ltn E (aijk - mijk) = missing entries
9 0 9 17kee

)
] g Not amenable to ALS, but stratghtforward with “all-at-once” optimization.
) 9 op
G O Key to statistical rank prediction.

Acar, Dunlavy, Kolda, Mgrup, Scalable Tensor Factorizations with Missing Data, SDM’10
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Brain dynamics can be captured @
even extensive missing channels

_é”' 4392 time-freq.
4 A

= + +

\ f5 Lo
= ',"‘ - -
il
http://www.madehow.cgvx/

Number of Missing | Replace Missing
Channels Entries with Mean

1 0.98
10 0.82
20 0.67
30 0.45
40 0.24

Acar, Dunlavy, Kolda, Mgrup, Scalable Tensor Factorizations with Missing Data, SDM’10
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Brain dynamics can be captured @
even extensive missing channels

& 4392 time-freq.
é\-—

= + +

| ’ :‘:
s \
= ‘:‘ - X ]
il
http://www.madehow.cgvx/

Number of Missing | Replace Missing Ignore Missing
Channels Entries with Mean | Entries

1 0.98 1.00
10 0.82 0.98
20 0.67 0.95
30 0.45 0.89
40 0.24 0.65

Acar, Dunlavy, Kolda, Mgrup, Scalable Tensor Factorizations with Missing Data, SDM’10
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Brain dynamics can be captured DR
even extensive missing channels o

L 4392 time-freq.
4 4 4

http://www.madehow.co%’n/

No Missing Data 30 Chan./Exp. Missing

channel time-freq  experiments channel time-freq  experiments

0
.

Acar, Dunlavy, Kolda, Mgrup, Scalable Tensor Factorizations with Missing Data, SDM’10

6/23/2015 Kolda - 26th Biennial Numerical Analysis Conf. - Glasgow



Cross-Validation to Determine @sab
the Number of Components 7

Z1 Z9 ZR
gy v 3 Example: 10 x 10 x 10 tensor of rank-
~ n T 2 with component sizes of 1 and 0.1,
A with 25% noise. Can we tell the
difference between the second small
component and noise?

X1 X2 XR

= Create H holdout sets: Q),,..., Qy

= Forr=l,2,.. 0.32 :
= Train model for h =1,...,. H onl | Sl s et P
% | | = = — single Holdout Ll
M*PT) = arg rrjlvi[n E (aijr — mijr)? o

ijkesy;,

Relative Error

= Compute error for h =1,...,. H
| h
") = 100 Z (@ijk _mgjl:))Q
€25 ijkEQn
0.2

= Consider statistics on errors e
: Rank
to choose the ideal rank

Austin and Kolda, Statistical Rank Determination for Tensor Factorizations, in progress
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New “Stable” Approach: Poisson @
Tensor Factorization (PTF)

Sandia
National
Laboratories \/_
0.40r ' ' ' z1 Z ZR
0.35[ 7 ¢ e A=l ng Yi w v, wd yr
| —_—
0.30+ | * \=4 N . o
2 A A ~
X1 X2 XR

mijk — E Ar Lir Yjr Zkr
T

P(X =) = exp(—A)A\"

z!

[aijk ~ Poisson(mijk)J

Qijk
o exp(—mijk) M1
Maximize this: hkehhood(M) — I I =
By monotonicity of log,

17k
Gl
ijk b
same as maximizing this: log-likelihood(M) = €= E Mijk — Qij5k log(mijk)
ijk
This objective function is also known as Kullback-Licbler (KL) divergence.
The factorization is automatically nonnegative.
6/23/2015
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Solving the Poisson Regression () e
Problem

Laboratories \ V"

— Y — S M:Z)\rxroyrozr
~ T s ae r
! A= [)\1 )\R]T
< X1 = X9 ij X — [xl XR}
Y = [y1 YR]
mwi[nzmijk — ajji logm;r,  subject to  myj = Z Ar Tir Yjr Zkor Z = [z ZR|

ijk r

= Highly nonconvex problem!
= Assume R is given

= Alternating Poisson regression

= Assume (d-1) factor matrices are known and solve for the remaining one

Multiplicative updates Typically assume data tensor A is sparse and have
special methods for this

= Newton or Quasi-Newton method

Chi & Kolda, SIMAX 2012; Hansen, Plantenga, & Kolda OMS 2015
6/23/2015
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PTF for Time-Evolving () e
Social Network

Laboratories °

recipient

Enron email data from FERC investigation.

8540 Email Messages

28 (Dec’99 — Mar’02)

R G A EETIER A 108 (>10 messages each)
Links 8500 (3% dense)

a;;, = # emails from sender ¢ to recipient j in month &

Let’s look at some components from a 10-component (R=10) factorization, sorted
by size...

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012

6/23/2015
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Enron Email Data (Component @

0
10

- Senders (sorted by freq.)
10" & a
Ca ©

Legal Dept;

- o
Mostly Female 10 ®
//
10O
o n " Receivers
By 1t
(Qo*\ 10_2 3) O ©Og A
10 ® .  a
o
2
u w 2888 _I stock price pelak " SEC investigatilon #Msgsl_
recipient 1000 -M—W’—’\, . -
1999-12 2000-07 2001-02 2001-09 2002-03
| Seniority Gender Department
Each person labeled by . m Senior (57%) @ Female (33%) ® Legal (24%)
Zhouetal. (2007) B Sonor (@35 & Mae 67 :&%‘é’{‘& %/1%

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Enron Email Data (Component 3)

0
L Senders (sorted by freq.)
A A
_ 10 ,I oA AL A LA 2
Senior; 10 | A. Ao , .4 Aa
Mostly Male 0
L Receivers
10"} L N A A
A
S 10-2- AA‘Q‘Qm‘M A
o
N>
P 3000 stock price pe:ak ' SEC investigatilon # Ms sI
S 2000 | | g8
@ 1000 | | %
g2 e oo o P o—0—&
recipient 1999-12 2000-07 2001-02 2001-09 2002-03

Seniority Gender Department

' B Legal (24%)
B Senior (57%) @ Female (33%)
O Junior (43%) A Male (67%) = '&%Célrn& %/1%

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Enron Email Data (Component 4)

0
10 1 A Senders (sorted by freq.)
A A
10| & oo, re
10 | — e
Not Legal
100
; Receivers
107} AL
1A A ock A® , O 2R
& 10" ¢ ' A '
o
\»
- =000 " SEC investigation| - # Msgs
é 2000 | price p | Al gs |
c 1000 | P .
g O @@ ® ° oo o9 o MM.
recipient 1999-12 2000-07 2001-02 2001-09 2002-03

Seniority Gender Department

' B Legal (24%)
B Senior (57%) @ Female (33%)
O Junior (43%) A Male (67%) : '&erl%lrn& %/1%

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Enron Email Data (Component 5)

0
o Senders (sorted by freq.)
1t &
10 & ® ® A
Other; 10-2 A & O ; A A
Mostly Female 0
10_ 1 Receivers
0w}l © eo Aa A
< 10- [ QA : .
O“\
<
T 3000 stock price pe:ak ' SEC investigatilon i - Msgsl
-8 2000 r ; i
@ 1000 | e - %
+ :: ‘: — o0& oo b9 e—a—e—t— ey
recipient 1999-12 2000- 07 2001-02 2001-09 2002-03
Seniority Gender Department

m Senior (57%) @ Female (33%) B Legal (24%)

O Junior (43%) A Male (67%) : cT)ﬁ%'rn& %/1%

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012
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Coupled Factorizations

=  Applications

= Biology
B = @Gene x Expression x Time
A = Gene x Function

= Consumer information

= Consumer x Purchase x Season

= Consumer x Zip Code

M=~ A xp0y,02, = CMTF Toolbox (uses Tensor Toolbox)

P: ~ XWT = Can do ALS or all-at-once optimization
= Handles missing data

2 1 2
F(W,X,Y,Z) = 2||A Zxroyrozr —|—§HB—XWTH

Acar, Dunlavy, Kolda, MLG’11; Acar et al., IEEE EMBC, 2013; Acar et al., BMC Bioinformatics, 2014
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Symmetric Tensor Factorization

= d=number of modes or ways, N = size of each mode

= symmetric = entries invariant to permutation of indices

Symmetry for - @i = Qikj = Qjik = Qkij = Qjki = Qkji Nd]\eﬁ'lefge”ts '3\‘;; only
= . 1+ 0 )
S Ll for all 4,5,k € {1,2,...,N} = dhuElealie)
(d =3) distinct elements
Best rank-1 approximation Rank-R factorization

% X1q X9 XR
j\ . x j Lx . fx A xx
a ~ /\H'-:' a = )\ |:||:11—|—/\2 ”:2+---+AR|]A_—_\
X X1 X9 XR

Applications of symmetric tensors: diffusion tensor imaging (DTI/HARDI), higher-order
statistics, higher-order derivatives, relativity, signal processing, etc.

6/23/2015 Kolda - 26th Biennial Numerical Analysis Conf. - Glasgow



Best Symmetric Rank-1 () s
Approximation ‘

/ < Nonlinear Program
<O\ o E— A d
A = 72X ix|d
. max f(x) = Z— |||
subject to ||x|| =1
Data Modlel \_ Y,
M=Axoxox
(" FYI: Generalized Eigenpair "\
Ig\lin (aijk — A SEi:IJj:I?k)2 (Chang, Pearson, Zhang 2009)
ik Ax—t = \Bx~!
& : N
Eliminate \: subject to (A\,x) € R x R
A= Zaijk LiL gLk (Ax? 1, = Zaij’“ zjry fori=1,...,N

ijk \ ik )

max Ax® = E :aijk LT B — “identity” tensor = Z-eigenproblem
x “diagonal ones” tensor = H-eigenproblem

Qi 2005; Lim 2005; Chang, Pearson, & Zhang 2009

ijk

6/23/2015 Kolda - 26th Biennial Numerical Analysis Conf. - Glasgow



Adaptive Shifted Power Method: ) i

National i ; -

Special Optimization on a Sphere —

Theorem \ ay"”’éreativu@ Local convexity on a splflere:%\
Assume w € {x | ||x|| =1}, F(x) = £(x) + alx||¢

() = bhd of
S B B For x € {x | |x|| =1}:

f convex and C! on Q

) X g(x) = g(x) + adx,
Let v =Vf(w)/|Vf(w)]. Fi(x) = H(x) + adl + ad(d — 2)xx"
[fveQand v #w,

A A Use Weyl’s inequality to choose «
\ then f(v) > f(w) /

Positive Stable Basins of Attraction
for 3x3x3x3 Tensors

1 1

Simple fixed point iteration is
monotonically convergent:

V f(xk)

-05 -0.5

|| Vf(Xk;> || o 05 o 05 T os 0 05 1

-1.0954 -0.5629 -0.0451
I T

0.5 0.5

X4+l <

Regalia & Kofidis 2002 & 2003; Kolda & Mayo 2012 & 2014
Han (2012): Optimization formulation; Cui, Dai, Nie (2014): SDP formulation
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Optimization for Symmetric CP i
Tensor Decomposition o

A i =M H S+ g H ===+t H ’ # variables = R(IV + 1)
X1 X9 XRrR

# data points = N?/d!

N XN x N
Option 1: Standard least squares . Exact penalty to remove scaling ambiguity
2
mmz Qijk — Mijk) —|—fyz %] — 1)? s.t. M = Z)\ X
ik

Option 2: Distinct elements only = Overall best option for time and accuracy

mm Z (@i — Mgk ) +fyZ %[> — 1) s.t. M = Z/\ x y \

isisk Orthogonal
Option 3: Ignore symmetry = 2-100 times faster when it works symmetric CP is

s 28+ 1) 5 ¢Sk eaalertio

mm E (@ijr — m”k) s.t. M = E Ar X OY,. O Z; (Kolda 2015)
17k K /
Kolda, Math Prog B, 2015; Algebraic geometry: Brachat et al. (2010), Oeding & Ottaviani (2011); Complex: Nie 2015
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Q 'Ta keawa yS: @ ﬂfb‘i’éﬂnes \ \
* Optimization for
Tensor Decomposition

= Applications are ubiquitous in data analysis

= Many optimization challenges...
= Nonconvex (but one example of eliminating this)
= NP-hard to determine complexity (i.e., choice of R)

= Add complexity for higher order, higher dimension,
constraints, coupled problems

= And opportunities...

= How much and which data do we need?

= Choice of objective function ] i ]

= Structure in derivatives (AR S Y R
= Structure in problems i “N i *'“*N

(e.g., symmetry)

Illustration by Chris Brigman

Tamara G. Kolda: http://www.sandia.gov/~tgkolda/
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