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Laser-collision induced fluorescence provides
measure of electron density and "temperature"

• Motivation: What is the density? What is the temperature? Where and When?

• More traditional probe techniques may couple and perturb

• Optically passive techniques are line-of-sight limited

• Optically active-techniques such as Thomson scattering pose their own set of challenges

• In this presentation

• Part I: Laser-collision induced fluorescence (LCIF) primer

• Overview of the LCIF technique

• Physics that governs LCIF and trends predicted by this physics

• Part II: Implement and benchmark technique

• Experimental setup

• Time evolution of LCIF and time integrated LCIF

• Part III: Applications of LCIF:

• Dynamic and structured plasmas

• Part IV: Future directions and concluding comments

• Investigate argon

• Proceed to higher pressures

Sandia National Laboratories



LCIF is based on redistribution of excited
state by plasma species (electrons)

Pulsed laser excitation populates an intermediate state

Relaxation processes deplete excited state

Portion of excited state population gets redistributed into "uphill" states

Driven by interaction with energetic plasma species (electrons).
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LCIF has been considered throughout the years

Laser-collision based techniques have been considered by many groups

Burrell and Kunze - Collision rates (1978)

Tsuchida - First to use for density? (1983)

Den Hartog - 1D Sheath (1989)

Dzierzega - quasi 2D profiles GEC @ NIST (1996)

Stewart - CW LCIF (2002)

Nersisyan - He Metastable atmospheric plasma (2004)

Krychowiak - TEXTOR (2008)

Work performed at SNL builds on this work to construct
temporal and spatial maps of densities and "temperatures"
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Work performed at SNL focused on 2D maps of
electron densities and temperatures
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Redistribution of laser excited states can be a
complex process

A "good" model is required to predict transfer between levels.

Employ a collisional-radiative model (CRM) to predict redistribution of

Sets of coupled equations scale with the number of states needed to be
accounted for.

Uncertainties will scale with the number of unknowns

Limit sets of interactions that are "most likely" going to impact system response

dN

dt i>j i<j

"Photon mixing" "Electron mixing" "Neutral mixing"
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Complexity of many atomic systems
LCIF "challenging"

• Atomic structure will govern which pathways are accessible for LCIF

• Which states radiate, and are they uniquely detectable

E

0,0 eV

-0,85 eV

-1,51 eV

-3,4 eV

-13,6 eV

n

4

3

2

1

Hydrogen 

s p d

http://commons.wikimedia.org/wiki/File:Grotrian_H.svg

-20

-28
e

Helium 

Helium
energy
levels

0 1 2 3 0 1 2 3

n=4_

Hydrogen
levels

n.1

Argon 

1011 —

19.0 — W 153 125 151) — 
.

00 — ..2 El rho— '4'ITI kj soon .—IM
MO— gt - milts. 010110

El IL"- - 120 "PI —" ---El — W °
MIME 

Orboial anguiar momentum

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/helium.html Taken from Bogearts et. al, J. Appl. Phys. 84, 121, 1998

The number of interactions that need to be accounted
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Helium atom serves as target species for
LCIF measurements

• Limited excitation/ de-excitation pathways.

• Hydrogen is simpler, but restricted pathways.

• Neon, Argon, etc... more complex structure.

• Cross-sections between states are well known.

• Inter-state transitions between high lying states are "known" for helium.

• Utilize functionalized form of cross-sections compiled by Ralchenkol
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Electron-induced collision rates are computed from
cross-sections and electron distribution functions

• Functional dependence of collision rates are computed as a
function of "effective" electron temperature

• Explicit dependence on EEPF will influence these curves

= (o- (E)-v (E) f (E))

Key transitions

43D

23S

Key Rates

Representative distributions

10

o.
10 

-1
Lu 

:eV:

2

2 
10
0 2 5 5 7 5 10 12.5 15

Electron energy (eV)

....! AE.-.0.067.1eV

0.73 eV

1 10

Effective Temperature (eV)

Barrier between states plays key role in
population transfer processes

- 33S -> 33P

- 33P -> 33D

- 33P -> 43S

33P -> 43D

Sanda National laboratories



Electron-induced collisions are observable in
energetically "up hill" transitions

• Solution of the CRM including both electrons and radiative decay.

• Electrons redistribute excited state to near by states

• There are two key-observables obtained from these simulations

• Degree of re-distribution scales with collision rate (ne, Te)

• Lifetime of excited states become truncated at higher densities (K x ne - A)
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Electron-induced collisions are observable in
energetically "up hill" transitions

• Solution of the CRM including both electrons and radiative decay.

• Electrons redistribute excited state to near by states

• There are two key-observables obtained from these simulations

• Degree of re-distribution scales with collision rate (ne, Te)

• Lifetime of excited states become truncated at higher densities (K x ne - A)
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Ratio of LCIF to LIF yields electron induced
excitation rates

Ratios constructed from LCIF and LIF from the laser excited state yields rates

Eliminated dependence of exact knowledge of how much excited state was generated

Ratio between LCIF and LIF Ratio of LCIF to 389 nm LIF 
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Ratios of various LCIF lines can serve as a
measure of effective temperature

Ratios constructed from two LCIF measurements yields ratio of two rates
Elimination of electron density dependence.

Ratio between two LCIF signals Ratio [447 nm]/[588 nm] 

AN N K e0i 

ANI K(e)i

1 0-1

10-2

Art AA All An

109 1010 1011 1 012 1013

Electron density (cm
- Nat 
3.).

barnaional Laboratories



Wwf Las
errollision induced fluorescence provides

*xsu41116f electron density and "temperature"

• Motivation: What is the density? What is the temperature? Where and When?

• More traditional probe techniques may couple and perturb

• Optically passive techniques are line-of-sight limited

• Optically active-techniques such as Thomson scattering pose their own set of challenges

• In this presentation

• Part I: Laser-collision induced fluorescence (LCIF) primer

• Collisional-radiative model used to predict LCIF

• Phvcirs that governs LCIF

• Part II: Implement and benchmark technique

• Experimental setup

• Time evolution of LCIF and time integrated LCIF

• Part III: Applications of LUII-

• Dynamic and structured plasmas

• Part IV: Future directions and concluding comments

• Investigate argon
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Experimental implementation of the LCIF is realized
Nanosecond pulsed laser used for excitation

< 10 ns FWHM, < 0.1 cm-1 line width

Timing of experiment controlled by delay generators

Move experiment and imaging with respect to firing of the laser

Image LCIF with gated-intensified CCD

Narrow (- 1 nm FWHM) interference filters centered on lines of interest

Take two images per transition considered

Total emission and plasma induced emission (PIE) - subtract the two

Optical setup
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Timing sequence
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(Double) Pulsed positive column is utilized to
benchmark LCIF technique

Double pulse method controls plasma parameters (ne, "Te")

First pulse generates plasma, second pulse "heats plasma"
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E/N is manipulated with applied heating voltage

• Published drift parameters are utilized to correlate drift velocities to E/N
• Excitation and ionization compliments analysis.

Time averaged parameters 
5 us average, 10 us after pulse is applied
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First steps: Verify time resolved LCIF to test CRM

• Excite the 23S — 33P transition @ 389 nm
• Monitor LIF back to 23S

• Monitor LCIF from 33D and 43D

• Compare measured results to simulated results
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[588]/[389] ratio exhibits linearity over nearly
two orders of magnitude

Better yet, measured ratios agree reasonably well with computed ratios

Slightly higher, and some deviation at low density

Examined trends at different times during the current pulse

Anticipate different temperatures as column is established

Waveforms during excitation 
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[447]/[588] ratio captures trends but misses absolutes

• Anticipated Te trends are observed

• High temperature at start, low temperatures later on

• Measure Te trends mimic computed trends

• Discrepancy in absolute values are apparent
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LCIF is utilized to study transient plasma

• As a final benchmark, plasma generation and decay is observed with LCIF

• Produce broad array of ne, Te as functions of time
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Wwf Las
errollision induced fluorescence provides

*xsu41116f electron density and "temperature"

• Motivation: What is the density? What is the temperature? Where and When?

• More traditional probe techniques may couple and perturb

• Optically passive techniques are line-of-sight limited

• Optically active-techniques such as Thomson scattering pose their own set of challenges

• In this presentation

• Part I: Laser-collision induced fluorescence (LCIF) primer

• Collisional-radiative model used to predict LCIF

• Physics that governs LCIF

• Part II: Implement and benchmark technique

• Experimental setup

• Time evolution of LCIF and time integrated LCIF

• Part III: Applications of LCIF:

• Dynamic and structured plasmas

• Part IV: Future directions and concluding comments

• Investigate argon
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LCIF INTERROGATES MAGNITIZED PLASMA

• Plasma transport in magnetized plasma is important to understand but

challenging to assess

• Magnetic configuration dictates particle balance in the plasma

• Hosted Aimee Hubble (Ph.D. candidate w/ John Foster, U. Michigan) to

address fundamental questions about electron loss

• Segmented, magnetized anode to quantify plasma confinement

• LCIF to interrogate electron densities and measure leakage widths
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PLASMA TRANSPORT IS REGULATED BY
THE ANODE POTENTIAL

• Transient plasma enables access to different current collecting conditions

• Dial in potential drop between the anode and plasma

• Confinement degrades as electrode potential approaches plasma potential

• lon flux carries electrons across the magnetic fields

Anode drive Measured electron densities
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LCIF captures plasma flow to the electrode after
polarity of the bias is reversed
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Wwf Las
errollision induced fluorescence provides

*xsu41116f electron density and "temperature"

• Motivation: What is the density? What is the temperature? Where and When?

• More traditional probe techniques may couple and perturb

• Optically passive techniques are line-of-sight limited

• Optically active-techniques such as Thomson scattering pose their own set of challenges

• In this presentation

• Part I: Laser-coilision induced fluorescence (LCIF) primer

• Collisional-radiative model used to predict LCIF

• Physics that governs LCIF

• Part II: Implement and benchmark technique

• Experimental setup

• Time evolution of LCIF and time integrated LCIF

• Part III: Applications of LCIF:

• Dynamic and structured plasmas

• Part IV: Future directions and concluding comments

• Investigate argon
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METHODS ARE BEING REFINED AND NEW
DIAGNOSTICS ARE BEING IMPLEMENTED

• Argon laser collision induced fluorescence is being developed

• Brandon Weatherford was developing (Hired to L3 Communications).

• Non-unity scaling with density have hindered completion.

• Errors in density measurement, impact of electron temperature or
spectral contamination are likely sources of scaling.
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Concluding remarks and future directions

LCIF technique demonstrated in 2D

Free of "line of sight" constraints

Good spatial resolution — limited by optical collection

Decent temporal resolution — limited by ICCD gate times & tolerable signals

Caution required for proper implementation of the technique

Uncertainties about rates — Absolute bounds on measurements

Proper choice of model — Capture the required physics

Technique should be extendable over broad parameter space

Higher pressures — neutral collisions

Smaller dimensions — scattering and access

Other atomic systems

This work was supported by the Department of Energy Office of Fusion Energy Science
Contract DE-SC0001939
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