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Performing experiments at a major facility requires
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Summary: Our experimental platform has matured, (e
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produces important results, and continues to develop

= Theoretical line shapes used by
white dwarf astronomers are
valid for Hf3

= What about higher-order lines?
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= We also measure line strengths
(occupation probabilities)

= We are now exploring other
compositions, such as carbon
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The fate of a star depends on its mass (size not to scale)
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Nearly all stars are or will become white dwarfs Forore

LOW TO RAVERAGE
MRASS STAR

= End point of stellar evolution for most stars, including our Sun
= Compact object

= Electron degenerate core, stratified envelope

= Relatively simple

= No nuclear fusion in core

= Electron-degeneracy pressure provides support against gravity
= Star cools with time
= Foundation for much more science

Image: NASA / CXC/ M. Weiss



White Dwarf Atmospheric Parameters

* Effective temperature (T )
 Surface gravity (log g)

* Mass (M)

e Composition
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Fit spectral lines to infer WD e,
atmospheric parameters

= Compare observed spectra with synthetic spectra
from WD atmosphere models

= The SpECtrOSCOpiC method (see, e.g., Bergeron et al. 1992) IS .
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= Precise
1.2x10-1
NG
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Figure from Hermes et al. (2011): KPNO spectrum of WD J1916+3938 v,




Newer line profiles infer larger masses &=

= Stark-broadened H line proﬁles (Tremblay & Bergeron 2009) result in
systematic increases:
" AT 4~ 200—1000 K
= Alogg~0.04—0.1
= AM~0.03M
= For 250 WDs from the Palomar-Green Survey

= |n WD community, Tremblay & Bergeron (TB) line profiles
now replaced Vidal, Cooper, & Smith (1973; VCS) profiles as
tabulated by Lemke (1997)

Sun




Mean mass from gravitational redshift T
disagrees with the spectroscopic method

= Gravitational-redshift

method independent from |: _ GRS g

line profiles g /606 i

= GRS s = 512 E
2 |

= <M>=0.649 +/-0.014 M
m 449 DA stars

" SpeCtrOSCOpy 0.2 O. I.6 | O.8l 1.0 1.2
= <M>=0.575 +/_ 0.002 M Spectroscopic Mass (M)
using VCS profiles
= <M>~0.61 M,
using TB profiles
= 441 DA stars

Sun

Sun




Are the line profiles used in WD atmosphere @
models accurate?

VCS and TB profiles disagree with increasing principal quantum
number, n, and with increasing electron density, n,

Normalized Intensity

~0.04 -0.02 0 0.02 0.04 -0.04 —0.02 0 0.02 0.04 -0.04 =002 0 002 0.04
E (eV)

Calculated at T,=1 eV and n, = 10/ cm™3 10




We can test these line shapes in the ) i,
laboratory

Laboratories

= Measure multiple Balmer lines simultaneously at a range of
electron density, n,

= Use HP to diagnose plasma conditions
* |nclude up to at least H6

= Use Wiese et al. (1972) to validate (n, < 107 cm™3), then
extend to higher n, (> 107 cm)

= Arc-discharge experiment

= Benchmark for H line shapes for >40 years

= Only experiment to measure multiple H Balmer lines at these
conditions
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Z-pinch dynamic hohlraum as an x-ray e,
source

4 mm O
Tungsten Radiation
Z-Pinch Exit Hole
Plasma
Radiating
= Pulsed power accelerator Shock
delivers ~26 MA to a wire T ;
array CH, P ‘i;isesen

= ~1.6 MJ radial x-ray output foam
= Peaksat ~220 TW TN
" <4 ns FWHM




X-ray source simultaneously drives multiple

experiments
Side View
X-ray
X-ray Spectra or X-ray
Spectra Imaging Spectra

Gold Current
Return Can

Z-Pinch Plasma

Rochauetal (2014) Phys. Plasmas, 20, 056308
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X-ray source simultaneously drives multiple g =,
experiments

Laboratories
Side View
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Collection optics
shielded within here
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Plasma forms in here




Optimistic experimentalist
poses here

Collection optics
shielded within here
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Gas cell littered with debris — the hardware remains
from the other experiments




Wavelength (4)
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We measure and fit the HB transmission line
throughout the duration of our experiment
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We span a range of electron densities @&

= Theoretical line profiles used in WD astronomy community
(VCS, TB) do not fit as well as others

= Computer-simulated calculations

= j.e., Gigosos et al. (2003, GGC), Gomez et al. (Xenomorph)

= BUT, the inferred conditions agree!

= Analogous to surface gravity
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Our diagnosis continues ) S

= Lower (n=2) level population, n,, allows us to infer electron
temperature, T,

= Measured line strength includes a measurement of occupation
probabilities! (I'll come back to this)

= We witness our plasma relax into LTE
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Our fits to HB and Hy do not infer consistent
plasma conditions

Sandia
m National
Laboratories

e %
o ¥

1.0 R 3 G Fe -
i ' ves = Hy systematically underestimates
g ! " electron density, n_, by 20—40 %
:g 06/ = This implies Hy profile is too wide
g B}
o - n, (10'® em™)
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Time (ns) 25



Intriguing trend seen in spectroscopic e,
fits to observed WD spectra

Laboratories

" |ncluding higher-order

Eves g T lines in fits infers lower
"] T surface gravity
- E = Tremblay & Bergeron
s b % 3 provide consistency, but

§ : trend still exists
(A4 - B B R S N B
a2~ rrrrrgy e
8.1 = VCS ﬁcri'.x2 —E . .

0 g0k ra N 3 = |fHB is indeed more
¥ ok R accurate, then WD surface

- gravities (and masses) are
T underestimated
- U LRSS LS i L L L L

- This work ]
81p — 3 .
R~ 41 ® Implies masses should be
79 F R E larger, as suggested by
13 S gravitational-redshift
2] S N R B S - masses

21500 21000 20500 20000 19500
Teff (K)
Figure from Tremblay & Bergeron (2009) 26



Our data provide new, unique measurements of
occupation probabilities

= \We measure transmission lines:
& Opacity
—KL
T = e \

Length of plasma
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Our data provide new, unique measurements of () s,
occupation probabilities

Laboratories

= \We measure transmission lines:
& Opacity
—KL
T = e \

Length of plasma
= Neglecting the instrumental convolution, we recover the line
strength

—kL =1n(T)




Our data provide new, unique measurements of () s,
occupation probabilities

Laboratories

= We measure transmission lines:
e Opacity
T _ e—KL
\ Length of plasma
= Neglecting the instrumental convolution, we recover the line

strength
—kL =1n(T)

= Compare relative line strengths of Hy and Hp:
Lower-level population (because we measure in absorption)

H
g myfrsws(n,)@ '€— Normalized line shape

K"PL 1y frawa (1,)@"P

29




Our data provide new, unique measurements of () s,
Laboratories
occupation probabilities

= \We measure transmission lines:
e Opacity
—KL
T = e \

Length of plasma
= Neglecting the instrumental convolution, we recover the line
strength

—kL =1n(T)

= Compare relative line strengths of Hy and Hp:
Lower-level population (because we measure in absorption)

KL }\gfzesws(”e)‘)\:y(— Normalized line shape
k"PL )(2f2—>4w4(”e)¢\ d
= Using measured oscillator strengths (zaker 2008), we are left with
ratio of occupation probabilities, w,|

30




Our data provide new, unique measurements of () s,
Laboratories
occupation probabilities

= Measured curve falls off with n_ more steeply than predicted by
Seaton (1990)?

12k ]
= Values >1 are not : \\ :
physical 1.0 P .
= | suspect artifact of i ]
instrumental broadening 3 T
= Currently investigating E 0.6 F
N VCS
- TB -
0.2 XENO e Seaton (1990) -
0.0 v v v e
0 5 10 15 20 25 30 35

Electron Density (10'® em™)




Our experimental platform can explore other ) e
Laboratories
compositions relevant to other WD atmospheres

= [place holder for preliminary figures of SVS data from shots
22736, 22740 and z2785]
= [these will show line-outs of molecular/atomic carbon

spectral features obtained using the White Dwarf
Photosphere Experiment (WDPE) gas cell]




Summary: Our experimental platform has matured, () e
produces important results, and continues to develop

Laboratories

= Theoretical line shapes used by
white dwarf astronomers are valid
for HB

= Higher-order lines (Hy) seem to infer
underestimated n,

= True for all theories

= We also measure line strengths
(occupation probabilities)

Hy il
= Preliminary measurement lower than

expected by theory PRI ‘

4200 4400 4600 4800 5000
Wavelength (A)

= We are now exploring other
compositions, such as carbon




From my hydrogen gas cell and me, e,
thank you!
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Additional details... ) S,
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What does such an experiment require? ) .

= Relevant plasma conditions
= Composition
= Electron density
= Temperature

= Large plasma
= QObserve long line of sight to achieve optical depths
= Stationary or non-dynamic; steady
= Homogeneous (minimal gradients in plasma conditions)

= Measure multiple Balmer lines




Gold-wall radiation photoionizes plasma® -

Cross-section of Gas Cell

. 1.5 um Mylar A
Z—pl'nc.h / Gold wall
radiation radiation
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Gold wall
v
) 2cm .

= Mylar blocks lower-
energy photons
= Gold absorbs x-rays

= Re-emits photons that
couple well with hydrogen

3cm T

vertical

Z-pinch radiation

Z-pinch radiation
attenuated by Mylar
/]

Spectral Irradiance (W ecm™ eV™!)
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Radiation-driven plasma allows for a

range of conditions

Cross-section of Gas Cell
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vertical
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Distance from gold wall A\,
ionization W

= Plasma heating dominated
by gold wall

Falls off more steeply for
higher gas fill pressures
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Time-resolved optical spectroscopy ) s,
shows that our plasma is steady in time
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Comb

z2090 SVS
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HB-emission-line agreement with Wiese et alg;

shows we achieve desired conditions

Comb

z2090 SVS

n,=5.7e16 cm3
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Observe plasma along 3 lines of sight @i

CONTINUUM
Gas Fill Ports

Y: - Buffers

Buffer Cavity

Fused-silica Window

Optics Shield

Optical Fiber i Central Cavity
I

.i, r-ll""1F | | | \—_

. —

|7

ABSORPTION il

EMISSION

Mylar Window Back-lighting Surface

120 mm a1
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Observe plasma along 3 lines of sight @

CONTINUUM A

A

EMISSION

ABSORPTION

Z-pinch X-rays  Back-lighting Surface

5-mm Aperture
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Observe plasma along 3 lines of sight @

22558 595 ns after x— ray onset
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Combining data from multiple spectrometer @ e
systems requires calibrations

s coawal | m  Correct data for:
acuum-Chamber Hydrogen Gas Cell

F\;ed-throcuzh Fibbern Gas-Cell Fiber &0 H e h = Wavelength-dependent
( uJ " v

" = > instrumental efficiency
S pe SUAREEHREE % % § § % é % = Light attenuation

~E 7 Chamber BN during transit from

experiment (gas cell)

&«—— Fiber Couplers
n Spectrometer-Input = QObserved geometry
Transit Fiber u ) Fliper s .
Lenses W|th|n gaS Ce||
e
Czerny-Turner Spectrometer fes] SPESETRRNTERSE I

Streaked Visible
Spectroscopy System




Importance of emission-correction ) e,
increases as back-lighter cools
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= Most significant for HPB line




