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Modern Engine Types

Engine type and technology has an important relationship to the desired fuel
properties.

Advanced Compression Ignition (ACI)

Spark Ignition (SI) kinetically-controlled and compression-ignition combustion

o Range of fuel properties - Principally - n
Low reactivity fuel Compression Controlled High reactivity fuel
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Cetane as a fundamental fuel property in
diesel-like engines

e Cetane is a parameter measuring the time delay between
fuel injection and combustion.

* In general diesel-like fuels need to have cetane > 40 to be
generally compliant with fuel property standards and for
engines to run efficiently.

* Some states or countries may require even higher values
(>45, 505s)



Methods for Measuring Cetane in Literature

* CFR: ISTM D613 — Cooperative Fuels Research: Gold standard for
cetane measurement

* |QT: ISTM D6890 — Ignition Quality Tester: Correlative method — very
high precision

* FIT: ISTM D7170 — Fuel Ignition Tester: Correlative method
* Blending Methods — Interpolative method

e Other Methods — Novel, often one-off methods
 Unknown Methods — Historical/literature based methods



CFR—=ASTM
D613

* Oldest method
e Gold standard

* Requires 400-
500mL of pure
compound

FIG. 1 Cetane Method Test Engine Assembly
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U—Dual Digital Cetane Meter



Charge Air
Supply

CFR—=ASTM
D639S0

Coolant Housing

* High precision !
* Large database of N ot
measurements e P B R
+ L Flow |

Liquid to Air Drain

* Requires 100mL of -
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and Control System

pure compound Legend
P1: Combustion Chamber Pressure T6: Injector Nozzie Coolant Passage Temperature
P2: Charge Air Pressure T7: Coolant Return Temperature
P3: Injection Actuator Air Pressure T8: (Used for diagnostic functions)
P4: Inlet/Exhaust Valve Actuator Air Pressure (Gauge) T9: Combustion Chamber Air Back Temperature
P5: Sample Fuel Reservoir Pressure (Gauge) N1: Injector Nozzle Needle Motion Sensor
T1: Combustion Chamber Quter Surface Temperature C1: Digital Signal — Fuel injection Actuator
T2: Fuel Injection Pump Temperature C2: Digital Signal - Inlet Vaive Actuator
T3: Combustion Chamber Pressure Sensor Temperature C3: Digital Signal — Exhaust Valve Actuator
T4: Charge Air Temperature C4: Digital Signal — Charge Air Valve Actuator
T5: (Used for diagnaostic functions)
~ ==« 1 Charge Air Line == == == = : Fuel Injection Pump Driver Air Line
------ . Inlet/Exhaust Valve Actuator Air Line - === CoOlant System Line
e : Fuel Reservoir Utility Nitrogen Line = ! High Pressure Fuel Line

FIG. 1 Combustion Analyzer Schematic



- T—ASTM
D/170

* Few databased
measurements

* 220 mL pure
compound at
sample time

Pneumatic

Air Supply
N
KEY
_________ Charge Air
---------- Exhaust
Fuel Fuel injection Pressure Line
Sample Fuel Supply/Flush Line
vl V2 Reservoir V3 Pneumatic Lines
/ e - Coolant System Fluid
P2
N1
Sample Waste
- Flush Valve
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Actuator Fuel Pump
=i ms s Circulation
Nozle Gooling Jacket @ Coolant
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Safety Valve : P1 -
V5 . T1 T2 Eiectromc; CE:!rd
~— Exhaust Filter - Data Acquisition
xXhaust L T - and Control
Ventilation ~* 'IEQ e
Digital Signals Analog Signals
V1: Actuator Air Valve T1: Chamber Charge Air Temperature
V2: Sample Fuel Reservoir Valve T2: Chamber Inner Wall Temperature
V3: Sample Waste Flush Valve T3: Fuel Injection Pump Temperature
V4: Charge Air Valve T4: Injection Nozzle Cooling Jacket Temperature
V5: Exhaust Valve

: Control Power to Chamber Heating

: Injection Nozzle Motion Sensor

: Injection Actuator Air Pressure Switch Gauge

T5: Circulation Coolant System Temperature (External)”
PO: Chamber Static Pressure Sensor
P1: Chamber Dynamic Pressure Sensor

AT5 is not located on the instrument. It is the temperature of the auxiliary Circulation Coolant System adjusted to maintain T4.



Non-standard methods

* Blending — interprolative: small amount of compound is blended and
cetane of pure compound is interprolated: 85-135 reported
measurements in the literature

e Other ignition delay methods — vary in methodology, uncertain
correlations with gold standard methods: at least 70 such
measurements

 Unknown methods — often older, less certain methods: 142-189
measurements in the literature



Difference in Measured Cetane Number for the Same

Comparison of Different Methods for Measuring
Cetane Number
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Existing database of cetane values

* Training database:
e 2014 NREL Compendium of cetane values
e 320 pure compounds with associated CAS numbers
* Partially redundant

* 6 methods of measurement

29 1 102 80 32 79

* Testing database:
e 2017 Update of NREL Compendium of cetane values
* 58 CFR measurements as confirmatory
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Exploring the compound variability

* Chemical similarity can be assessed by molecular fingerprints

'[1#1][CH2] [CH2] [CH2] [CH2] [CH2] [CH2] [CH2] [CH3]"
HOH H H H H H H H H H H H H H
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Data source

* Fingerprints: 6127
* PubChem: 881
* Estate: 1024
* Klekota-Roth: 4860
e SubStructure: 307

* Gold-standard data:
* |QT: 101
* FIT: 1
* CFR: 29

e Other data:
* Unknown, Other Ignition, Blending: 189
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Total variability
by class
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Comparisons of
variability 2|

features = 6127 of
compounds = 320
‘Gold Standard’ compounds = 131 2|

: 0°Agold
Variance: —2°
0% Atotal -Ar
Gold Proportion: 40.9%
Variance Proportion: 85% -6t
Levene Test (Gold vs. "6 2 2 0 2 4 6

Nonstandard): P < 0.05



Comparison of
models

e 10X Cross Validation

e Gradient Boosted
Decision Trees

* 50 estimators, Max Depth
=2, Gamma =0.29,
Subsampling =0.7,
Column Sampling = 0.3,
Learning Rate = 0.58

e Mean of CV for Gold
Standard and Total

True Positive Rate

Receiver operating characteristic
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Differences in Feature Importances

(W)[CHA[CHI=[CHI] e \

CCCOC=0 T

[#6]=,:[#6]-,:[#6]=,:[#6]
[1#1][CH2][CH2][CH2][!#1]

[1#1][CH2][CH2][CH2][OH]



Performance of Gold Standard Model|

* 50% cross validation
* Accuracy: 0.8224 +/- 0.0783
* Precision: 0.8114 +/- 0.1462
e Recall: 0.7496 +/- 0.1809
* Receiver Operator, AUC: 0.8112 +/- 0.0847

e 10X cross validation
e Accuracy: 0.8757 +/-0.1814
* Precision: 0.8550 +/- 0.2363
e Recall: 0.8733 +/- 0.3096
* Receiver Operator, AUC: 0.8754 +/- 0.1885

* Confirmational dataset (44 compounds added to NREL Compendium)
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