
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Embracing	Diversity:	OS	
Support	for	Integrating	High-
Performance	Computing	and	
Data	Analytics
Ron	Brightwell and	Kevin	Pedretti
Scalable	System	Software	Department

July	10,	2017

SAND2017-7168PE

Outline

§ Background	and	Motivation
§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Future	Directions

2

Impact	of	Sandia’s	Lightweight	Kernel	(LWK)	R&D

DOE/MICS funded activity DOE/ASCR funded activity

• Sandia is the only DOE lab to partner with vendors to deploy its LWK OS technology in production
• SUNMOS LWK on Intel Paragon
• Cougar LWK on Intel ASCI/Red
• Catamount LWK on Cray Red Storm

• Other vendors have adopted the Sandia LWK model
• IBM’s Compute Node Kernel for BG/{L,P,Q}
• Cray’s lightweight Linux Environment (CLE)

• LWK model has been shown to be critical to performance and scalability on distributed memory machines
• Every DOE large-scale HPC machine in the past 25 years has deployed a lightweight OS

Factors	Influencing	OS	Design

4

Multiphysics Example

5

Multiphysics Example	(cont’d)

6

Multiphysics Example	(concl’d)

7

Applications	and	Usage	Models	are	Diverging	
§ Application	composition	becoming	more	important

§ Ensemble	calculations	for	uncertainty	quantification
§ Multi-{material,	physics,	scale}	simulations
§ In-situ	analysis	and	graph	analytics
§ Performance	and	correctness	analysis	tools

§ Applications	may	be	composed	of	multiple	programming	models
§ More	complex	workflows	are	driving	need	for	advanced	OS	services	and	

capability
§ “Workflow”	overtaken	“Co-Design”	as	top	US/DOE	buzzword

§ Support	for	more	interactive	workloads
§ Facilities	need	to	find	a	new	charging	model

§ Desire	to	support	“Big	Data”	applications
§ Significant	software	stack	comes	along	with	this

8

Applications	Workflows	are	Evolving
§ More	compositional	approach,	where	overall	application	is	a	

composition	of	coupled	simulation,	analysis,	and	tool	
components

§ Each	component	may	have	different	OS	and	Runtime	(OS/R)	
requirements,	in	general	there	is	no	“one-size-fits-all”	
solution

§ Co-locating	application	components	can	be	used	to	reduce	
data	movement,	but	may	introduce	cross	component	
performance	interference
§ Need	system	software	infrastructure	for	application	composition
§ Need	to	maintain	performance	isolation
§ Need	to	provide	cross-component	data	sharing	capabilities
§ Need	to	fit	into	vendor’s	production	system	software	stack

9

Systems	Are	Converging	to	Reduce	Data	Movement

§ External	parallel	file	system	is	being	subsumed
§ Near-term	capability	systems	using	NVRAM-based	burst	buffer
§ Future	extreme-scale	systems	will	continue	to	exploit	persistent	

memory	technologies

§ In-situ	and	in-transit	approaches	for	visualization	and	analysis
§ Can’t	afford	to	move	data	to	separate	systems	for	processing
§ GPUs	and	many-core	processors	are	ideal	for	visualization	and	some	

analysis	functions

§ Less	differentiation	between	advanced	technology	and	
commodity	technology	systems
§ On-chip	integration	of	processing,

memory,	and	network
§ Summit/Sierra	using	InfiniBand

Exascale
System

Capability
System

Analytics
Cluster

Parallel File
System Visualization

Cluster

Capacity
Cluster

10

Merging	of	HPC	and	data	analytics	
Future	architectures	will	need	to	combine	HPC	and	big	
data	analytics	into	a	single	box

Apollo: Urika-GD
Graph Analytics

Helios: Urika-XA
BDAS

(Hadoop, Spark)

CADES Pods
Compute & Storage

OLCF’s Titan
Cray XK7

Metis
Cray XK7

BEAM’s “BE Analyzer” tool
displaying interactive 2D and
3D views of analyzed multi-
dimensional data generated at
ORNL’s Center for Nanophase
Materials Sciences (CNMS)

11

How	Do	We	Bring	the	Two	Worlds	of	HPC	
and	Big	Data	Together?

12

“Big	Data”	Environment

13

So,	How	Do	We	Bring	the	Two	Worlds	of	
HPC	and	Big	Data	Together?

14

We	Don’t

15

We	Should	Embrace	Divergence

§ Functional	partitioning	based	on	software	stack	will	continue
§ Service	nodes,	I/O	nodes,	network	nodes,	compute	nodes,	etc.
§ Nodes	are	becoming	too	big	to	be	smallest	unit	of	allocation

§ Provide	infrastructure	to	manage	diverse	software	stacks
§ Node-level	partitioning	of	resources	with	different	stacks
§ Support	for	improved	resource	isolation
§ Mechanisms	that	provide	sharing	to	reduce	data	movement

§ Enable	applications	and	workflows	to	define	their	own	
software	environment

16

Hobbes	Project		
§ US	DOE/ASCR	project	in	OS/R	Program	started	in	2013
§ Develop	prototype	OS/R	environment	for	R&D	in	extreme-scale	scientific	

computing
§ Focus	on	application	composition	as	a	fundamental	driver

§ Develop	necessary	OS/R	interfaces	and	system	services	required	to	support	
resource	isolation	and	sharing

§ Evaluate	performance	and	resource	management	issues	for	supporting	
multiple	software	stacks	simultaneously

§ Support	complex	simulation	and	analysis	workflows
§ Provide		a	lightweight	OS/R	environment	with	flexibility	to	build	custom	

runtimes
§ Compose	applications	from	a	collection	of	enclaves	(partitions)

§ Leverage	Kitten	lightweight	kernel	and	Palacios	lightweight	virtual	
machine	monitor

§ 11	partner	institutions	– 4	DOE	labs,	7	universities

17

Composition	Examples

§ SNAP	+	Analytics
§ “SNAP	calculates	synonymous	and	non-synonymous	substitution	rates	

based	on	a	set	of	codon-aligned	nucleotide	sequences.”	(HIV	related)
§ Proxy	app	from	LANL	used	for	example

§ GTC-P	+	Analytics
§ Fusion	simulation	testing/proxy	app	used	to	test	new	hardware	and	

algorithm	integration	into	the	PIC	model.	(PPPL)
§ Analytics	generate	statistics	on	particles	(histograms),	sorts,	and	filters	

on	bounding	boxes

§ LAMMPS	+	Analytics
§ Full,	production	molecular	dynamics	application	from	Sandia
§ Analytics	look	for	crack	formation	by	calculating	atomic	spacing	in	

output	data	to	change	simulation	from	coarse	to	fine	grained.

18

About	the	Name….

19

Or	Possibly…

§ HPC
§ OS
§ Building
§ Blocks	for
§ Extreme-scale
§ Systems

20

Application	Composition	in	Hobbes

Component A Component B

Component C

Enclave 1

Enclave 2

Logical Structure
(logical enclaves)

Physical Structure
(physical enclaves)

Global OS
Mapping

21

“Combined	OS”	Approach	is	Not	New

IBM FusedOS (2011)

Intel mOS (2013)

MAHOS (2013)

IBM/Bell Labs NIX (2012)
TU Dresden L4Linux (2010)

22

Outline

§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Future	Direction

23

§ Lots	of	new	hardware	+	software	challenges	to	tackle
§ Heterogeneous	cores	and	memory,	node-local	NVRAM,

complex	on-chip	networks,	power	management,	…
§ Lightweight	kernels	are	a	good	vehicle	for	exploring	solutions

§ Still	can’t	separate	OS	from	architecture
§ BlueGene used	embedded	cores	with	weak	MMU/TLB	->	Linux	had	issues
§ GPUs	don’t	run	an	OS,	but	do	have	a	20M+	SLOC	driver	stack	+	firmware
§ D.E.	Shaw	Anton,	Cray	MTA/XMT,	…	so	different	it	is	very	hard	to	run	a	

general	purpose	OS,	need	custom	system	software	development
§ New	hardware	capabilities,	like	heterogeneous	cores	and	memory,

and	non-cache-coherent	core	groups,	break	traditional	OS	assumptions

§ Ability	to	do	HPC-specific	things,	without	doing	battle	with	
Linux	“community”
§ Examples:	mmunotify,	huge	pages,	OOM	killer,	page	coloring,	XPMEM
§ Vendors	ship	“special	sauce”	Linux	kernel	patches,	not	upstreamable

Why	Specialized	Operating	Systems	in	HPC?

24

Kitten
Lightweight

Kernel

Why	Virtualization	in	HPC?

§ Support	multiple	system	software	stacks	in	same	platform
§ Vendor’s	stack	good	for	physics	simulations,	data	science	difficult
§ Virtualization	adds	flexibility,	deploy	custom	images	on	demand
§ Not	just	user-space	containers,	need	ability	to	run	different	OS	kernels

§ New	Linux	kernel	versions,	replace	vendor’s	old	kernel
§ Special-purpose	OS/R	stacks:	mOS,	McKernel,	Kitten,	FFMK/L4,	Argo,	…
§ Large-scale	emulation	experiments,	networks	+	systems

§ Leverage	industry	momentum,	student	mindshare

§ Virtualization	overhead	can	be	very	low
§ Use	hardware	support,	don’t	oversubscribe,	space	share,	

use	large	pages,	physically	contiguous	virtual	memory
§ Demonstrated	<	5%	overhead	in	practice	on	4K	nodes		(VEE’11)

Apps & Libraries

Runtime Systems

OS / VMM

Hardware

Compute Node
System Software Stack,

OS Bypass

Palacios
Hypervisor

25

The	Hobbes
Node	Virtualization	Layer	(NVL)

26

OS
Management
Infrastructure

Cross-OS
Composition
Mechanisms

Palacios
Hypervisor

Kitten
Lightweight

Kernel

Discrete	Component	Composition

8

Motivations:	Avoid	app->library	conversion	difficulty,
increase	mapping	flexibility,	allow	OS/R	specialization

In-Situ
Map Components
To Same Node

In-Transit
Map Components

To Different Nodes

Hobbes
Support Both Styles,

Eliminate the Distinction
From Programmer

Perspective
Hobbes Node Virt Layer
OS/R Infrastructure for

Configuring and Composing
On-Node OS/R stacks

Partitioned Compute Node

Enclave 4

Enclave 2Enclave 1

Physics
A

Physics
B

Visualization
Package

Uncertainty
Quantification

Enclave 3

Generalized	system	software	infrastructure	for	partitioning	a	compute	
node’s	resources	(CPUs,	memory,	disk,	NICs)	into	space-shared	enclaves,
launching	multiple	OS/R	instances	one	per	enclave,	and	portable	
interfaces	for selectively	relaxing	isolation for	cross-enclave	composition

The	Hobbes
Node	Virtualization	Layer	(NVL)

27

OS
Management
Infrastructure

Cross-OS
Composition
Mechanisms

Palacios
Hypervisor

Kitten
Lightweight

Kernel

Discrete	Component	Composition

8

Motivations:	Avoid	app->library	conversion	difficulty,
increase	mapping	flexibility,	allow	OS/R	specialization

In-Situ
Map Components
To Same Node

In-Transit
Map Components

To Different Nodes

Hobbes
Support Both Styles,

Eliminate the Distinction
From Programmer

Perspective
Hobbes Node Virt Layer
OS/R Infrastructure for

Configuring and Composing
On-Node OS/R stacks

Partitioned Compute Node

Enclave 4

Enclave 2Enclave 1

Physics
A

Physics
B

Visualization
Package

Uncertainty
Quantification

Enclave 3

Unique	Aspects	of	Hobbes	NVL
§ Run	native	and	virtual	OS/R	stacks	side	by	side
§ Performance	isolation	at	hardware	and system	software	levels
§ Cross	OS/R	stack	composition	mechanisms

Compute Node

Applying	Massively	Parallel	Processor
Partition	Model	to	the	Node

28

Figure from
Rolf Riesen

1997

Outline

§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Future	Direction

29

30

Linux
(+Hobbes Drivers)

Compute Node Hardware

A
D

IO
S

Hobbes	
Runtime

Composed
Application

Operating
Systems

Analytics
Component

Kitten Co-Kernel
(Pisces)

XA
SM

XA
SM

A
D

IO
S

Simulation
Component

Leviathan Node Manager (Libhobbes, HostIO)

XEMEM (Inter-OS Shared Memory)

Palacios Palacios

Key	Ideas
§ No	one-size-fits-all	OS/R
§ Partition	node-level

resources	into	“enclaves”
§ Run	(potentially)	different

OS/R	stack	in	each	enclave

Challenges
§ Performance	isolation
§ Composition	mechanisms

Approach
§ Build	a	real,	working	system
§ Integrate	with	vendor’s	

infrastructure	+	extend

Hobbes	Node	Virtualization	Layer	Architecture
Enables Multiple Native + Virtual OS/R Stacks to Run Concurrently

Linux and LWK running
side by side as Co-kernels

Hobbes	NVL	Operating	Systems
§ Host	Linux

§ Vendor	supplied	and	supported
§ Extent	with	Hobbes	kernel	drivers

§ Kitten	Lightweight	Kernel
§ SUNMOS	(1993),	Cougar	(1997),	Catamount	(2004),	Kitten	(2008-)
§ Linux	ABI	+	API	compatible	user	space,	compile	on	Linux	run	on	Kitten
§ Runs	standalone	or	as	part	of	Hobbes	OS/R

§ Palacios	Virtual	Machine	Monitor
§ OS	independent,	easily	embeddable	design
§ Lightweight	resource	management	policies
§ Relies	on	x86	arch	virtualization	extensions
§ Demonstrated	<	5%	overhead	for	HPC	workloads	on	4K	nodes		(VEE’11)

31

github.com/hobbesosr/kitten

www.prognosticlab.org
www.v3vee.org

Hobbes	NVL	Glue:
XEMEM

§ Maintains	simplicity	of	single	OS	programming
§ Processes	need	no	knowledge	of	enclave	topology
§ Challenges	Addressed:	Unique	Naming	and	Discoverability

32

www.prognosticlab.org/xemem

[Kocoloski et al., HPDC’15]

Enables Shared Memory Between Any Process in Any Enclave

Compute Node Hardware

XEMEM	Interfaces
§ API	backwards	compatible	with	Cray/SGI	XPMEM	API
§ XEMEM	adds	synchronization	to	the	XPMEM	API	(wait	and	signal)

33

www.prognosticlab.org/xemem

[Kocoloski et al., HPDC’15]

Pisces	Resource	Management

§ Enables	multiple	native	OS/R	stacks	to	run	concurrently
§ Resources	hot-removed	from	host	Linux	and	given	to	Pisces
§ Kitten	modified	to	be	Pisces-aware,	access	assigned	resources	only
§ Minimal	kernel-to-kernel	communication,	via	IPIs	and	shared	mem

34

www.prognosticlab.org/pisces

[Ouyang et al., HPDC’15]

Operations Latency (ms)
Booting a Kitten co-kernel 265.98
Adding a single CPU core 33.74
Adding a 128MB memory block 82.66

Adding an Ethernet NIC 118.98

Fast Pisces Management Operations

Pisces	Provides	Excellent
Performance	Isolation

35

www.prognosticlab.org/pisces

[Ouyang et al., HPDC’15]

Linux Baseline,
No Competing

Workload

Linux,
With Competing

Workload

Hobbes Kitten Co-Kernel,
With Competing

Workload

 0

 5

 10

 15

 20

 0 1 2 3 4 5

La
te

nc
y

(u
s)

Time (seconds)
 0 1 2 3 4 5

Time (seconds)
 0 1 2 3 4 5

Time (seconds)

Two socket node
Socket A: Selfish OS Noise Benchmark
Socket B: Nothing or Linux Kernel Build

Hardware is not the only shared resource, system software also matters

36

Socket 0
Linux OS/R

Hadoop ML Benchmark

Socket 1
Kitten OS/R

Mantevo Mini-app

 0

 20

 40

 60

 80

 100

 44 45 46 47 48 49 50 51

C
D

F
(%

)

Runtime (seconds)

Co-VMM Native KVM

HPCCG

 0

 20

 40

 60

 80

 100

 79 80 81 82 83 84 85 86 87 88 89

C
D

F
(%

)

Runtime (seconds)

Co-VMM Native KVM

miniFE
 0

 20

 40

 60

 80

 100

 44 45 46 47 48 49 50 51

C
D

F
(%

)

Runtime (seconds)

Co-VMM Native KVMHobbes
Co-VMM

Native
Linux

Linux/
KVM

Performance Isolation for Hardware and System Software

[Ouyang et al., HPDC’15]

Pisces	Increases	Performance
and	Reduces	Variability www.prognosticlab.org/pisces

8 Nodes:

Hobbes	NVL	Glue:
Leviathan

37

www.prognosticlab.org/leviathan

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
EM

EM

X
EM

EM

X
EM

EM

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
EM

EM

X
EM

EM

X
EM

EM

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
EM

EM

X
EM

EM

X
EM

EM

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
EM

EM

X
EM

EM

X
EM

EM

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

State of all resources tracked in
in-memory NoSQL database

User-level has explicit control of physical
resources managed by Leviathan

The Leviathan Hobbes shell provides commands
to form enclaves and launch applications

Built-in services for command queues,
discovery, global IDs, and generic host I/O

Generalized	interfaces	for	managing	and	configuring	multiple	
OS/R	enclaves	running	on	the	same	compute	node;	OS/R	agnostic

Hobbes	NVL	Glue:
Leviathan

38

www.prognosticlab.org/leviathan

Entity:								Any	piece	of	software	that	can	manage	a	raw	piece	of	hardware	
Resource:		Any	piece	of	hardware	that	is	functionally	isolatableOrchestrating Specialized OS/Rs in Supercomputing Environments Conference’17, July 2017, Washington, DC, USA

Linux
(E0)

Co-Kernel OS/R
(E1)

HARDWARE

OS/R init_task

Rsrc
ID

Hobbes
Entity

Phys
ID

Alloc’d

M0 E0 0x100000 Yes

M1 E1 0x200000 Yes

M2 N/A 0x300000 No

M3 A0 0x400000 Yes

M4 A1 0x500000 Yes

Rsrc
ID

Hobbes
Entity

Phys
ID

Alloc’d

C0 E0 Apic 0 Yes

C1 N/A Apic 2 No

C2 E1 Apic 4 Yes

C3 E1 Apic 6 Yes

C4 E2 Apic 8 Yes

In-Memory Resource Database
Memory Table Core Table

Co-Kernel OS/R
(E2)

VMM

Arbitrary OS/R
(E3)

Device Table

Application
Table

…

Local Database Client
(Memory Mapping)

Application Task
(A0)

(A1)

Figure 1: High level view of resource management in an ar-
bitrary multi-OS/R system

and Singularity [27] allow users to customize their user-level sys-
tem image with containers, and provide coarse grained resource
partitioning operations via interfaces such as Linux cgroups, while
sharing the underlying OS kernel across all application components.

The major takeaway of this discussion is that, while special-
ized resource management is widely recognized as a critical fea-
ture for exascale system software, there is little convergence on
where resource management will actually occur, and there is no
existing OS/R architecture that can arbitrarily support specialized
resource management at each level of the stack. Today’s underlying
multi-enclave OS/R architectures [10, 30, 34] each provide environ-
ments that are tightly coupled to a speci�c lightweight co-kernel.
Thus, while these e�orts have achieved impressive results for noise
removal and have made application-level resource management
practical in real systems, there is no broader support for other spe-
cialized kernels or runtimes, entities that provide a wide array of
system services that will likely be needed at exascale.

The approach we take in this work is to provide arbitrary support
for specialization across all layers of the system software stack. Our
system supports any arbitrary con�guration of specialized kernels,
runtimes, and applications and allows each level of the stack to
manage underlying hardware resources directly.

4 ORCHESTRATING SPECIALIZED OS/RS
Exascale system software is trending towards specialized OS/R
architectures [10, 12, 13, 22, 30, 34, 37]. In this work, we build o�
of the recent e�orts of the HPC systems software community in
specialized OS/R architectures. Speci�cally, we provide a core set
of interfaces and resource management principles that make it
straightforward to (1) leverage these and additional arbitrary OS/Rs
in future supercomputers, and (2) orchestrate jobs, work�ows, and
other system activities across multiple enclaves in multi-OS/R based
systems.

4.1 System Components
The primary motivation behind the majority of specialized OS/R
architectures is the desire to provide customized resource manage-
ment approaches that have been optimized to a speci�c subset of
workloads. These systems allow low overhead access to hardware
resources with a small set of abstractions tailored to the needs of
the target applications. As such, deploying and managing a collec-
tion of these OS/Rs requires a uni�ed approach to allocating and
assigning resources for each system software layer. To provide this
capability we have implemented a node-level resource management
framework that operates outside the context of an operating sys-
tem. In our model, resources are dynamically assigned to system
software instances via user-level operations that are independent
of any other OS/R running on the node.

Underlying our approach is a very thin set of abstractions that
are used to represent and manage individual hardware resources.
Our approach operates on two primary classes of objects: Entities
which are de�ned as any software components capable of directly
managing a set of hardware resources, and Resources which are a
set of hardware units capable of being independently managed by
a given Entity.

Hobbes Entities. In Hobbes, entities are any piece of software that
is able to directly manage a raw piece of physical hardware. This
de�nition intentionally does not specify at what layer of the system
software stack the entity is operating at. It is possible for a Hobbes
entity to be an operating system kernel, a runtime environment, or
even an application itself. This approach allows various software
components to e�ectively bypass resource management policies of
underlying system software layers when the features provided by
those layers are not needed.

Hobbes Resources. A resource in Hobbes is any piece of hardware
that is functionally “isolatable" from the other hardware resources
on a node. In general, resources are course grained components
collected by decomposing the full set of hardware resources on
a node. For example, a resource would consist of an entire CPU
core, or a large chunk of contiguous physical memory (the size is
con�gurable, but is typically 128MB). Resources do not “belong”
to any given OS/R but are rather dynamically allocated to entities
as they are needed. Resources are represented with an abstract re-
source handle that uniquely identi�es that resource in the database.
These handles are opaque, but can be translated to a hardware-level
representation of a given resource as needed.

4.2 User-level Resource Management
The primary resource management layer of Hobbes is a user-level
service that provides distributed access to each entity on the system.
This is accomplished using a node-level information service that
tracks the state of each hardware resource and OS/R instance/en-
tity. All of this state is collected and stored in a globally accessible
in-memory database created by a user-level daemon. The database
itself is stored in a raw physical memory that is explicitly mapped
into the address space of each entity that wishes to access it. The
database allows distributed operations so entities are capable of
directly manipulating the database state, which in turn allows enti-
ties to independently allocate certain resources directly as they are

To	integrate	a	new	OS/R	with	
Leviathan,	OS	must	be	modified	
to	be	able	to	map	abstract	
resource	ID	handles	to	entities.	

This	minimally	requires	OS	
support	for:

• Hotplug/unplug
• PCI
• XEMEM

Plus	a	user-level	control	daemon

Leviathan	Hobbes	Shell

39

www.prognosticlab.org/leviathan
./hobbes
Hobbes Runtime Shell 0.1
Report Bugs to <jacklange@cs.pitt.edu>
Usage: hobbes <command> [args...]
Commands:

create_enclave -- Create Native Enclave
destroy_enclave -- Destroy Native Enclave
create_vm -- Create VM Enclave
destroy_vm -- Destroy VM Enclave
ping_enclave -- Ping an enclave
list_enclaves -- List all running enclaves
list_segments -- List all exported xemem segments
launch_app -- Launch an application in an enclave
list_apps -- List all applications
dump_cmd_queue -- Dump the command queue state for an enclave
cat_file -- 'cat' a file on an arbitrary enclave
cat_into_file -- 'cat' to a file on an arbitrary enclave
list_memory -- List the status of system memory
list_cpus -- List the status of local CPUs
list_pci -- List the status of PCI devices
assign_memory -- Assign memory to an Enclave
assign_cpus -- Assign CPUs to an Enclave
assign_pci -- Assign PCI device to an Enclave
remove_pci -- Remove PCI device from an Enclave
console -- Attach to an Enclave Console

Hobbes shell similar in
concept to numactl

§ XEMEM	transport	for	ADIOS
§ ADIOS:	High	performance	middleware	enabling	flexible	data	movement
§ Many	applications	already	using	it

§ XASM	– Cross	Enclave	Asynchronous	Shared	Memory
§ Adds	copy-on-write	semantics	to	XEMEM	memory	mappings
§ Producer	can	export	a	snapshot	and	then	continue	immediately

§ Data	Transfer	Kit	(DTK)	modified	to	use	Hobbes	XEMEM
§ Each	component	runs	in	a	separate	enclave
§ Driver	enclave	uses	XEMEM	to	access	each	component’s	memory

40

Hobbes	Composition	Mechanisms

DTK Driver
Enclave

App
Component A

Enclave

App
Component B

EnclaveXEMEM
Memory
Mapping

XEMEM
Memory
Mapping

ADIOS: [Kocoloski et al., ROSS’15]
XASM: [Evans et al., ROSS’16]

Outline

§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Future	Direction

41

Hobbes	on	Cray	XC
1. Load	Hobbes	drivers	on	each	compute	node

rmmod xpmem # Unload Cray xpmem
insmod petos.ko # Load Hobbes PetOS support module
insmod xpmem.ko ns=1 # Load Hobbes XEMEM /w nameserver
insmod pisces.ko # Load Hobbes Pisces framework

2. Start	Hobbes	daemon	on	each	compute	node
lnx_init --cpulist=0,16 ${@:1} &

3. Use	Hobbes	shell	to	load	Kitten	enclave	on	each	compute	node
hobbes create_enclave kitten_enclave.xml kitten-enclave-0

4. Build	app	like	normal,	using	Cray’s	normal	toolchain
5. Use	Hobbes	shell	with	aprun to	launch	application	on	Kitten

aprun –N 1 –n 32 ./hobbes launch_app kitten-enclave-0 \
IMB-MPI1.cray_mpich

42

Compute Node
Cray Linux Kitten LWK

MPI	Point	to	Point	Performance

43

IMB 2017 Benchmark, built with standard Cray toolchain, MPI over Aries
Same binary used for all environments

 0

 20

 40

 60

 80

 100

 120

 140

1 4 16 64 256 1K 4K 16K 64K 256K 1M

M
ic

ro
se

co
nd

s

Message Size (Bytes)

Cray Linux
Native Kitten
Guest Kitten

PingPong Latency

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 4 16 64 256 1K 4K 16K 64K 256K 1M

G
By

te
s

Pe
r S

ec
on

d

Message Size (Bytes)

Cray Linux
Native Kitten
Guest Kitten

PingPong Bandwidth

MPI	Allreduce on	32	Nodes

44

IMB 2017 Benchmark, built with standard Cray toolchain, MPI over Aries
Same binary used for all environments

PingPong Allreduce

 1

 4

 16

 64

 256

 1024

 4096

1 4 16 64 256 1K 4K 16K 64K 256K 1M

M
ic

ro
se

co
nd

s

Message Size (Bytes)

Cray Linux
Native Kitten
Guest Kitten

Top	500	Benchmarks	on	32	Nodes

45

IMB 2017 Benchmark, built with standard Cray toolchain, MPI over Aries
Same binary used for all environments

HPL Linpack HPCG Conjugate Gradient

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

16 32 64 128 256

G
FL

O
PS

Cores

Cray Linux
Cray Linux (Turbo Off)

Native Kitten
Guest Kitten

 0

 20

 40

 60

 80

 100

 120

 140

 160

16 32 64 128 256

G
FL

O
PS

Cores

Cray Linux
Cray Linux (Turbo Off)

Native Kitten
Guest Kitten

Outline

§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Future	Direction

46

Composing
HPC	with	Data-centric	Computing
§ Many	working	on	supporting	HPC	or	Data-centric	in	isolation
§ Few	working	on	HPC+Data composition

§ Like	MPI+X,	the	“+”	is	a	key	challenge
§ Need	effective	ways	to	share	data	structures,	ideally	with	no	copying

§ Hobbes	infrastructure	provides	a	good	starting	point
§ Provides	explicit	resource	partitioning	with	sharing +	multiple	OS/Rs
§ Must	find	compelling	use	case	drivers,	engage	with	users	from	start
§ Explore	space	of	loose-coupling	of	separate	peer	programs	vs.

tight-coupling	into	an	integrated	runtime	system

47

Hobbes

Spark App MPI+OMP App

Acknowledgments

§ University	of	Pittsburgh
§ Jack	Lange,	Brian	Kocoloski

§ Oak	Ridge	National	Laboratory
§ Barney	Maccabe,	David	Bernholdt,	Geoffroy Vallee,	Thomas	Naughton,	Stuart	

Slattery
§ University	of	New	Mexico

§ Patrick	Bridges
§ Northwestern	University

§ Peter	Dinda
§ Los	Alamos	National	Laboratory

§ Mike	Lang
§ Sandia

§ Noah	Evans
§ Shyamali Mukherjee

48

