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 Need better prediction and control of, e.g. 
 Thermal transport in pyrotechnic materials (particle scale)

 Reliability of composite materials

 Heterogeneous materials
 Inhomogeneous & “discontinuous”

 material properties and microstructure 

– multi-phase, multi-material  interfaces

 Heterogeneous “dynamics” 
 Spatial distribution of (relaxation) timescales

 “Anomalous” stochastic behavior

– E.g., non-Fickian diffusion

 Generalized Stochastic Models

 CTRW or GME

 How do these fluctuations couple to nonlinearities

Property Prediction and Role of 
Microstructure in Transport



Discretizing the Mesoscale

 Reduced-order, network modeling approach based on random 
walk simulations/analysis for thermal conduction in particle 
packs 

Determine segmentation: clustering & connectivity

Determine: edge weights (interfacial 
resolution and physics models)

Image stack,
or simulated
structure

graph of contact network

Graph Laplacian, Transition Rate Matrix, …
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Simulate Markov Process on Contact Network

 Discretize Continuous-Time  Equation

 I.C.

 Periodic B.C.’s
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Evolution of Temperature Fluctuations
 Calculate distribution of temperature 

fluctuations based on Eigen decomposition

 Fluctuations decay in time as system 
homogenizes
 For sum of IID Gaussian random variables, a 

large deviation (LD) approximation can be 
obtained 

P(�T� = �T )~exp −
�

�
�

��

�(�)

�

 Initially, Gaussian seems to work

 However, scaling of excess Kurtosis does not 
follow Gaussian behavior

– FATTER TAILS!  Fluctuations decay but slower 
than Gaussian
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Thermal Runaway
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 Add nonlinearity
 1st order, irreversible reactions

 Periodic BC’s

 IC: unit impulse to particle i

 Time to thermal runaway depends on 
particle, i
 Varying “sensitivity” for different particles

 Stochastic problem due to disorder in pack

 Interaction of fluctuations (due to 
disordered mesostructure) and 
nonlinearity
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Extending spectral analysis to discrete 
approximation of Koopman Operator

 Use homogeneous IC and Dirichlet BC’s
 Scaling of time to ignition follows classical 

homogeneous result; exhibiting critical 
slowing down

����~ 1 − �/��
��/�

where  is the Frank-Kamenetskii parameter

 Expected that system will be sensitive 
to “large deviations” (i.e., fluctuations 
stronger than Guassian) 

 DMD eigenvalues can be computed as a 
function of the strength of the 
nonlinearity
 Interpretation and verification of analysis is 

ongoing
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Summary & Conclusions

 Reduced-order, network-type model of thermal transport on 
particulate materials is possible
 Spectral analysis of conduction matrix allows for development of 

macro-scale models and analysis of thermal fluctuations due to 
disordered microstructure

 Addition of nonlinearity due to chemical reactions can be 
accomplished
 Comparison to classical Frank-Kamenetskii problem shows similar 

critical slowing down near critical point

 However, details of thermal runaway time show statistical 
characteristics due to disorder of microstructure

 DMD-type analysis allows for possibility of extending spectral analysis 
from linear to nonlinear equations through approximation of (linear) 
Koopman Operator

8



Acknowledgments

 Leo Silbert and Mike Salerno

 Gary S. Grest & Randy Schunk

 Industrial collaborators

 LDRD and ASC P&EM programs at Sandia



Backup Slides
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Motivation

 Methods are needed to both inform and guide the 
development of models that capture the effects of 
microstructure at the continuum scale

 Next generation microstructure aware continuum 
models based on stochastic microstructures will 
require analysis methods capable of bridging scales 
from the mesoscale to the continuum



Heterogeneous Materials Awareness 
at Sandia
 Broad interest from Sandia’s Engineering and Materials S&T 

community
 Relevance to several significant application areas

 High-level focus on issues related to behavior of heterogeneous 
materials
 E.g., Meso-scale fluctuations due to random microstructure

 What is the nature of the noise/variability in these materials

 How to “roll-up” uncertainties from micro through meso to macro scale

 Top-down prediction and control

 Also, increasing recognition of role manufacturing processes play in 
determining the distribution of material properties

 Motivation for strategic partnerships



The Multi-scale Transport Picture through Particulate 
Media (3) Sub-particle 

materials structure
• Crystal structure

• Anisotropy
• defects, 

impurities, 
etc.

• Polycrystalline
• Grain 

boundaries 

(4) Interfacial Scale
• Contact area, roughness, inter-diffusion
• Material types (e.g., phonon, electron dominated)

(2) Particle-Particle (Meso-
structure) Scale
• Inhomogeneous
• “Discrete”; Disordered
• “Anomalous” transport

(1) Bulk, Macroscale
• Homogeneous
• “Continuum”
• Constant transport coef.
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Background: Random Walks in Particle Packs

 Jammed particles near “Point J”
 Critical-like “point” of marginal mechanical 

stability
 Control of apparent microstructural length scale

 Well defined process for creating packs
 Remove “rattlers”

 Random Walker Simulations
 Random walkers initially uniformly 

distributed within particles

 Particles conducting; voids insulating
 Reflecting (specular) BC at interface

– Neumann-like, no-flux

 Global periodic simulation domain

J



Example Simulation

 Random walk through interior of particles, where diffusion coefficient D0 = 1 

 Similar to method of Kim and Torquato1(“walk on spheres”), but modified to yield 
time-dependent behavior

 Random walker displacement relates to material properties

 “Narrow escape” hopping between neighboring particles requires long simulation 
times, but accounts for small contacts explicitly and accurately

151. Kim IC and Torquato S., J. Appl. Phys. 68 (1990): 3892; Kim IC and Torquato S., J. Appl. Phys. 69 (1991): 2280



Conductivity of Particulate Microstructures

 Results
 Late-time        function of pressure

 Controlled by particle contact radius

 Apparently, single relevant timescale
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 Volume averaged MFPT per particle
 Narrow Escape

 Small, well separated contacts (aij << d, rij << d)

 Largest Eigen value of Laplace operator in sphere

with mixed BC’s

 Particle averaged, volume averaged MFPT ~ bulk conductivity
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Bulk Thermal Conductivity
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• Difference from, say, SC 
lattice
– Disordered graph

– Distribution of coord. #’s

– Distribution of forces/“overlaps”

• Distribution of contact radii

• Distribution of volume-
averaged MFPT

– Narrow Escape

» Single and multiple 
contacts in well separated 
limit (a << d)

» Largest Eigen value of 
Laplace Operator in 
spherical domain with 
mixed (Dirichlet and 
Neumann) BC’s

Microstructural Details: Particle-Particle 
Interfaces
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Homogenized Models:  Bridging particle 
meso-scale to Bulk scale

 Consider Continuous-Time Random Walk a la Montroll and Wiess
cf. Chaudhuri et al. (2010) PRL, v.99 , p.060604 

 Conditional probability of walker being at position r at time t

 Equivalent to Generalized Master Equation
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Transport Heterogeneity:  Crossing 
Scales

R U +1/I + 1/B)-1 dD

d
U + I << B

MSD(t) ~ t(t)

cf. K. Razi Naqvi and S. Waldenstrom (2005) PRL 95, 065901

Non-Fickian

Non-Gaussian



• Transition Rate Matrix
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Spectral Analysis
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 Temperature distribution in isotropic, homogeneous, 3-
dimensional, infinite medium classically modeled by  
heat equation; heated by an instantaneous point source 
at r=0

 Hence, T(0,t) scales as

 Discrete case (transport on a graph) return probability

 In “thermodynamic” (con�nuum) limit, N → ∞, T(0,t) =

 Thus, if ρ(λ) ~ λν ,                                 and ν = d/2-1 , with d 
= 3 for the homogeneous, isotropic case above

 Hence, scaling is anomalous with respect to classical 
descriptions

 Could be measured…
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Eigenvectors and Statistics

 Eigenvectors
 small eigenvalues show plane

Cf. Silbert et al. (2009), PRE v.79, p.021308

 Close to Porter-Thomas 
distribution
 But, not quite

cf. Manning and Liu (2015), EPL v.109, p.36002
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Large Deviations in Disordered Networks
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 Statistical Mechanics of 
“Trajectories”

 Use thermodynamic formalism for 
systems with Markovian dynamics

 Largest Eigen value of modified
transition rate matrix is dynamical 
free energy

 The negative of the rate function 
can be viewed as a dynamical 
entropy

 Obtain convergence (in 
distribution) of fluctuations in 
diffusion coefficient

 Distributions reminiscent of 
“Extreme Value Statistics” (e.g., 
Gumbel distribution)



Large Deviation Function

 SC lattice vs. Jammed 
network
 Dynamic Phase Transition?
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