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Property Prediction and Role of  WE

-

Microstructure in Transport 522

= Need better prediction and control of, e.g.

= Thermal transport in pyrotechnic materials (particle scale)

= Reliability of composite materials

= Heterogeneous materials

= |Inhomogeneous & “discontinuous”

" material properties and microstructure
— multi-phase, multi-material = interfaces

= Heterogeneous “dynamics”

= Spatial distribution of (relaxation) timescales

= “Anomalous” stochastic behavior
— E.g., non-Fickian diffusion
= Generalized Stochastic Models
= CTRW or GME

= How do these fluctuations couple to nonlinearities




Discretizing the Mesoscale
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= Reduced-order, network modeling approach based on random
walk simulations/analysis for thermal conduction in particle
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Simulate Markov Process on Contact Network () &

Discretize Continuous-Time Equation
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Evolution of Temperature Fluctuations

1t
= Calculate distribution of temperature
fluctuations based on Eigen decomposition g“-"’“'
N N go.mn—
— _ — -Ait .. — —4j t ;
ST(E) = T(t) — Taq = Z e ity 8T,(D) Z .
= Fluctuations decay |n time as system
homogenizes
= For sum of IID Gaussian random variables, a 0_5; '
large deviation (LD) approximation can be g
obtained N £ 0.10
2 var[6T(0)] = 02(t) = Z e=2hit 005 |
P(5TN — 5T)~exp[——N O'(t)) ] =2 0.5 1 t 5 10

= |nitially, Gaussian seems to work

= However, scaling of excess Kurtosis does not i\ T
follow Gaussian behavior '
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— FATTER TAILS! Fluctuations decay but slower
than Gaussian




Thermal Runaway
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= Add nonlinearity 200} \
= 1storder, irreversible reactions 1501 0200 400 600 800 1000
= time
=
oT (¢ 3 100!
’()—ZLUTj(t)+ 9 ke, exp|-U/RT] 100
at J#L 14
50 .
= Periodic BC’s oL .
= |C: unitim UISG to articlei 300 400 500 600 700 800 900 1000
' P P time

= Time to thermal runaway depends on
particle, i
= Varying “sensitivity” for different particles Hot

spot
= Stochastic problem due to disorder in pack

= |nteraction of fluctuations (due to
disordered mesostructure) and
nonlinearity




Extending spectral analysis to discrete  [@Ez.
approximation of Koopman Operator

= Use homogeneous IC and Dirichlet BC’s

= Scaling of time to ignition follows classical 5.%10°%}
homogeneous result; exhibiting critical 4.x10%|
slowing down  a.x10Y] e |
—-1/2 d S a ———
tignN(l - 5/56') / 2.x1078] "/.” GE) 1 / 1
. . - re (=
where 0 is the Frank-Kamenetskii parameter 1x10% F SR
time
1] . ‘

= Expected that system will be sensitive
to “large deviations” (i.e., fluctuations
stronger than Guassian)

= DMD eigenvalues can be computedasa >
function of the strength of the .
nonlinearity
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= |nterpretation and verification of analysis is Index
ongoing
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Summary & Conclusions .

= Reduced-order, network-type model of thermal transport on
particulate materials is possible

= Spectral analysis of conduction matrix allows for development of
macro-scale models and analysis of thermal fluctuations due to
disordered microstructure

= Addition of nonlinearity due to chemical reactions can be
accomplished

= Comparison to classical Frank-Kamenetskii problem shows similar
critical slowing down near critical point

= However, details of thermal runaway time show statistical
characteristics due to disorder of microstructure

= DMD-type analysis allows for possibility of extending spectral analysis
from linear to nonlinear equations through approximation of (linear)
Koopman Operator
8
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Motivation

Methods are needed to both inform and guide the
development of models that capture the effects of
microstructure at the continuum scale

Next generation microstructure aware continuum
models based on stochastic microstructures will
require analysis methods capable of bridging scales
from the mesoscale to the continuum
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Laboratories
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Figure 5. HMX Class III and V ignition data with fitted
trend lines (Critical Ignition Conditions). For illustration,
we have also noted the Super and Sub Critical Ignition
regions.




Heterogeneous Materials Awareness (i,
at Sandia

= Broad interest from Sandia’s Engineering and Materials S&T
community

= Relevance to several significant application areas

= High-level focus on issues related to behavior of heterogeneous
materials
= E.g., Meso-scale fluctuations due to random microstructure
= What is the nature of the noise/variability in these materials
" How to “roll-up” uncertainties from micro through meso to macro scale
" Top-down prediction and control

= Also, increasing recognition of role manufacturing processes play in
determining the distribution of material properties

= Motivation for strategic EartnershiEs
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The Multi-scale Transport Picture through Particulate

Media (3) Sub-particle

(1) Bulk, Macroscale maéerialslstructure
« Homogeneous * Crysta .structure
« “Continuum” « Anisotropy
- Constant transport coef. * defects,
0=V-q(x)=K_,V- <V T(x)> ;Tcpurltles,
) Polycrystalline
-%, * Grain
e boundaries
o)

(2) Particle-Particle (Meso-
structure) Scale

* Inhomogeneous

« “Discrete”; Disordered
 “Anomalous” transport
0=V-q(x)=V-(KX)VT(x))

(4) Interfacial Scale
Contact area, roughness, inter-diffusion
« Material types (e.g., phonon, electron dominated)




Background: Random Walks in Particle Packs

Temperature

= Jammed particles near “Point J”

= Critical-like “point” of marginal mechanical
stability
= Control of apparent microstructural length scale
= Well defined process for creating packs

" Remove “rattlers”

= Random Walker Simulations &
= Random walkers initially uniformly
distributed within particles

= Particles conducting; voids insulating

= Reflecting (specular) BC at interface
— Neumann-like, no-flux

= Global periodic simulation domain
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Example Simulation

= Random walk through interior of particles, where diffusion coefficient D, =1

= Similar to method of Kim and Torquato?(“walk on spheres”), but modified to yield
time-dependent behavior
= Random walker displacement relates to material properties

=  “Narrow escape” hopping between neighboring particles requires long simulation
times, but accounts for small contacts explicitly and accurately

1. Kim IC and Torquato S., J. Appl. Phys. 68 (1990): 3892; Kim IC and Torquato S., J. Appl. Phys. 69 (1991): 2280 15




Conductivity of Particulate Microstructures

= Results

= Late-time D, function of pressure

= Controlled by particle contact radius

= Apparently, single relevant timescale

Decreasing pressure
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Bulk Thermal Conductivity

= Volume averaged MFPT per particle

= Narrow Escape

= Small, well separated contacts (a; << d, r; <<d)

= Largest Eigen value of Laplace operator in sphere
with mixed BC’s

e
Cheviakov et al. (2010), Multiscale j
i
Na

Model. Simul., v.8, pp.836—870
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= Particle averaged, volume averaged MFPT ~ bulk conductivity




Microstructural Details: Particle-Particle ()&

Laboratories
Interfaces
« Difference from, say, SC 78

. 0.03 s
lattice 9 - Gumbel
— Disordered graph E&M
— Distribution of coord. #'s = ool RELN _
— Distribution of forces/“overlaps '”m_/l AR AALARA \M

e Distribution of contact radii 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

ZRcontact/d

* Distribution of volume-

T~ 1 averaged MFPT 0.04
a — Narrow Escape o0sl

< » Single and multiple '
L — . contacts in well separated = 0.02l

I limit (a << d) = 0 ,_
» Largest Eigen value of ool Frechet === -
N Laplace Operator in' '
spherical domain with

- s 0.00 ' ' ' ' '
mixed (Dirichlet and 0 20 40 60 80 100 120 140
Neumann) BC’s




Homogenized Models: Bridging particle e
meso-scale to Bulk scale

= Consider Continuous-Time Random Walk a la Montroll and Wiess
cf. Chaudhuri et al. (2010) PRL, v.99, p.060604
= Conditional probability of walker being at position » at time ¢

G, (k,5)= f, (k)

J &)= Lo B S jumy (K

1—¢1<s>+f<k>(¢1(s>—¢2<s>)}

s(1=,(s) f (k)
p=0.002

fo () = (27202 )" expl-r2/202)

Lo () = (272 ] expl=r2/22)
¢ =7 exp(~1/7,) p = 0.0004 01
P, = 2'1_1 eXp(_ t/Tz) 2102

P(Ax)/P

= Equivalent to Generalized Master Equation o




Transport Heterogeneity: Crossing ([@is,
Scales -

W MSD(AY ~ APHA)

Non-Fickian
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cf. K. Razi Naqgvi and S. Waldenstrom (2005) PRL 95, 065901

Non-Gaussian




Spectral Analysis

0.10F
* Transition Rate Matrix 0.05
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Meso-Macro Model Development

Temperature distribution in isotropic, homogeneous, 3-
dimensional, infinite medium classically modeled by

5.x107%.x10°  5.x10°3
A

=1
heat equation; heated by an instantaneous point source 0:5x107
e 1.1y QExpCr/4D0) 1.x10%,
’ 87pC(Dt)*'? 5.%1073]
S "’
Q
Hence, T(0,t) scales as —3/2 1.x107%;
T'(O)t)NlL 5.x10'4f-
Discrete case (transport on a graph) return probability 1 10_4'
_ 1 ek S
P discr (t) = ﬁz eXp( _Z’nt) 5.x107°1.x10™*
n=1
In “thermodynamic” (continuum) limit, N > «, T(0,t) = p(t) !
B(t) = j () exp(—At)dA 01}
Thus, if o) ~ N, 5(¢) ~ ¢ ) andv=d/2-1, withd g2
= 3 for the homogeneous, isotropic case above %
Hence, scaling is anomalous with respect to classical - 10-31§w-=
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= Eigenvectors

= small eigenvalues show plane
Cf. Silbert et al. (2009), PRE v.79, p.021308

= (Close to Porter-Thomas

distribution

= But, not quite
cf. Manning and Liu (2015), EPL v.109, p.36002

Eigenvector for small A 73

Eigenvector for large A




Large Deviations in Disordered Netwo e

= Statistical Mechanics of 10
“Trajectories” 0.8 ]
: . o 0
= Use thermodynamic formalism for 35 g6 S
. 0 . o= ,_‘t} & A°
systems with Markovian dynamics 04 m/{?
= Largest Eigen value of modified 2

©
[N

transition rate matrix is dynamical

free energy 0.0 A LN
: _ -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
= The negative of the rate function a
can be viewed as a dynamical 1
entropy
: : = 107
=  Obtain convergence (in 5
distribution) of fluctuations in ® 10
diffusion coefficient g
. . . = 107
= Distributions reminiscent of 2 |
“Extreme Value Statistics” (e.g., 1078}

Gumbel distribution) oo o o o L .[;-.04




Large Deviation Function

= SC lattice vs. Jammed 0'5“\
network ::

" Dynamic Phase Transition? = .l
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