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Sandia Corporate Overview



July 1945: Los Alamos 
creates Z Division

Nonnuclear component 
engineering

November 1, 1949: 
Sandia Laboratory 
established 

Sandia’s History



Sandia Corporation 

 AT&T: 1949–1993 

 Martin Marietta: 1993–1995

 Lockheed Martin: 1995–2017

 National Technology and Engineering Solutions  
of Sandia, LLC, a wholly owned subsidiary of  
Honeywell International Inc.: 2017-present

Government owned, contractor operated
Federally funded

research and development center

Governance of Sandia Laboratories



National Security Focus Areas

Top row: Critical to our national 
security, these three mission 
areas leverage, enhance, and 
advance our capabilities.

Middle row: Strongly  
interdependent with NW, these 
three mission areas are essential 
to sustaining Sandia’s ability to 
fulfill its NW core mission. 

Bottom row: Our core mission, 
nuclear weapons (NW), is 
enabled by a strong scientific and 
engineering foundation.



Sandia Addresses National 
Security Challenges
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Microsystems and Engineering Sciences 
Application (MESA)



Unique Facilities Differentiate Sandia’s 
Micro/Nano R&D

• Only source for custom 
strategic rad-hard 
microelectronics

• Largest government-owned 
foundry

• FFRDC with the broadest and 
deepest micro and nano
expertise [derived R&D-
product delivery work mix]



What is MESA?
 Microsystems and Engineering Sciences Applications (MESA) is a $462M FFRDC-

based development and production facility for any microsystem component or 
technology that cannot or should not be obtained commercially.

 MESA Develops and Delivers:
 Strategic radiation-hardened custom integrated circuits (ICs)
 Digital/Analog/Mixed-Signal/RF ICs
 Trusted Products and Designs
 5-Level MEMS
 III-V Compound Semiconductors
 Optoelectronic/Photonic Devices
 High-speed/RF Electronics
 Qualified COTS
 Failure Analysis/Reliability Physics
 Advanced Packaging
 Specialized Sensors

MESA bridges science to systems, providing an environment where multidisciplinary 
teams create microsystems-enabled solutions to our nation’s most challenging problems.



Microsystems and 
Engineering Sciences Applications (MESA)

• Advanced Computation
• Modeling & Simulation
• COTS Qualification
• Advanced Packaging
• Custom Electronic Components
• System Design & Test

Modeling, Simulation & 
Systems Integration

• Trusted Digital, Analog, 
Mixed Signal & RF 
Integrated Circuits Design 
& Fabrication

• Custom IC Design
- Secure microcontrollers
- Analog/Digital/RF
- IBM Trusted Foundry
- Tamper Resistant 

• Micromachining

• RAD Effects and Assurance

• Failure Analysis, Reliability 
Physics

• Test & Validation

• 3-D Integration Features

Silicon Fabrication

• Compound Semiconductor 
Epitaxial Growth

• Photonics, Optoelectronics

• MEMS, VCSELs

• Specialized Sensors

• Materials Science

• Nanotechnology, Chem/Bio

• Mixed-Technology 
Integration & Processing

• III-V Semiconductor 
Devices
- Neutron-Immune HBT
- Rad-hard Optical Links
- Solid-State RF Devices

Compound Semiconductor 
Fabrication

Materials Research

400,000 Sq-ft Complex with >650 Employees



History of Delivering Trusted Components 
to National Security Customers



Heterogeneous Integration Overview



Heterogeneous Integration Overview
 Scope

 Heterogeneous:  diverse, varied, mixed, different

 Integration:  combining separate parts

 Beyond “post-fabrication” assembly: dense, 3D, interconnects, new materials

 Rationale

 SWAP-C – size, weight, and power; cost

 Performance – combining technologies, interconnect density and length

 Diverse functionality – optical, RF, MEMS, analog, chem, bio, …

 Trust – Secure environment

 Our customers want performance and more-than-Moore 
functionality

Source: ITRS Roadmap; 2010



Integration Techniques

Source: ITRS Roadmap 2.0; 2015

 Selected approach is driven by…  Application, IP Availability, Performance, … 

 Substantial flexibility but…  can significantly impact cost & development time



3D Bonding Technology SoA

W2W = Wafer-to-Wafer Bonding

D2W = Die-to-Wafer Bonding

D2D = Die-to-Die Bonding

C4 µBump
Indium 
Bump

DBI
(Ziptronics®)

Density Low Moderate Moderate High

Minimum 
Pitch

300µm 150-20µm 10-15um 3µm

Method D2D, D2W D2D, D2W D2D W2W, D2W

Underfill Yes Yes Yes No

Maturity High High High Moderate

Images



 Current State:  Driven by commercial market need for low-cost and high volume 
OR individually developed integration approaches

 Commercial: Wafer-level-integration for low-cost, high volume, parts

 Government:  Multi-chip module, interposer, or similar piece-part assemblies  

 Research:  Boutique processes for intimate III-V/CMOS integration

 Desired Future State: Integrate dissimilar technologies and devices into die-level 
form factors with high functional density and low parasitic interconnection.

 Si: MPW CMOS or SiGe die, COTS piece-parts, Si Photonics, Si detectors

 III-V electronics:  GaAs HBT, InP HBT, GaN HEMT, Sb FETs, GaAs opto, InP opto

 RF technologies: microresonators, high-Q passives, ferrite devices

 Sensors and Detectors:  MEMS, piezoelectric, FPA’s, CCD, etc.

Integration: Current State / Future State



 Build Microsystems Around High-Value Functions in Custom Technologies

 Focus on truly differentiating technologies and capabilities

 Buy items that already exist

 Incorporate Range of Technologies from Multiple Vendors

 Integrator has little or no control over process or part details

 Available as wafers, bare die, or packaged parts

 Must be able to handle and post-process small parts

 Interconnect and Integration Must “Unlock” Technology Performance

 Three-way compromise: Size, Performance, Cost 

 Different interconnect needs for different applications

 Integration Approach Must Allow for Fast Turn-Time

 Focus energy on desired solution rather than integration

 Integration can’t occupy substantial portion of budget or schedule

 Desire:  From customer inquiry to prototype in <1 month

Integration: Guiding Principles



• Customers are interested in Solutions, not Integration

• Integration realizes the potential of differentiating technologies

• Wafer size mismatch is only getting worse as silicon goes from 6” -> 8” ->12” -> ?

• GaAs – 6” at best (3” at SNL); GaN – 3” typical; InP – 4”…..

• Limited availability of whole wafers of advanced technologies

• Mostly accessed through MPW runs – individual die only

• Cost prohibitive to obtain sufficient material for whole-wafer solutions

• Drives towards die-level integration

• Through-substrate-vias are essential but require significant development ($$)

• Needs and requirements vary from application to application

• Mixed Signal: small size, high density

• RF/Microwave: low parasitic capacitance, low resistance, good isolation

• Need post-processing capability on bonded die / wafers

• Reduce footprint and can add functionality

• High-temperature intimate bonding

• Thermal management

• Need good thermal path from top levels to heatsinks

• MEMS devices require clean hermetically sealed voids

• Additional challenges over just stacking

Research Integration: Challenges



Heterogeneous Integration Capability @ MESA



 Technologies

 Indium Bump

 Oxide-Oxide Bond (DBI/Zibond)*

 Low Volume

 Custom Platforms R&D

 Heterogeneous Integration (III-V, Etc.)

 III-V (GaAs, InP, Etc.)

 Resistive Memory (Memristors)

 Aluminum Nitride (AlN) Resonator

 Applications

 Si

 Photonics

 Detectors

 RF

 III-V 

 Memory

 Quantum Devices

MESA Heterogeneous Integration

W2W = Wafer To Wafer Bonding

D2W = Die To Wafer Bonding

D2D = Die To Die Bonding

Indium 
Bump

Oxide
Bond

Density Moderate High

Minimum 
Pitch

10-15µm <10µm

Method D2D, D2W W2W,D2W

Underfill? Yes No

Maturity
@SNL

Moderate
In 

Development

*Licensed From Ziptronix/Invensas.



Bump Formation & Flip Chip Assembly

 Bump metallurgies: In and Au, 
primarily.
 For In in particular, carefully 

controlled deposition 
parameters and careful 
consideration of UBM.

 Rigorous inspections during 
processing to maximize yield.

In bumps
5µm in XYZ
22µm pitch

FC150

ONTOS7

In bump after ductile failure

 Flip Chip Assembly using SET FC150.

 Three FC150’s on site. FC300 planned.

 CRADA with SETNA in support of 
DAAHTA.

 Ontos7 for surface prep prior to 
assembly.



Direct Bond Interconnect (DBI)*

 DBI developed by Ziptronix.
 Prepare wafers with plugs 

terminated near dielectric surface.

 Clean and chemically activate the 
dielectric surfaces.

 Precisely align and assemble parts 
(W2W, D2W).

 Anneal to permanently bond the 
dielectrics and form diffusion bond 
between adjacent plugs.

 Sandia has licensed the 
technology and is working on 
process transfer in the µfab.

*Licensed From Ziptronix/Invensas.



FEOL TSV Integration

 Fully FEOL-compatible TSV process with W 
interconnect material and dielectric isolation 
by thermal oxide.

 W integration in FEOL TSVs is facilitated by 
using Si as a sacrificial material to fill the via 
hole while FEOL processing is completed.

 Small diameter vias (2 µm) on small pitch 
(20 µm) provide high spatial density 
(250,000/cm2) vertical interconnects for 3D 
integration.

 High density, high aspect ratio TSVs enable 
integration of complex 3D structures.

Si3N4

Si

SiO2

IMD0

W

WSiO2 (IMD0)

AlCu pad



Maximum Principal 
Stress Distribution 

(Final State)

MPa

MPa

THERMOMECHANICAL 
MODELING OF 3DI STRUCTURES 

• Design complexity of 3D ICs introduces  reliability 
concerns for structural interactions

– Multi-level thermomechanical interactions;

– Interconnects through materials with varying CTEs.

• Need understanding of internal stress and 
deformation (difficult to assess experimentally).

• Use 3D FEM framework to examine 
thermomechanical response of 3D interconnects.



Current/Recent Heterogeneous Integration 
SNL Program Work & Research



Heterogeneous Integration for National Security

Heterogeneous III-V/CMOS Microelectronics

• complementary integration of GaAs and InP microelectronics
• III-V microelectronics circuitry on CMOS ASICs

integration substrate (CMOS, AlN, etc.)

underfill

III-V chiplet

100 µm
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Optical Data Communications

• GaAs- and InP-based VCSELs, modulators, photodiodes
• dense integration onto 32-nm and 45-nm CMOS

Optical and MEMS-based Microsensors

• chemical and bio sensors using MEMS and SAW devices
• g-hard optical microsensors with in-house photonics
• hybrid device integration with custom micro-optics

Visible/IR Imagers ROIC & Detectors

• large format FPAs
• indium and DBI hybridization
• GaSb MWIR/LWIR & Si Visible detector arrays



Heterogeneous Integration for National Security
Microsystem-Enabled Photovoltaics High Performance Computing

Extreme Environment Applications High Performance Photonics

• silicon photonics on high-speed silicon ASIC
• independent optimization of electronics & photonics

• wafer-level bonding for multi-junction solar cells
• InGaAsP/InP and InGaP/GaAs devices on silicon
• dielectric interfaces with III-V substrate removal
• integration with collection optics

• custom photonics, optics, electronics for cryogenic interconnects
• advanced optoelectronics and integration for radiation hardness

• high-power emitters on AlN and diamond
• RF packaging for high-speed test and measurement

Photonic Layer Fiber 
Interface

CMOS 
Bond Pad

Package/Printed Circuit Board.



Ultrafast X-ray Imager Focal Plane Arrays

Frame 1

Frame 2

Frame 3

Frame 4

4ns Gas Cell Shadowgraphs

HIPPOGRIFF (FURI II)
1.5ns, 2-8 Frames (Interlacing)

448x1024 pixels
350nm Sandia Process

FY15

ICARUS
1.5ns, 4 Frames 
512x1024 pixels

350nm Sandia Process

ACCA
1ns, 8 Frames 
512x512 pixels

130nm IBM Process FY16-17

10ns Blast Wave Visible Images

FURI
1.5ns, 2 Frames 
448x1024 pixels

350nm Sandia Process
FY14

Commercial 
Double Exposed CCD 

vs.

 The National Diagnostics Plan (NDP) named the UXI imagers as the 

#1 most transformational technology in HED industry.

 UXI camera systems offer transformational imaging capability 
for HED experiments at National Laboratories and facilities

 SNL’s Z-Machine to explore laser energy deposition in MAGLIF gas 
cells

 LLNL’s National Ignition Facility

 LANL’s OMEGA Facility



MWIR/LWIR nBn Focal Plane Arrays

hybridized nBn FPA prototype

MWIR still frame, 160K

-

+

nBn band diagram

GaSb detector epitaxy

nBn array with indium bumps

• nBn rapidly approaching MCT sensor performance 
• In-house development of nBn detector technology includes growth, 

fabrication, integration, and device/system testing

• Requires hybridization of large (≤1MP) GaSb detectors to CMOS ROICs



Microscale Optical Sensors
 Robust photonic proximity fuzes employ flip-chip optoelectronics and micro-optics

 very compact, g-hard; high sensitivity; narrow FOV; immunity to RF jamming

 requires high-power VCSELs; fast photodiodes at 980nm; micro-optics

 flip-chip integration of optoelectronics on AlN or diamond heat spreaders

microfuze with support electronics

time-of-flight optical range sensor

trigger to laser pulser
return signal

157ns delay
(25 yards away)

photonic fuzing demo with micro-optics
and VCSEL transmitter array



Optical Microsystem Integration
 Processes combined into photonics fabrication

 solder dam, underbump metallization, solder bump

 thinning and AR coatings

 singulation (scribe and break)

 flip-chip attach

 Micro-optics fab & align

 diamond turning

 molding in optical plastics

 active alignment

 UV epoxy attach

populated fuse submount

photodiode and VCSEL arrays

2mm

microlens array high-power optical proximity sensor

integrated component testing

indium solder reflow for thermal transfer

+



Interconnect Components
 Development of high-density optoelectronics arrays

 low-power VCSELs designed for high BW at low drive current

 photodiodes >40Gb/s with very low capacitance through flip-chip integration

 Micro-optics designed for coupling to multicore fibers

 custom micro-optics developed for multicore fiber links

VCSEL performance micro-optics and multicore fibers

11ps falltime
(BW limited by 40GHz 

test hardware)

InGaAs photodiode performance



Interconnect Testing
 Hybridized parts packaged for high-speed opto-electronic testing

 DC wirebonding, RF probing

 active fiber alignment

 Single channel links demonstrated using 45-nm CMOS

 10Gbps at 1.7 pJ/bit

 Ongoing characterization of new link and components

 test & attach multicore fiber, micro-optics, and 32-nm IC

packaged CMOS/III-V photonics lab-to-lab link demonstrationsystem link testing



Heterojunction Bipolar Transistors 
Integration with CMOS

 Future Silicon – III/V Heterogeneous Integration needs

 III/V Materials can implement functions that silicon cannot
 The heterogeneous integration of the two material types provides new capabilities 

to the system designer

 Examples of HBT Functions

 FET Driver

 Regulator

 Booster

 Voltage Reference

 Comparator

 Precision Voltage Reference

 Discrete Npn Transistor

 Discrete PnP Transistor

GaAs HBT NAND 
Circuit Transferred 

onto AlN Carrier

GaAs 
HBT Die

InP 
HBT 
Die

1
.3

 m
m

GaAs and InP HBT Circuits 
Transferred onto CMOS



Microsystem-Enabled Photovoltaics (MEPV)

 Wafer-level bonding for microscale multi-junction solar cells

 InGaAsP/InP and InGaP/GaAs devices on silicon

 Dielectric interfaces with III-V substrate removal

 Re-use of substrates to reduce ultimate cost

 Photonic microsystem prototyping

 Integration with collection optics

Wafer-level integration of III-V and silicon 
cells

MEPV packaged 
module



Optical Interconnects for High Performance Computing

 Dense integration of photonics and CMOS for advanced interconnect technologies

 hybrid integration for very high density and low electrical parasitics

 targets <1 pJ/bit and >1 Tbps/mm2

 Development of circuits, photonics, optics and integration techniques

 transmit/receive circuits in 32-nm and 45-nm CMOS (TAPO)

 combines VCSEL and photodiode arrays, micro-optics, custom fiber

multichannel interconnect concept packaged CMOS/VCSEL assembly



70 µm ion height

TSVs for Ion Traps
• Improve Optical Access
• Increase I/O per area
• Reduced electrical parasitics for RF and 

microwave signals
• Improved thermal sinking for cryogenic 

operation

CPGA CuW Spacer
Interposer

Ion Trap DieWire Bonds

• Simplify assembly

Cu/Tungsten TSV on SOI For Ion Traps

Liner

Poly-Si

SiO2

ECD Cu

W TSV

AlCu

Cu Seed

Passivation

ECD Cu

W TSV

AlCuLiner

Isolation

ALD Pt

SiO2

125um

6
0
0
u

m

Isolation trench to 
electrically isolate the 
vias from the device Si 
layer

W vias to connect Cu 
TSV through BOX and 
top Si layer



Integrated RF Filters
• Miniature High-Q On-Chip AlN Filters

• Multiple Frequencies Per Die

• <1 MHz to >10 GHz

• 16-Channels
• 6 dB I.L
• 1.2 MHz BW

4 mm

Wafer-level-package 
containing 4 filters

• 40 C
• 120 C

Integrated 
Temperature 

Compensation

4-finger unit cell (17 per resonator)

Spur-Free Device + 
Circuit Designs



RF Integration: Resonators + CMOS

S-Band 4-Channel Switched 
Filter Array (LDRD)

E. R. Crespin, et. Al,
IEEE MTT-S IMS
Dig, 2012.

AlN resonator

CMOS

Integrated Oscillators (Ken W.)

Tunable 
Bandwidth 
Filter (CSSA)

• A Unique Sandia capability

• Integration Reduces Size, Power, and 
Interconnect: Improved Performance, But….

• Monolithic Integration Means That Process 
Times Add (to > 12 months)

• Restricted to CMOS (low-ρ) Substrates

• Limited to Internal CMOS7 Technology



RFIN RFOUT

act1act2 GND

GND

GNDGND

GND

N/CN/CN/C

350 μm

• Integrate MEMS Switches Into Resonator

• Improved Switched + Tunable Filters

• First On/Off Switched AlN Resonators

RF Integration: Resonators + Switches

Multi-physics Model of 
Switch Pull-In



For Additional Information

Michael Holmes
Sr. Manager, Heterogeneous Integration & RF Microsystems
1515 Eubank Blvd. SE
Albuquerque, NM 87123
MS1072, 858S/1242

Phone: 505-284-9673

Email: mlholme@sandia.gov

http://www.sandia.gov/mstc/


