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Sandia’s Z Machine is a unique platform for muIti-miss'@m
research on high enerqy density (HED) environments ——
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Properties of matter under HED conditions are )
important to many geophysical problems — a focus Inhorsnies
of the Z Fundamental Science Program

= Jovian planets and exo planets
= Water: 2 PRL and 2 PRB; hydrogen metallization
(Science 2015).
= Earth and super-Earths

= Silicates (MgO PRL 2015), and vaporization threshold
for iron with implications for planetary formation (Nature
Geoscience 2015).
= Why study Bridgmanite?
= MgSiO; Magnesium silicate perovskite is an abundant
mineral phase in the Earth and likely a most abundant
silicate mineral in super-Earths
* Project goals

= (Obtain density and sound speed of pre-synthesized
bridgmanite at super-Earth mantle conditions.

= Integrate results from static and dynamic experiments
to improve data accuracy and range.

= Apply the results to understand the internal mantle
structure of Earth and super-Earths.

Our goal is to turn multi-Mbar
planetary science
quantitative by high fidelity
modeling and high-precision
experiments

Bridgmanite is meta-
Stable at normal pressure




We use pre-synthesized bridgmanite to make target () e,
for Z-experiments to reach super-Earth conditions

Anvils: 1-in sintered
diamond cubes

Pressure: 25 GPa
Temperature 1400 °C
Sample size

= 2.2mm in diameter

= Adequate for Z
experiments

Synthesis of bridgmanite in large-volume multi-anvil

apparatus at Carnegie Institution of Washington,
Washington DC.




Describing the electronic structure of materials o)
from first principles — the power of DFT

Density Functional Theory (DFT)
= Quantum theory — Walter Kohn ‘98 Nobel prize in chemistry

= Molecular binding, ionization by pressure and/or temperature
= Now well-established in shock physics

= Mike Desjarlais’ work on D, in 2003 — convergence is key
= Electrons with finite temperature kgT and a Fermi distribution
= Efficient codes and big computers - hundreds of atoms for tens of ps
First-principles thermodynamics

= |nternal energy, pressure, entropy, Hugoniot, sound speed, and
structure/phases

1 .
E~Ey=5(P+P)(Vo—V) Hugoniot

C=V [(P- Po)L + ( ) [Vo ) 1] Sound speed




Calculate the internal energy and the ()
pressure/volume relationship for the Hugoniot State

= Computational details E—E, = %(P + Py)(Vy = V)
Initial state solid crystalline
Bridgmanite at 4100 kg/m3 =
Final state liquid Frwenanes
160 atom unit cell

PBEsol exchange-correlation
functional

Mean-value k-point (complex)
800 eV plane-wave cutoff energy
PAW potentials " 6 s 20

= Mg 2p®3s2 Temperature [x 10> K]

= Si 3s23p2

= O 2s22pt Determining the Hugoniot state
1-5 picoseconds of simulations

Energy [x 10 J/kg]




Gruneisen parameter, dP/dV, and thus the sound [@E-,,
speed is calculated as a finite difference

= Computational details C = V\/(p po)_ + ( > [Vo V)— — ]
Initial state solid crystalline
Bridgmanite at 4100 kg/m3

Final state liquid 800 |
160 atom unit cell

PBEsol exchange-correlation

functional

Mean-value k-point (complex)

800 eV plane-wave cutoff energy

PAW potentials

= Mg 2p83s?
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1-5 picoseconds of simulations
Calculating sound speed along the Hugoniot




Simulated Hugoniot points for Bridgmanite in the ()&=,
liquid phase predict the shock melting pressure

We predict melting along the Hugoniot at 600 GPa
= Computational details

Initial state solid crystalline
Bridgmanite at 4100 kg/m3

Final state liquid

160 atom unit cell

PBEsol exchange-correlation
functional

Mean-value k-point (complex)
800 eV plane-wave cutoff energy

PAW potentials

= Mg 2p83s?

= Si 3s23p2

= O 2s22p*

1-5 picoseconds of simulations
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Melt-line from A.B. Belonoshko et al PRL 94 195701 (2005).




Calculated Hugoniot points for Bridgmanite in the (1)
liquid phase are in agreement with data

= Computational details

Initial state solid crystalline
Bridgmanite at 4100 kg/m3

Final state liquid
160 atom unit cell

PBEsol exchange-correlation
functional

Mean-value k-point (complex)
800 eV plane-wave cutoff energy

PAW potentials

= Mg 2p83s?

= Si 3s23p2

= O 2s22p*

1-5 picoseconds of simulations

The first-principles results are in agreement
with [preliminary] data from the Z-machine
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Path forward — finalize experimental analysis and () &=
first-principles simulations, assess the impact on
planetary structure

= Why study Bridgmanite?
= MgSiO; Magnesium silicate perovskite is an

abundant mineral phase in the Earth and likely a
most abundant silicate mineral in super-Earths

* Project goals

= (Obtain density and sound speed of pre-
synthesized bridgmanite at super-Earth mantle
conditions.

= |ntegrate results from static and dynamic
experiments to improve data accuracy and range.

= Apply the results to understand the internal mantle
structure of Earth and super-Earth.

Our goal is to turn multi-Mbar
planetary science
quantitative by high fidelity
modeling and high-precision
experiments




Over the last 8 years, the Z Fundamental Science
Program has developed into a key part of our
research strategy

Timeline for the ZFSP
= 2009 — 1st IHEDS workshop in Santa Fe
2010 — 1st call for proposals
2013 — NNSA/NA-11 pause
2014 — Restart, review, and extension for 2015
2015 — 2d call for proposals (2016 — 17 )
2017 — 3" call for proposals (2018 — 19 )

= Workshops Call for proposals CY 18-19

= 2009 - 2011, Santa Fe The call is open and will close
IHEDS SNL/UT Austin — Alan Wootton | g September 15, 2017.

= 2012, 14 — 17, Albuquerque Contact me for details:

“‘Research opportunities and user trmatts@sandia.gov
meeting”




The Z Fundamental Science Program engages a ()
broad international community and has advanced
HED science

= Science with far-reaching impact

. = 1 Nature, 1 Nature Geoscience, 1
= 9 teams won shots on the 16-17 allocation SCIENCE

Carnegie Institution of Washington = 3 Phys. Rev. Lett, 3 PoP, PRA, PRB
Lawrence Livermore National Laboratory

Sandia National Laboratories
UC Davis/ Harvard
University of Rostock, Germany

UN Ren.o = Discover Magazine

UT Austin x 2 = Reportage 9/16/2012

Washington State University = Iron rain #62 in top 100 Science stories
in 2015

= Local TV coverage in 2015

= Popular outreach

= National Public Radio, “All things
considered”, Joe Palca 3/6/2014

Resources over 7 years

= 60+ dedicated ZFSP shots (5+ % of all Z shots) Call for proposals CY 18-19
» Ride-along experiments on program shots

The call is open and will close on
September 15, 2017.

Contact me for details:
trmatts@sandia.gov




Pulsed power is exquisitely suited for HED science (7l i _

 Sandia’s Z machine is ideal for Mbar material

experiments

— Macroscopic samples and tens of ns timescale

— Compression of solids and liquids

— Obtain conditions of the interiors of gas giants, Earth,
super-Earths, and other exoplanets

« Strong integration between experiments,

theory, and simulations
— From quantum mechanics to MHD and beyond

» Well-defined path for the future — decades of
exciting HED Science research ahead




