Attacking the Opioid Epidemic: Determining the
Epistatic and Pleiotropic Genetic Architectures for
Chronic Pain and Opioid Addiction

Wayne Joubert', Deborah Weighill'*, David Kainer',
Sharlee Climer?, Amy Justice®, Kjiersten Fagnan®, Daniel Jacobson!
'0Oak Ridge National Laboratory, 2University of Missouri-St. Louis,
3Yale University/Department of Veterans Affairs, *University of Tennessee, SDOE Joint Genome Institute

Abstract—We describe the CoMet application for large-
scale epistatic Genome-Wide Association Studies (eGWAS) and
pleiotropy studies. High performance is attained by transforming
the underlying vector comparison methods into highly perfor-
mant generalized distributed dense linear algebra operations.
The 2-way and 3-way Proportional Similarity metric and Custom
Correlation Coefficient are implemented using native or adapted
GEMM Kernels optimized for GPU architectures. By aggressive
overlapping of communications, transfers and computations, high
efficiency w ith r espectt o s ingle G PUk ernel p erformance is
maintained up to the full Titan and Summit systems. Nearly 300
quadrillion element comparisons per second and over 2.3 mixed
precision ExaOps are reached on Summit by use of Tensor Core
hardware on the Nvidia Volta GPUs. Performance is four to five
orders of magnitude beyond comparable state of the art. CoMet
is currently being used in projects ranging from bioenergy to
clinical genomics, including for the genetics of chronic pain and
opioid addiction.

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

We formulate vector similarity methods as generalized
distributed dense linear algebra operations. Fast hardware
features such as floating p oint m inimum, p opulation count
and reduced precision arithmetic are exploited on Nvidia
GPUs; the methods are also implementable on other modern
processors with these features. Up to 98% weak scaling
efficiency i s a chieved a t f ull s ystem r elative t o s ingle GPU
kernel performance due to aggressive overlap of the expensive
all-to-all communications. PS method performance reaches up
to 189 Petaflops single precision. CCC method operation rates
are up to 2.36 ExaOps on 99% of Summit, the first reported
ExaOp calculation by a production application, achieving over
10'® mixed precision floating p oint o perations p er second.
Performance is four to five o rders o fm agnitude beyond
best current state of the art. The methods are applicable more

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

SC18, November 11-16, 2018, Dallas, Texas, USA

generally to vector similarity, distributed dense linear algebra
and distributed tensor computations.

TABLE I: Performance attributes

Value

scalability, peak performance, time to solution

dense vector similarity calculation

whole application including I/O
single, double
half, single, double, multibit integer
Titan (full); Summit (full)

manual timers, operation counters; NVPROF

Performance attribute
Category of achievement
Type of method
Results reported for
Precision reported
Precision used
System scale
Measurement mechanism

II. OVERVIEW OF THE PROBLEM
A. Scientific Use Case: Chronic Pain and Opioid Addiction

Opioids epidemic. Opioid misuse and addiction is having
dramatic impacts on public health and social and economic
welfare [1], [2], [3], [4]. The CDC has estimated that the
economic burden of prescription opioid misuse alone is $78.5
billion per year in the United States [5]. Almost 30% of
patients that are prescribed opioids misuse them [6], with
over 10% developing an opioid use disorder [7], [8], [9]. As
many as 6% of patients who misuse opioids will go on to use
heroin [7], [8], [9]. There has been a 30% increase in opioid
overdoses from July 2016 through September 2017 in 52 areas
in 45 states [10]. In addition, there has been an increase in
neonatal abstinence syndrome as opioid use and misuse during
pregnancy has increased.

Over 50% of veterans suffer from chronic pain (compared
to 30% in the general population). In a recent analysis among
current veterans in care nationally, the Veterans Aging Cohort
Study (VACS) found that 22.7% had sustained use of prescrip-
tion opioids, which is substantially in excess of the rates in the
general U.S. population. 68,000 veterans currently suffer from
opioid use disorders. In prior work with the VA population,
we found that opioid use was associated with negative health
outcomes [11].

As such, opioid misuse has become a national (and De-
partment of Veterans Affairs (VA)) crisis in which more than
115 people die each day in the United States due to opioid
overdoses. Understanding the genetic architecture for how
individuals develop chronic pain and respond to opioids and

the identification of new therapeutic targets for opioid misuse
would have a major impact on this growing epidemic. Chronic
pain and opioid addiction are highly complex disorders. In
contrast to Mendelian traits that arise due to a single mutation,
chronic pain and opioid addiction are likely manifested due
to the combined actions of multiple genetic factors that may
be interacting additively or epistatically (i.e., combinations of
genome variants that collectively lead to disease).

Epistatic genetic architectures for complex phenotypes.
Genome Wide Association Studies (GWAS) and Quantitative
Trait Loci (QTL) efforts seek to identify genetic variants that
contribute to individual phenotypes, including susceptibility
(or robustness) to disease. With the exception of Mendelian
disease, risk alleles function in complex networks that are
often challenging to dissect with extant statistical procedures,
particularly when the effects of multiple variants are non-
additive, or epistatic (for a recent review see [12]). Recent
studies have made it clear that risks for many complex
human diseases derive from non-additive interactions between
multiple genes ([13]; for a review see [14])—including type I
diabetes [15], coronary artery disease [16], and many others
(for a review see [17]). If most non-additive effects in human
disease are of higher order (e.g., three or more QTLs acting
together), then we would not be aware of it, since existing
statistical methods are incapable of mining such interactions
from available sample sizes and limited computational re-
sources. Epistatic networks have also been shown to drive
susceptibility to complex diseases in genetic model organisms:
studies in tractable model organisms have demonstrated that
strong epistatic dependencies are the rule, rather than the
exception, in higher metazoans [18], [19].

Thus, a grand challenge for population genetics is the con-
struction of statistical and computational procedures that can
identify epistatic networks at, or near, the same efficiency as
single QTLs or risk alleles. However, the potential interactions
in a human cell are on the order of 10'7°, and thus exhaustive
exploration of all possible molecular interactions has never
been possible before. As described below, our network-based
approach will allow us to build sets of SNPs representing
higher-order combinations that would never be tested by
existing methods. The computational methods presented in
this work will allow us to reveal connections never previously
discoverable.

Thus, the combination of algorithm development and lead-
ership class supercomputing facilities allows us to break the
longstanding curse of dimensionality that has historically
plagued the study of complex biological systems. Brute force
methods currently exist to perform epistatic GWAS [20];
however, they are not computationally tractable as it would
take more than 10*° CPU hours to test all possible 4th order
interactions of a single human phenotype. As such, the issue is
not the ability to test sets of genome variants for association
with a phenotype but rather what specific sets to test. Once
the sets have been defined, set-based epistatic GWAS methods
are completely computationally tractable [21], [22], [23]. For
example, the SKAT method [23] only takes 277 CPU hours

on Titan to test 10 million SNP sets. Thus, our approach
to this is to use the inherent co-evolutionary information
resident in population-scale genome datasets themselves in
order to determine a tractable number of sets to test for
epistatic associations with chronic pain and opioid addiction
phenotypes.

Custom Correlation Coefficient. Computation of the math-
ematical relationships between pairs of vectors is required
in many science domains. In the field of genomics, the
Custom Correlation Coefficient (CCC) [24] was developed to
calculate the correlation between mutations (Single Nucleotide
Polymorphisms (SNPs)) across a population of individuals.
This can be used to identify groups of SNPs which tend
to co-occur in a population, and consequently can be used
to find combinations of SNPs which associate with certain
phenotypes, such as a disease phenotype [21]. CCC also
takes into account genetic heterogeneity and finds correlations
between SNPs which co-occur in portions of the population,
not requiring co-occurrence across the whole population. SNP
correlations that pass a significance threshold can be modelled
as a genome-wide network and interpreted as a co-evolutionary
signal across the population with the hypothesis that genes
involved in common functions/protein complexes are under
selective pressure to co-evolve with one another. As such,
connections between SNPs in these networks are ideally suited
for epistatic set creation.

Furthermore, in order to capture more complex relation-
ships, we have previously introduced a new ternary network
definition, namely 3-way networks based on the concept of
hypergraphs [25]. We define 3-way networks as network
models of ternary relationships, i.e., relationships between
triplets of objects. 3-way networks are defined by replacing
the previous definition of an edge as a set of two nodes
by a set of three nodes. Thus a 3-way network is a type
of hypergraph [26]. We have previously shown that 3-way
networks could discover more sophisticated patterns than are
found by pairwise networks [25], [27]. We have recently
created a 3-way version of the CCC algorithm and are using
it in a complimentary fashion with the 2-way version.

SNP set creation. Breadth-first searches will be used on
this network in order to determine the nearest neighbor of each
and every node in the SNP correlation network, the resulting
sets from each breadth-first search can be viewed as putative
epistatic relationships and can be used for set-based genome-
wide association testing against phenotypes. Furthermore, we
have previously shown that principal component analysis of
the Laplacian transform of a network adjacency matrix is an
excellent method to extract topologies centered on every node
in a network that are distinct from those topologies found
by breadth first searches [28]. Finally, Markov clustering [29]
will also be used to find topologies in the network to be used
for set creation. The resulting sets extracted from the CCC
network topologies represent higher-order combinatorial sets
that allow for much more complex interactions to be tested
than simple SNP pairs tested by extant methods.

Ultimate application. Our close collaboration with the

Million Veteran Project (MVP) offers an unprecedented op-
portunity to understand links between human genetics, life
history and propensity for chronic pain and opioid addiction.
The sheer size of the MVP cohort and prevalence of chronic
pain and opioid use and dependency in the VA population
offers statistical power that has never been available before.
The construction of human systems biology models combined
with massive scale small molecule docking and molecular
dynamics constitutes a new way forward for better molecu-
lar understanding and development of possible solutions for
chronic pain and opioid addiction. Thus, SNP sets created via
CCC networks as described above will be used to create sets of
potentially epistatically interacting SNPs that can be tested for
association with opioid addiction and chronic pain phenotypes
that will, in close collaboration with the VA, be extracted from
the electronic health records and patient genomic information
to be made available for this study.

In addition, we are using model organisms such as
Drosophila, mice and Daphnia in order to understand pain
and opioid addiction phenotypes. Given that that each species
will require on the order of 1016 SNP correlations to be calcu-
lated and subsequently thresholded this requires an incredibly
efficient algorithm and an enormous amount of compute power
to achieve.

The GPU optimized CCC algorithm we have developed for
this work can meet the needs of these types of ambitious
projects. Thus, pipelines we have constructed will enable the
high-throughput discovery of epistatic networks directly from
population genomics and phenomics data, providing a new tool
for GWAS and QTL studies. The potential impact is substantial
as we will resolve a fundamental question in genetics: we will
learn the extent to which epistatic interactions drive emergent,
complex phenotypes in opioid addiction. Once created, these
epistatic networks and SNP sets can be used to test for
associations with any phenotype that has been measured across
a population. As such, this will allow for a tremendous amount
of new information to be derived from publicly available
phenotypes from a range of model organisms and the explo-
ration of all of the clinical phenotypes (including alcohol and
nicotine dependency, cardiovascular disease, prostate cancer
and suicide ideation) that can be derived over time from the VA
electronic health records as well as other such projects (NIH
dbGAP, NIH All of Us Research Program, UK Biobank, etc)
as data becomes available. Furthermore, this same approach
can be used in other organisms of bioenergy or environmental
interest that are being sequenced at population scale, such as
those sequenced by the DOE Joint Genome Institute (Populus
trichcocarpa, Daphnia, Panicum, Brachypodium, Sphagnum,
Sorghum, etc.) as well as food crops (such as maize, soybean,
wheat, etc.) supported by other funding agencies.

Proportional Similarity metric for pleiotropy discovery.
Our overall research project in each of the species that
we are studying involves the creation of extensive systems
biology models of each species that capture the molecular
interactions in the cell that lead to emergent properties and
complex, organismal-scale phenotypes. This goal includes the

determination of genome-variant to phenotype relationships
for all available phenotypes. For some species we already
have collected thousands of phenotypes (160,000 phenotypes
in the case of our bioenergy project with Populus trichocarpa).
The VA electronic health record provides a rich resource
of potential clinical phenotypes and omics-level phenotype
collection is currently underway. As such, pleiotropy is an
important factor that needs to be captured in these extensive
models. Pleiotropy is the phenomenon in which a gene is
involved in multiple phenotypes. From a therapeutic point
of view pleiotropy is very important to understand. If one
identifies a gene as a therapeutic target (for chronic pain or
addiction therapy), then it would be incredibly helpful to know
what other functions, if any, that gene is involved in. This
would allow us to have a predictive (rather than reactive) view
on side affects and could greatly inform the choice of genes
targeted for therapeutic intervention.

The discovery of pleiotropy can be reduced to a vector
comparison problem. A matrix is first created in which the
rows are SNPs and the columns are phenotypes. A “1” in the
SNP vector represents a significant association between that
SNP and a particular phenotype where a “0” represents the
lack of a significant association with the phenotype in that
column. Alternatively, a negative log transformation of the
GWAS p-value can be used as a quantitative representation
of the strength of the association.

All against all (either 2-way or 3-way) comparisons of SNP
vectors is then performed with the Proportional Similarity
metric described below. SNP-SNP comparison scores that are
above a significance threshold indicate SNPs that are involved
in similar sets of phenotypes. These relationships can be
modeled as a network and Markov clustering [29] applied to
produce sets of SNPs (pleiotropy modules) that are associated
with the same set of phenotypes. These pleiotropy modules
can be represented as a node in a tripartite network with
edges to nodes representing the genes in which they reside and
to nodes representing the phenotypes that they are associated
with. This network then serves as a model of the pleiotropic
patterns observed in that species and can be mined for patterns
of interest and inspected when therapeutic targets are being
selected.

Other uses of the Proportional Similarity metric. The
Proportional Similarity metric can be used to compare binary
or quantitative vectors for the degree of overlap/similarity.
We have used this in the past to compare the gene family
content of species and to thus reveal functional relationships
and similarities between species [25]. Similarly it can be used
on the transpose of such vectors to reveal co-occurrence and
co-expansion patterns among gene families to infer functional
co-evolution patterns. We are working on a project now that
will enable these types of comparisons across all publicly
available genomes (>120,000 genomes and thus millions of
gene families). The Proportional Similarity metric can also be
used to determine microbial community structure in micro-
biome studies. In addition, it has many applications outside
the field of biology as it compares any set of numeric vectors

for their degree of overlap. Whether it is being used for
pleiotropy discovery or these other purposes, the scale of the
computation of comparison of millions of vectors certainly
requires efficient, scalable performance on supercomputing
architectures as demonstrated later in this paper.

B. Methods

As discussed above, we consider two methods: the Propor-
tional Similarity (PS) metric [27] and the Custom Correlation
Coefficient [24], [30]. The (2-way) Proportional Similarity
metric for vectors v and v with real nonnegative entries is

co(u,v) =2 [Z min(ug, vq)] / {Z(uq + vq)} (1)

where min(-,-) takesqthe minimum of tw(i) scalars. For a set
of vectors, the metrics for all pairs form a square matrix with
roughly half of the entries unique, due to symmetry of ca(, -).

To measure similarity of three vectors u, v and w, the 3-way
Proportional Similarity metric is

cz(u,v,w) = (3/2) [Z min(ug, vg) + min(uq, wy)

+min(vg, we) —min(ug, vg, wq)} /Z(Uq +vg +wg). (2)

For a set of vectors, the metric valueg for all vector triples
form a 3D tensor roughly 1/6 of whose entries are unique,
due to symmetry of c3(-,-,-).

The PS metric can be computed in single or double preci-
sion, referred to here as PS/SP and PS/DP. Some cases only
require 1-2 digits of accuracy for each result; in such cases,
if vector length is not too large, single precision is adequate.

The CCC method assumes vectors whose elements each
consist of two bits, directly encoding the SNP allele data (see
[24], [30]). The chief computation of the 2-way and 3-way
methods is, for each pair or triple of vectors, to generate
a tally table containing sums of occurrences of the relevant
bit patterns in corresponding vector elements. For details see
Appendix I. As with the PS method, when comparing all
vectors in a set, only about 1/2 (1/6) of the 2-way (3-way)
values are unique.

In practice, genomic data may contain missing entries. For
the PS metric, a missing entry can be represented as a zero
vector element with no change to the method. However, this
approach is not viable for CCC, for which zero entries are
signficant. Following [30], an altered method is defined which
encodes the missing value as a special 2-bit vector entry and
skips the tally accordingly. This method is denoted CCC/sp.

We have adapted the CCC methods to use the Tensor Core
hardware of the Nvidia Volta GPUs (see Appendix I). We
denote these implementations CCC/tc and CCC/sp/tc.

The datasets we have used thus far in production contain no
more than 5-10% missing entries. Thus there is no advantage
to treating the input data as a sparse rather than dense matrix.

III. CURRENT STATE OF THE ART

Vector similarity methods are frequently used for detection
of complex traits through GWAS; for a survey see [31]. The
increase in genomic data in recent years has sparked growing

interest in accelerating these methods. Previous efforts have
adapted these calculations to GPUs or Intel Xeon Phi pro-
cessors; a smaller number of efforts have parallelized these
methods on large-scale HPC systems. We survey these here,
considering cases for which vectors are composed of allele
data in the form of 2-bit or 3-bit values (similarly to the CCC
method), which is the predominant approach in the field. We
note some efforts have used nonexhaustive search methods;
since the PS and CCC methods considered here are exhaustive
search methods, we do not compare to nonexhaustive search.

GBOOST [32] is a gene-gene interaction code for 2-way
studies optimized for single GPUs using encoding of gene
data into bit strings with avoidance of redundant computa-
tions. GWISFI [33] is a single-GPU code for 2-way GWAS
calculations reporting 10,000X faster performance than the
popular PLINK code. [34] develops a UPC++ code for gene-
gene interaction studies for small numbers of GPUs and
Intel Xeon Phi processors exploiting vector hardware and
hardware population count instructions. [35] calculates 3-way
interactions on a node with 4 GPUs. [36] considers k-way
GWAS studies for arbitrary %k with consideration of load
balancing and elimination of redundancies and presents 2-way
results on a 4096-node IBM Blue Gene/Q system; single GPU
results are also presented. [37] performs 2-way analyses on up
to 126 nodes of the Intel Phi-based Stampede system (cf. [38]).
multiEpistSearch [39] performs 2-way GWAS studies using
UPC++ on a 24 GPU cluster. [40] describes 2-way methods
executed on 512 nodes of the Edison system.

Table I shows rates of comparison of element pairs (or
triples) per second as reported in these references. The meth-
ods in some cases compute very different statistics but are
all based on the same fundamental computation on vectors of
alleles. Element comparison rates have been either taken di-
rectly as reported or calculated from the data presented therein.
We also present results for CoMet, the comparative genomics
application used in the present work. CoMet CCC results are
directly comparable to the other studies; CoMet PS results are
different in kind but are listed here for completeness.

On 4560 nodes (99.0%) of the ORNL Summit system,
CoMet 2-way CCC/sp/tc is 21,285X faster than [40], the
fastest known comparable result.

The fastest 3-way implementation with reported perfor-
mance numbers we are aware of is [35]. At 4373 Summit
nodes, CoMet 3-way CCC/sp/tc is 306,910X faster than [35].

The dramatic improvement achieved by CoMet over state of
the art is due to coupling a highly efficient GPU implementa-
tion with a methodology to maintain efficiency across of tens
of thousands of GPUs.

IV. INNOVATIONS REALIZED

Multiple innovations were developed to achieve the
speedups shown in this work. Some have previously been re-
ported in different contexts in the literature; to our knowledge,
this is the first effort to bring all the elements together to
achieve petascale and exascale vector similarity calculations
for comparative genomics problems.

TABLE II: Comparison to related work

code problem node config nodes cmp/sec

used (x109)

GBOOSTI[32] 2-way GWAS 1 Nvidia GTX 285 1 64.08
GWISFI[33] 2-way GWAS 1 Nvidia GTX 470 1 767
[36] 2-way GWAS 1 Nvidia GTX 470 1 649
[36] 2-way GWAS IBM Blue Gene/Q 4096 2520
epiSNP[37] 2-way GWAS 2 Intel Phi SEI0P 126 1593
[34] 2-way GWAS 2 Nvidia K20m + 1 1053

1 Intel Phi 5110P

multiEpistSearch 2-way GWAS 1 Nvidia GTX/Titan 24 12,626

[39]

[40] 2-way GWAS 2 Intel Xeon E5-4603 512 13,889
CoMet, Titan 2-way PS/SP 1 Nvidia K20X 17472 4.289e6
CoMet, Titan 2-way PS/DP 1 Nvidia K20X 17472 1.697¢6
CoMet, Titan 2-way CCC 1 Nvidia K20X 17955 9.108e6

CoMet, Summit 2-way PS/SP 6 Nvidia V100 4560 94.768e6
CoMet, Summit 2-way PS/DP 6 Nvidia V100 4560 29.586e6
CoMet, Summit 2-way CCC 6 Nvidia V100 4560 104.370e6
CoMet, Summit 2-way CCC/sp 6 Nvidia V100 4560 71.587e6
CoMet, Summit 2-way CCC/tc 6 Nvidia V100 4560 294.652e6
CoMet, Summit 2-way CCC/sp/tc 6 Nvidia V100 4560 295.633e6
GPU3SNP[35] 3-way GWAS 4 Nvidia GTX/Titan 1 264.7
CoMet, Titan 3-way PS/SP 1 Nvidia K20X 18424 5.695e6
CoMet, Titan 3-way PS/DP 1 Nvidia K20X 18424 2.445e6
CoMet, Titan 3-way CCC 1 Nvidia K20X 18424 2.058e6
CoMet, Summit 3-way PS/SP 6 Nvidia V100 4373 72.499e6
CoMet, Summit 3-way PS/DP 6 Nvidia V100 4373 27.755e6
CoMet, Summit 3-way CCC 6 Nvidia V100 4373 23.672e6
CoMet, Summit 3-way CCC/sp 6 Nvidia V100 4373 21.163e6
CoMet, Summit 3-way CCC/tc 6 Nvidia V100 4373 81.611e6
CoMet, Summit 3-way CCC/sp/tc 6 Nvidia V100 4373 81.239e6

A. 2-way methods recast as modified GEMM operations

Computing similarity metrics on n vectors of length m in
general requires O(n?m) operations on O(nm) data, suggest-
ing that restructuring for high computational intensity may
be possible. Indeed, previous efforts to map these calculation
to GPUs have taken this direction. However, a more direct
approach is to exploit the structural resemblance of vector
similarity calculations to BLAS-3 dense linear algebra matrix-
matrix product (GEMM) operations. In fact, cosine similarity
can itself be computed using a GEMM. This connection has
already been recognized in the context of chemical informatics
methods [41]; to our knowledge, our work is its first ap-
plication to genomics calculations. This approach makes it
possible to exploit the many advances in highly optimized
GEMM implementations. The specific approach used here is
to adapt the GEMM operations of the MAGMA [42] library.
For the PS methods, this requires replacing the ¢ += axb
GEMM scalar operation with ¢ += min (a,b). For CCC,
a more complex modification is required involving bit-level
operations, (or, for the Tensor Core methods, a restructuring
to enable use of a standard mixed precision GEMM). We refer
to these as modified GEMM operations.

B. Use of high performance hardware features

To optimize use of resources, we exploit fast hardware
instructions using CUDA intrinsics. For the PS methods, the
CUDA fminf and fmin functions quickly take the minimum
of two values. This is, to our knowledge, the first use of
these intrinsics for vector similarity computations. Their use
yielded highest performance of several approaches tested on

Titan’s K20X GPUs. On Summit’s V100 GPUs, the single
precision fminf was fastest for PS/SP, however for PS/DP
the double precision fmin was outperformed by casting to
floats and applying fminf. Though some precision may be
lost, the result is accumulated in double precision, avoiding
critical loss of significance effects for long vectors, which
is the major issue. Note similar instructions are available on
other processors, e.g., the Intel Xeon Phi AVXS512 instructions
_mm512_min_ps and _mm512_min_pd.

For the CCC methods we use the __popcll CUDA
intrinsic to count the 1 bits in a word. Similar intrinsics are
available on some modern CPUs, e.g., _mm_popcnt_u64.
This approach is also used in efforts such as [41], [34].

For Summit’s Volta V100 GPUs we make use of the
cublasGemmEx function to increase performance of the
CCC methods by exploiting the Tensor Core hardware. This is
done by mapping CCC input vector elements to half precision
FP16 numbers and applying a matrix-matrix product (see
Appendix I). A similar technique could be implemented using
reduced precision hardware on other processors.

C. 3-way methods via multiple modified GEMM:s

The 3-way methods compute a cube-shaped 3D tensor of
results. Our approach is to represent this as a sequence of
modified GEMM operations each for a plane of the cube.
This exploits the high performance of modified GEMMs for
the 2-way case. This “BLAS-4"-like operation has a further
advantage: the cube of results computed on a node for one
step requires only node-local information, thus no off-node
communication is required while computing the block of
results. For the PS methods, the 3-way term min(uq, vy, wq)
of Equation (2) is computed with one modified GEMM for
each plane of results [27]. For CCC, a more complex method
uses three modified GEMMs for each plane [30].

D. Removing redundant computations, achieving load balance

The ScaLAPACK project [43] showed that efficient dis-
tributed dense linear algebra often requires multidimensional
parallelism. We implement three parallelism axes: partitioning
the set of input vectors, decomposing the vectors along their
length, and replicating the vectors to distribute computation
of result blocks. This results in a 3D grid of MPI ranks, each
owning one GPU and a set of CPU cores in a NUMA domain.

Some previous efforts to parallelize these computations
broadcast a full copy of the input dataset to each compute
node. This is not practical here, however. CCC applied to an
anticipated dataset of 10 million SNPs for 4 million individuals
gives input data size of 10 TB—300X the 32 GB node memory
of Titan and 20X the 512 GB node memory of Summit. Thus
the input data must be distributed across nodes.

Since an all-to-all comparison of vectors is performed, the
communication requirement is substantial. The computation is
scheduled as a series of steps in which each partition of vectors
is compared against that owned by another MPI rank specified
by an offset. Asynchronous pipelining hides communication

under computation. CPU/GPU transfers are scheduled asyn-
chronously during GPU computations and pipelined. Finally,
computations left on the CPU are performed concurrently with
GPU computations and parallelized with OpenMP.

To avoid performing unnecessary computation of redundant
values due to symmetries while maintaining load balance, the
subset of values to compute must be chosen carefully. The
criteria are: (1) all unique metric values should be computed
at least once with as few repeated computations as possible;
(2) the computation must be load balanced across MPI ranks;
(3) the data on each rank should be selected so that the
modified GEMM operations are as large as possible, for high
performance—ideally, of the same dimension as the vector
partition associated with the rank. The work of [44] addresses
similar issues in the context of distributed tensor computations
with symmetries but is not concerned with (3).

For 2-way methods, it is typical to take the upper triangular
part of the results matrix as representative of the unique values.
However, to maintain load balance we instead take a block
circulant subset of values, based on the block decomposition
imposed by the partitioning of vectors (Figure 1) [27]. In this
scheme every rank owning a block row has nearly the same
number of blocks, thus the computation is load balanced.

Fig. 1: Metric values computed for 2-way method (shaded).
Block rows correspond to partitioning of vectors across ranks.

For the 3-way methods, the cube of results has an implied
partitioning into subcubes imposed by the vector decomposi-
tion, with each MPI rank owning a 2D slab (Figure 2). One
might consider six tetrahedral solid regions of the full cube of
results, each with a separate a copy of unique results. However,
any such tetrahedron intersected with the block partition does
not give a load balanced result. To achieve load balance, our
strategy is instead to select a subset of values from each
subcube of Figure 2 so that every unique value of the whole
cube is represented exactly once (Figure 3) [27]. For each
subcube, a 1/6-width small slab of planes is selected. Its
orientation and placement in the subcube is chosen so that,
as can be seen from a folding argument around the cube’s
main axis, every subcube of any reference tetrahedron is fully
populated. By decomposing the subcube into properly oriented
planes, the modified GEMMSs can operate on large matrices.

o =

=

S=c==

=
i v

Fig. 2: 3-way method parallel decomposition.

I
X

The enormous quantity of metrics data created by the 2-
way method and especially the 3-way method puts pressure

L
1
=

Fig. 3: Subset of elements selected from each subblock,
depending on location in the domain.

on available node memory, severely limiting matrix size and
thus efficiency of the GPU. To remedy this, for the 3-way case
the small slab of planes in the subcube is decomposed into
“stages”; in practice one stage at a time is computed, reducing
storage needed for metrics at any given time. Similarly, for
the 2-way and 3-way methods the computation is decomposed
into “phases,” each associated with a round-robin subset of the
blocks in each block row (2-way) or slab (3-way). This limits
main memory needed at any one time, so larger problems can
be run and larger matrices given to the GPU.

V. HOW PERFORMANCE WAS MEASURED
A. Measurement methodology

Timings of major code components (each typically several
seconds or more) are done manually using gettimeofday
preceded by calls to cudaDeviceSynchronize and
MPI_Barrier to quiesce the nodes. The breakdown of code
components timed is described in the following section. The
times for the job launch process via aprun (Titan) or jsrun
(Summit) and for MPI_Init and MPI_Finalize are not
included, as these are artifacts of system software performance
and not germane to performance of the application proper.
Performance data for GPU kernels is collected using NVPROF
or the CUDA Profiler.

Following convention, a vector element comparison is de-
fined for the 2-way methods as the computation pertaining
to two corresponding elements of the two vectors compared.
Likewise for the 3-way methods, an element comparison refers
to three corresponding elements of the three vectors compared.

Redundant computations due to symmetries are never multi-
ply counted: for example, comparing a to b and b to a counts as
one comparison. Thus if redundant calculations are performed,
time required for these computations appears in the analysis
as a penalty to the achieved rate of operations per second.

For the PS method, the operations of floating point add
and multiply are each counted as one operation, as is the
operation of taking the minimum of two floating point values
by intrinsic call to hardware instruction. When needed, a cast
between floating point types is also counted as one operation.
Operation counting is done manually for both numerators and
denominators for the PS method; these counts can be com-
puted analytically since, as analogues of dense linear algebra
operations, their operation counts are well-understood. Any
incidental operations that may be performed but not counted
in this way will appear as a penalty against the operation rate.

For PS/SP, all computations counted are single precision; for
PS/DP, all counted operations are double precision except for
fminf and cast between floating point types on Summit.

For CCC, the operations counted are INT64 arithmetic,
bitwise logical, shift and population count, floating point arith-
metic and INT64 cast to double. These are counted by manual
inspection of hand-tuned code. Most instructions executed are
non-floating point bit manipulation operations. For the Tensor
Core implementations, mixed precision scalar floating point
multiply and add each count as one operation, and counts
are calculated analytically by formula. Half precision add and
multiply are here counted as arithmetic operations on floating
point numbers. For both CCC and PS methods, instruction
rates are also collected using NVPROF on Summit.

TABLE III: Titan GPU kernel results

Kernel elt pairs / ops/ ops/ sec
sec X102 elt pair x10'2
PS/SP 0.495 2 0.990
MAGMA SGEMM 0.614 2 1.229
SGEMM limit 1.967 2 3.933
PS/DP 0.199 2 0.397
MAGMA DGEMM 0.308 2 0.617
DGEMM limit 0.656 2 1.311
CCC 2-way 0.583 60 1.093
CCC 3-way 0.408 82 1.045
CCC/sp 2/3-way 0.370 88 1.018
MAGMA ZGEMM 0.092 8 0.736
ZGEMM limit 0.164 8 1.311

TABLE IV: Summit GPU kernel results

Kernel elt pairs/ ops/ ops/sec IPC
sec X102 elt pair x10'2

PS/SP 5.060 2 10.120 3.430

MAGMA SGEMM 6.071 2 12.142 2.410
SGEMM limit 7.834 2 15.667 —

PS/DP 1.272 5 6.362 1.362

MAGMA DGEMM 3.201 2 6.401 1.436
DGEMM limit 3.917 2 7.834 —

CCC 2-way 3.931 60 7371 1.351

CCC 3-way 3.014 82 7.722 1.315

CCCl/sp 2/3-way 2.670 88 7342 1.343

MAGMA ZGEMM 0.650 8 5203 1.169
ZGEMM limit 0.979 8 7.834 —
CCCltc 2/3-way non/sparse 13.111 8 104.885 —
cuBLAS FP16/32 GEMM 14.035 8 112.282 —
FP16/32 GEMM limit 15.668 8 125.344 —

In production we have used a Populus trichocarpa dataset
composed of 28,342,758 SNPs with a population size of 882,
the subject of study under a current DOE INCITE project on
Titan. In the future we will apply the code to a larger dataset of
700,000 SNPs and population size 358,000; a follow-on effort
will analyze a 10 million SNP, 4 million population dataset. To
evaluate performance, the code is also able to calculate with
synthetically generated datasets for which the exact solution
is known and thus results can be easily validated. Since
the code path executed for the core metrics computation is
entirely independent of the values present in the input data, the
timing results from the synthetic datasets would be expected
to be fully reflective of those from equivalent sized real-world
datasets; this has been confirmed through testing. The Tensor
Cores on Summit do exhibit data-dependent performance due

to power/frequency throttling, however we have determined
that the highly randomized synthetic test inputs used here
closely represent performance for real-world input data (or
are in fact slightly more challenging). I/O performance does
depend on the input data, since code outputs are filtered by
size threshold, so the number of outputs depends on the values
(see next section). Thus we do not measure I/O for synthetic
datasets.

Correctness of computations is ensured in multiple ways.
The CoMet application has unit testing and an extensive suite
of tests. Also the synthetic datasets have known analytic solu-
tions against which results are compared for each run. A result
checksum independent of parallel decomposition is computed
to detect any defect in the computation. Computed results have
also been validated by several other codes, including an offline
C code to recompute results passing the output threshold and
a code independently implemented in R to check these values.

B. Systems used

Experiments are performed on the ORNL Titan Cray XK7
system and the ORNL IBM AC922 Summit system. Systems
and execution environment are described in Appendix II.

VI. PERFORMANCE RESULTS
A. GPU kernel results

To provide a baseline for performance achievable at scale,
timing experiments are performed for large matrices on one
GPU. Tables III and IV show rates based on GPU kernel
execution time for a modified GEMM for each method. We
measure rate of comparisons between corresponding elements
of two vectors being compared, each element being FP32,
FP64 or a 2-bit value. The number of operations required
for a single comparison is also shown, counted as described
earlier. Note some operations could theoretically be elided
due to compiler optimizations, resulting in different operation
rates; we do not believe this is significant here. For Summit,
the instructions per clock (IPC) figures reported by NVPROF
are also shown. Observe that, depending on whether the
instructions are prinarily 32-bit (PS/SP, SGEMM) or 64-bit
(others), the IPC values are fairly consistent between the true
GEMM methods and the modified GEMMs.

The PS operation rates for Summit are 65% (single) and
81% (double) of theoretical peak operation rates for SGEMM
and DGEMM, respectively, these derived from the GPU
peak flop rates. This is highly performant insofar as mod-
ified GEMM performance, relying on fminf, cast-to-float
and cast-to-double, must compete against highly optimized
fused multiply add (FMA) instructions used by the standard
GEMMs. It is unfortunate that the fastest implementation of
PS/DP requires two cast-to-float operations and a cast-to-
double operation with the fminf operation; one would prefer
better V100 fmin performance. The corresponding PS ratios
for Titan are 25% (single) and 30% (double), showing the
architectural improvements of V100 over K20X.

For the CCC cases, comparison to ZGEMM theoretical
peak is tenuous since the operations performed are very

different; however, the similar operation rates between the
CCC modified GEMMs and the ZGEMM limit are suggestive
that highly effective use of the GPU is being made.

For the Summit Tensor Cores, a benchmark result is ob-
tained using cuBLAS with FP16 inputs and FP32 results
computed in FP32 arithmetic, using large matrices filled with
zeros. Experiments have shown that Tensor Core performance
on Summit is data dependent due to power/frequency throttling
for high entropy inputs, therefore this value serves as a high
upper limit for HGEMM. The CCC measurement shown using
the Tensor Cores is computed using matrices derived from
random CCC inputs and is expected to be a practical upper
bound for realistic CCC problems (see Appendix I).

B. Runtime components

A single run of the CoMet application is composed of
several components, for each of which timings are collected:
the vector similarity calculation proper (we refer to this as
the “core metrics computation” throughout), initialization and
deallocation of data structures for vectors and metrics, input
of vectors and output of metrics. To illustrate overheads of
operations other than the core metrics computation, we present
timings from a sample run performed on Summit with the pre-
liminary AlpineTDS GPFS file system used for data input and
the NVMe burst buffers for output. A publicly available human
genome dataset with 81,042,272 SNPs of population size 2504
is used. To evaluate performance on larger-population datasets
not yet cleared for use on Summit, this population is replicated
by 240X to give 600,960 population size. Computation and I/O
behaviors on this dataset will mimic those of larger-population
unreplicated datasets to be run in the near future.

2-way CCC/sp/tc is run on 3000 nodes of Summit with 125
phases executed in a single run. The Tensor Core computation
is run in 6 GEMM steps for each full GEMM operation
(Appendix I). We use the typical output metric threshold of
0.7, so that about one of every 3.5 million metric results is
output. The core metrics computation runs at 10.40e12 element
comparisons per second per rank (cp. Table VII), or 83.2
TF per GPU, due to use of the Tensor Cores, with full rate
of 1.50 ExaOps on nearly 2/3 of Summit for this realistic
problem. On full Summit we estimate performance in excess of
2.25 ExaOps, similar to maximum weak scaling performance
shown below. Note this problem, requiring 3.3 hours total
wallclock runtime on 2/3 of Summit, if it were run at a rate
equivalent to best comparable state of the art (Table II), would
require 15 years wallclock runtime to complete.

Timing results are shown in Table V. Input cost is amortized
over the many phases of the computation and thus accounts for
less than 6% of runtime. Output cost is amortized by the long
vector length due to the large population size and is limited by
thresholding, thus accounting for only about 5% of runtime.
The large metrics arrays are expensive to allocate as pinned
memory but are reused across phases, thus amortizing cost to
less than 1%. Vector allocation costs are negligible. The core
metrics computation itself is efficient due to the large vector

length and large number of vectors on each GPU. As a result,
about 89% of runtime is spent in the core metrics computation.
In the near future, run campaigns with vector lengths as
high as 4,000,000 are planned. These large population sizes
will cause the core metrics computation to dominate to an
even greater extent. Since I/O and other costs constitute only
a small fraction of runtime, for the remainder of this paper we
focus solely on timings of the core metrics computation.

TABLE V: Timings in seconds for execution components

component time (sec) | percent

core metrics computation | 10,550.23 | 88.80
vectors initialization 0.24 0.00
metrics initialization 58.44 0.49
input 670.93 5.65
output 600.40 5.05

TOTAL 11,880.25 | 100.00

C. Strong scaling results

Though the primary focus of this work is weak scaling
regimes to solve very large problems, we give representative
strong scaling results. Figure 4 shows 2-way PS/DP and
CCCl/spltc strong scaling up to 4000 nodes of Summit for
two fixed problem sizes. For each case, the calculation was
performed as a loop over phases within a single code execu-
tion, to reduce memory pressure from the large metrics storage
requirement and thus enable a larger problem to be run. PS/DP
(CCCl/spl/tc) reaches 48% (47%) parallel efficiency at 4000
nodes relative to 500 nodes. It is well-known that standard
GEMM operations require large problem sizes on the GPU
to reach high operation rates. Furthermore, transfer, commu-
nication and CPU computation costs become significant as
modified GEMM sizes per GPU are reduced. To achieve high
performance in production, we will run large cases that fill
GPU memory as much as possible.

B PS/DP actual
- || =PS/DP ideal
'g 10000 1\, cec/sp/tc actual A
==CCC/sp/tc ideal o
g 1000 ol o~
a A
o ° AN
£ 100 <
= *A
10
10 100 1000
nodes

Fig. 4: 2-way PS/DP and CCC/sp/tc strong scaling on Summit

D. Weak scaling results

Figure 5 shows 2-way and 3-way weak scaling timing
results on Titan and associated element comparison rates
reported on a per rank basis. For further details, see [27],
[30]. All cases scale well to the entire Titan system, with two
caveats. First, the 2-way PS methods experience some drop
in performance at large node counts. This is believed to be
due to limitations of Titan’s 3D torus interconnect for sending
the large quantities of data; the other methods with higher
computation to communication ratio do not manifest this
behavior. Second, the 3-way methods at low node counts show

some reduction in comparison rates compared to large node
counts. This is an artifact of the construction of the algorithm,
which favors large node counts. However, by about 100 nodes,
performance approaches the asymptote, and performance is
high at the largest node counts.

400

-e-2-way PS/SP
350 |i-=-2-way PS/DP

=300 2-way CCC

T 3-way PS/SP

S 250 | -u-3-way PS/DP

-4-3-way CCC _ EIFE T

3200 ._X_._--r-——*—-""" =

o 150

s 100

50 =

—-2-way PS/SP
-=-2-way PS/DP
2-way CCC

3-way PS/SP
-m-3-way PS/DP
-4-3-way CCC

8.E+11 |

6.E+11

GPU / sec

Z 4E+lL

————e—o—

)

—e

—=EFEEE]
F

g

ny

— = W
- =t 4

uy

£

Q 2.E+11 —

o -
=1

= '::
0.E+00 t

10 100

1000
nodes

Fig. 5: Titan weak scaling timings and comparison rates

10000

A summary of results at highest node counts is presented in
Table VI. Performance per rank (i.e., per GPU) of the largest
run is compared against the maximal measured GPU kernel
performance from Table III; recall the 3-way CCC methods
require three modified GEMMs per element comparison, while
the PS methods require one. The percentage of maximal kernel
performance attained by the core metrics computation is in
the 49-87% range; omitting the lower performing 2-way PS
methods, the range is 62-87%. This indicates all overhead from
communication, CPU-GPU transfers, CPU computations and
potential load imbalance is small compared to performance of
the critical modified GEMM computations on the GPU.

TABLE VI: 2-way, 3-way methods performance on Titan

method | num | nodes | cmp / sec | cmp / sec | max limit | ratio
way all nodes | per GPU | per GPU | per

x10%% | x10!2 | x10!2 | GPU

PS/SP | 2 |17472| 4.289 0.245 0.495 | 49.6%
PS/DP | 2 |17472| 1.697 0.097 0.199 | 48.8%
CCC 2 | 17955| 9.108 0.507 0.583 | 87.0%

PS/SP | 3 |18424| 5.695 0.309 0.495 |62.4%
PS/DP | 3 |18424| 2445 0.133 0.199 | 66.7%
CCC 3 | 18424 | 2.058 0.122 0.136 | 82.1%

Figure 6 shows weak scaling results on Summit. For 2-
way cases, several phases are computed and phase count or
the processor replication factor is increased with node count
to keep work per node nearly constant. For 3-way cases,
one stage of a fixed number of stages is computed, and the
processor count along the parallel replication axis is increased
with problem size to keep work per GPU nearly constant.
Timings for all methods exhibit near-perfect weak scaling
behavior up to 4560 (2-way case) or 4373 (3-way case) nodes,

representing 99.0% (94.9%) of Summit. Summit’s fat tree in-
terconnect with adaptive routing effectively manages the large
volume of matrix data transfer. There is slight performance
loss at the highest node counts for 2-way PS/SP and 2-way
Tensor Core methods, having lower computational intensity;
this performance may improve in the future with further tuning
of the network. Figure 6 shows element comparison rate per
GPU also scales nearly perfectly. As with Titan, the 3-way
methods have lower comparison rates at low node counts but
have high performance for more nodes.

1000

-e-2-way PS/SP
-m=2-way PS/DP * * * * *—&
=4=2-way CCC
=f=2-way CCC/tc
2-way CCC/sp/tc
=e=2-way CCC/sp
-e -3-way PS/SP
-.-3-way PS/DP
=4 -3-way CCC
=K=3-way CCC/tc o &

3-way CCC/sp/tc . g .
N Rl Lt CRLL R
=& -3-way CCC/sp ° - ?f - :E_/.h@,.

*

=0 e —— &
Rl S =34 ¢

time (seconds)
w
o
o

m

- —a—

1 10 100

-e-2-way PS/SP
-m-2-way PS/DP
=a=2-way CCC
-=2-way CCC/sp
=#=2-way CCC/tc
2-way CCC/sp/tc|
-@-3-way PS/SP
-m-3-way PS/DP
—A-3-way CCC N — e v w5 ¥
~0=3-Way CCC/SP | grmme o B =By GLBSITHE
=(-3-way CCC/tc | ©

3-way CCC/sp/tc| sl R g grugaigalsg!

1 10 100 1000
nodes

Fig. 6: Summit weak scaling timings and comparison rates

1.E+13

5.E+12

comp / GPU / sec

0.E+00

Table VII shows maximal performance. For the 2-way case,
at 4560 nodes the core metrics computation attains 68-98% of
maximum measured performance of the GPU kernel shown
in Table IV. Note CCC and CCC/sp without Tensor Cores
achieve near perfect efficiency due to high computational
intensity and deep communication/transfer pipeline. For the
3-way case, at the largest node count the percentages are 55-
90%:; the ratio is over 70% for all CCC methods. The code
makes very efficient use of the GPUs at large node counts.

TABLE VII: 2-way, 3-way methods performance on Summit

method | num | nodes | cmp / sec | cmp / sec | max limit | ratio
way all nodes | per GPU | per GPU | per
x10%® | x10'? | x10'2 | GPU
PS/SP 2 | 4560 | 94.768 3.464 5.060 | 68.5%
PS/DP 2 | 4560 | 29.586 1.081 1.272 | 85.0%
CcCcC 2 | 4560 | 104.370 3.815 3931 |97.0%
CCC/sp 2 | 4560 | 71.587 2.616 2.670 | 98.0%
CCCltc 2 | 4560 | 294.652 10.770 13.111 | 82.1%
CCCl/sp/tc | 2 | 4560 | 295.633 10.805 13.111 |82.4%
PS/SP 3 14373 | 72.499 2.763 5.060 |54.6%
PS/DP 3 | 4373 | 27.755 1.058 1.272 | 83.1%
CCC 3 14373 | 23.672 0.902 1.005 |89.8%
CCC/sp 3 | 4373 | 21.163 0.807 1.005 | 80.3%
CCCltc 3 | 4373 | 81.611 3.111 4370 |71.2%
CCC/sp/tc | 3 | 4373 | 81.239 3.097 4370 |70.9%

2-way PS/SP achieves 94.768 petacomparisons per second
at 4560 nodes; since PS/SP uses 2 operations per comparison
(fminf, add), this represents 189.54 PetaOps single precision.

2-way PS/DP reaches 29.586 petacomparisons per second;
since PS/DP uses 5 operations per comparison (cast to float
(2), fminf, cast to double, add), this yields 147.93 PetaOps.
2-way CCC/sp/tc reaches 295.633 petacomparisons per sec-
ond; since each comparison uses 4 multiplies and 4 adds, this
reaches 2.365 ExaOps. 2-way CCC/sp/tc computes the same
result at 4.130X higher performance compared to CCC/sp.

VII. IMPLICATIONS

We have presented a novel reformulation of vector similar-
ity calculations in terms of generalized BLAS-3 operations.
This effort and others, for example the Exascale Comput-
ing Project’s Center for Efficient Exascale Discretizations
(CEED), are needed to convert memory-bound computations
into compute intensive operations. The power cost for moving
data is increasingly a critical performance limiter as mani-
fested by the growing trend toward memory-centric designs.
Application codes will increasingly need to adapt to keep pace
with this shift.

For this work, the treatment of the on-node problem as a
modified GEMM will remain effective as long as future HPC
hardware supports dense linear algebra—this is likely in view
of continued application requirements for this [45]. Growing
availability of on-chip silicon for specialized operations like
fmin and __popcll has served this work well and might
also benefit other algorithmic patterns. Reduced precision
processor functionality seems likely for the near future owing
to its value for the growing deep learning market.

Other efforts are underway to use Volta Tensor Cores for
purposes other than deep learning [46]. It is hoped that more
applications will be able to use this feature. The Titan CAAR
application readiness project [47] examined use of reduced
precision for the six targeted applications; only one could
use mixed precision (LAMMPS), and in general few science
applications have used reduced precision effectively. However,
the high speedup factor of the Tensor Cores over double
precision may suggest new possibilities.

Node heterogeneity and complexity will only increase [48].
As the slowing of Moore’s law causes processor design to
become more exotic, application developers will need to think
of new method and algorithm formulations to take advantage
of this hardware to advance their science goals.

The approach used here is not specific to GPUs but could
be used for other advanced processors as well. Many mod-
ern CPUs provide a hardware population count instruction.
Furthermore, just as this work modifies MAGMA BLAS
functions, it is likely that other libraries, e.g., PLASMA [49],
BLIS [50] and OpenBLAS [51] would provide similar op-
portunities for adapting the modified GEMM operation to
conventional processors or Intel Xeon Phi.

The slower growth of off-node communication bandwidth
than node flop rates on HPC systems is a challenge for
distributed dense linear algebra in general and these methods
in particular. Communication requirements are much greater
than simple halo exchanges required by many codes. In this

study, some matrix message sizes were on the order of a giga-
byte; the flood of large messages poses a threat of significant
network contention. The 2-way PS and Tensor Core methods
are most vulnerable to this hardware stress point; the 3-way
methods have a BLAS-4 character with higher achievable
computational intensity, making them more immune.

The amount of data available as input to these methods
will continue to increase. The results presented here show this
code is well-suited to handling the requisite I/O, and we expect
even more so with the increasing prevalence of burst buffer
hardware. However, data management for the large quantities
of generated data will require careful workflow design.

This work relies on aggressive asynchronous overlap of
communications, transfers and computations in conjunction
with double buffering methods for the GPUs. Many appli-
cations that have not yet embraced asynchronous approaches
will see substantial performance benefits from doing so.

We presently do not require asynchronous task-based meth-
ods with dynamic scheduling. Near-peak performance is al-
ready achieved, hence benefits from better resource utilization
from dynamic task scheduling would be limited. Further, the
benefits for resilience would also be limited. Since this is
not a time-dependent simulation, steps do not require results
from previous steps, thus expensive checkpoint storage is not
required to recover from failures, and failed steps can be
easily re-run at low cost. Future HPC systems may manifest
more severe performance irregularities or failure rates. In
this case, the modified GEMMs could be broken into pieces,
wrapped in tasks and submitted to a NUMA-aware adaptive
DAG scheduler to make better use of hardware resources and
address resilience concerns, though this may reduce BLAS-
3 computational intensity depending on the implementation.
Additionally, the CCC methods considered here possess com-
putational invariants which, with some added computations,
could be employed to detect silent errors if needed.

This work has affinities with recent efforts in distributed
dense linear algebra, for example, Cyclops [44] and ExaTen-
sor [52] tensor libraries and SLATE [53], all concerned with
high performance at scale for distributed dense methods. Vec-
tor similarity methods are also used in diverse science domains
such as chemistry, image processing, linguistics, ecology and
document processing. The methods discussed here are thus
potentially applicable beyond the field of genomics.

ACKNOWLEDGEMENTS

The authors would like to thank Stephen Abbott, Mark
Berrill, Matt Ezell, Judy Hill, Annabel Large, Jeff Larkin,
Don Maxwell, Verénica Vergara, Sean Treichler, Jack Wells
and Chris Zimmer for their assistance. This research used
resources of the Oak Ridge Leadership Computing Facility
and was supported by the Center for Bioenergy Innovation and
the Plant-Microbe Interface SFA (both supported by the Office
of Biological and Environmental Research in the DOE Office
of Science) at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC, for the US Department of
Energy under contract DE-AC05-000R22725.

[1]

[2]

[3]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

C. S. Florence, C. Zhou, F. Luo, and L. Xu, “The economic burden of
prescription opioid overdose, abuse, and dependence in the united states,
2013, Medical care, vol. 54, no. 10, pp. 901-906, 2016.

N. E. Morone and D. K. Weiner, “Pain as the fifth vital sign: exposing
the vital need for pain education,” Clinical therapeutics, vol. 35, no. 11,
pp- 1728-1732, 2013.

A. Van Zee, “The promotion and marketing of oxycontin: commercial
triumph, public health tragedy,” American journal of public health,
vol. 99, no. 2, pp. 221-227, 2009.

C. for Behavioral Health Statistics and Quality, “2015 national survey
on drug use and health: Detailed tables,” 2016.
“Cdc/nchs national vital statistics
https://wonder.cdc.gov, 2017.

K. E. Vowles, M. L. McEntee, P. S. Julnes, T. Frohe, J. P. Ney, and
D. N. van der Goes, “Rates of opioid misuse, abuse, and addiction in
chronic pain: a systematic review and data synthesis,” Pain, vol. 156,
no. 4, pp. 569-576, 2015.

P. Muhuri, J. Gfroerer, and M. Davies, “Associations of nonmedical pain
reliever use and initiation of heroin use in the united states. samhsa:
Cbhsq data review,” 2013.

T. J. Cicero, M. S. Ellis, H. L. Surratt, and S. P. Kurtz, “The changing
face of heroin use in the united states: a retrospective analysis of the
past 50 years,” JAMA psychiatry, vol. 71, no. 7, pp. 821-826, 2014.
R. G. Carlson, R. W. Nahhas, S. S. Martins, and R. Daniulaityte, “Pre-
dictors of transition to heroin use among initially non-opioid dependent
illicit pharmaceutical opioid users: A natural history study,” Drug &
Alcohol Dependence, vol. 160, pp. 127-134, 2016.

A. M. Vivolo-Kantor, P. Seth, R. M. Gladden, C. L. Mattson, G. T.
Baldwin, A. Kite-Powell, and M. A. Coletta, “Vital signs: trends in
emergency department visits for suspected opioid overdoses—united
states, july 2016-—september 2017,” Morbidity and Mortality Weekly
Report, vol. 67, no. 9, p. 279, 2018.

D. F. Weisberg, K. S. Gordon, D. T. Barry, W. C. Becker, S. Crystal, E. J.
Edelman, J. Gaither, A. J. Gordon, J. Goulet, R. D. Kerns ef al., “Long-
term prescription opioids and/or benzodiazepines and mortality among
hiv-infected and uninfected patients,” Journal of acquired immune
deficiency syndromes (1999), vol. 69, no. 2, p. 223, 2015.

S. Szymczak, J. M. Biernacka, H. J. Cordell, O. Gonzédlez-Recio, 1. R.
Konig, H. Zhang, and Y. V. Sun, “Machine learning in genome-wide
association studies,” Genetic epidemiology, vol. 33, no. S1, 2009.

A. A. Brown, A. Buil, A. Viifiuela, T. Lappalainen, H.-F. Zheng, J. B.
Richards, K. S. Small, T. D. Spector, E. T. Dermitzakis, and R. Durbin,
“Genetic interactions affecting human gene expression identified by
variance association mapping,” Elife, vol. 3, 2014.

T. A. Manolio, F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff,
D.J. Hunter, M. I. McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti
et al., “Finding the missing heritability of complex diseases,” Nature,
vol. 461, no. 7265, p. 747, 2009.

D. G. Clayton, “Prediction and interaction in complex disease genetics:
experience in type 1 diabetes,” PLoS genetics, vol. 5, no. 7, p. 1000540,
2009.

H. Schunkert, I. R. Konig, S. Kathiresan, M. P. Reilly, T. L. Assimes,
H. Holm, M. Preuss, A. F. Stewart, M. Barbalic, C. Gieger et al.,
“Large-scale association analysis identifies 13 new susceptibility loci
for coronary artery disease,” Nature genetics, vol. 43, no. 4, p. 333,
2011.

M. I. McCarthy, G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J. Little,
J. P. Toannidis, and J. N. Hirschhorn, “Genome-wide association stud-
ies for complex traits: consensus, uncertainty and challenges,” Nature
reviews genetics, vol. 9, no. 5, p. 356, 2008.

T. F. Mackay, “Epistasis and quantitative traits: using model organisms to
study gene—gene interactions,” Nature Reviews Genetics, vol. 15, no. 1,
p. 22, 2014.

D. L. Aylor, W. Valdar, W. Foulds-Mathes, R. J. Buus, R. A. Verdugo,
R. S. Baric, M. T. Ferris, J. A. Frelinger, M. Heise, M. B. Frieman et al.,
“Genetic analysis of complex traits in the emerging collaborative cross,”
Genome research, vol. 21, no. 8, pp. 1213-1222, 2011.

J. Gonzalez-Dominguez, B. Schmidt, J. C. Kassens, and L. Wienbrandt,
“Hybrid cpu/gpu acceleration of detection of 2-snp epistatic interactions
in gwas,” in European Conference on Parallel Processing. Springer,
2014, pp. 680-691.

system, mortality,”

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

S. Climer, A. R. Templeton, and W. Zhang, “Allele-specific network re-
veals combinatorial interaction that transcends small effects in psoriasis
gwas,” PLoS Comput Biol, vol. 10, no. 9, p. e1003766, 2014.

S. Basu, K. Kumbier, J. B. Brown, and B. Yu, “iterative random forests
to discover predictive and stable high-order interactions,” Proceedings
of the National Academy of Sciences, p. 201711236, 2018.

S. Mukherjee, S. Kim, V. K. Ramanan, L. E. Gibbons, K. Nho,
M. M. Glymour, N. Ertekin-Taner, T. J. Montine, A. J. Saykin, P. K.
Crane et al., “Gene-based gwas and biological pathway analysis of the
resilience of executive functioning,” Brain imaging and behavior, vol. 8,
no. 1, pp. 110-118, 2014.

S. Climer, W. Yang, L. de las Fuentes, V. G. Da vila Roma n,
and C. C. Gu, “A Custom Correlation Coefficient (CCC) Approach
for Fast Identification of Multi-SNP Association Patterns in Genome-
Wide SNPs Data,” Genetic Epidemiology, vol. 38, no. 7, 2014,
http://www.ncbi.nlm.nih.gov/pubmed/25168954.

D. A. Weighill and D. A. Jacobson, “3-way networks: application
of hypergraphs for modelling increased complexity in comparative
genomics,” PLoS computational biology, vol. 11, no. 3, p. €1004079,
2015.

D. Zhou, J. Huang, and B. Scholkopf, “Learning with hypergraphs: Clus-
tering, classification, and embedding,” in Advances in neural information
processing systems, 2007, pp. 1601-1608.

W. Joubert, J. Nance, D. Weighill, and D. Jacobson, “Paral-
lel Accelerated Vector Similarity Calculations for Genomics Ap-
plications,” Parallel Computing, vol. 75, July 2018, pp. 130-145,
https://www.sciencedirect.com/science/article/pii/S016781911830084X.
D. Jacobson and G. Emerton, “Gsa-pca: gene set generation by principal
component analysis of the laplacian matrix of a metabolic network,”
BMC bioinformatics, vol. 13, no. 1, p. 197, 2012.

S. Van Dongen, “Graph clustering via a discrete uncoupling process,”
SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp.
121-141, 2008.

W. Joubert, J. Nance, S. Climer, D. Weighill, and D. Jacob-
son, “Parallel Accelerated Custom Correlation Coefficient Calcula-
tions for Genomics Applications,” Parallel Computing, to appear,
https://arxiv.org/abs/1705.08213.

W.-H. Wei, G. Hemani, and C. S. Haley, “Detecting epista-
sis in human complex traits,” Nature Reviews Genetics, 2014,
http://www.nature.com/nrg/journal/v15/n11/full/nrg3747 html.

L. S. Yung, C. Yang, X. Wan, and W. Yu, “GBOOST: a
GPU - based tool for detecting gene — gene interactions
in genome — wide «case control studies,” Bioinformatics,
vol. 27, no. 9, pp. 1309-1310, 2011. [Online]. Available:

http://bioinformatics.oxfordjournals.org/content/27/9/1309.abstract

Q. Wang, F. Shi, A. Kowalczyk, R. M. Campbell, B. Goudey,
D. Rawlinson, A. Harwood, H. Ferra, and A. Kowalczyk, “GW-
ISFI: A universal GPU interface for exhaustive search of pairwise
interactions in case-control GWAS in minutes,” in 2014 IEEE In-
ternational Conference on Bioinformatics and Biomedicine, 2014,
http://ieeexplore.ieee.org/document/6999192.

J. Gonzalez-Dominguez, S. Ramos, J. Tourino, and B. Schmidt, “Parallel
Pairwise Epistasis Detection on Heterogeneous Computing Architec-
tures,” IEEE Transactions on Parallel and Distributed Systems, 2016,
http://ieeexplore.ieee.org/document/7165657/.

J. Gonzalez-Dominguez and B. Schmidt, “GPU-accelerated
exhaustive search for third-order epistatic interactions in
case—control studies,” Journal of Computational Science,
vol. 8, pp. 93 - 100, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1877750315000393

B. Goudey, M. Abedini, J. L. Hopper, M. Inouye, E. Makalic, D. F.
Schmidt, J. Wagner, Z. Zhou, J. Zobel, and M. Reumann, “High
performance computing enabling exhaustive analysis of higher order
single nucleotide polymorphism interaction in Genome Wide Associa-
tion Studies,” in Proceedings of the HISA BIG DATA 2013 Conference,
2015, https://link.springer.com/article/10.1186/2047-2501-3-S1-S3.

G. R. Luecke, N. T. Weeks, B. M. Groth, M. Kraeva, L. Ma, L. M.
Kramer, J. E. Koltes, and J. M. Reecy, “Fast Epistasis Detection in Large-
Scale GWAS for Intel Xeon Phi Clusters,” in Trustcom/BigDataSE/ISPA,
2015 IEEE, 2011, http://ieeexplore.ieee.org/document/7345653/.

N. T. Weeks, G. R. Luecke, B. M. Groth, M. Kraeva, L. Ma,
L. M. Kramer, J. E. Koltes, and J. M. Reecy, “High-
performance epistasis detection in quantitative trait GWAS,” The
International Journal of High Performance Computing Applications,

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]
[51]
[52]

[53]

vol. 0, no. 0, p. 1094342016658110, 0. [Online]. Available:
http://dx.doi.org/10.1177/1094342016658110

J. Gonzalez-Dominguez, J. C. Kassens, L. Wienbrandt, and B. Schmidt,
“Large-scale Genome-wide Association Studies on a GPU Cluster
Using a CUDA-accelerated PGAS Programming Model,” Int. J. High
Perform. Comput. Appl., vol. 29, no. 4, pp. 506-510, Nov. 2015.
[Online]. Available: http://dx.doi.org/10.1177/1094342015585846

J. C. Kassens, J. Gonzalez-Dominguez, L. Wienbrandt, and B. Schmidt,
“UPC++ for bioinformatics: A case study using genome-wide asso-
ciation studies,” in 2014 IEEE International Conference on Cluster
Computing (CLUSTER), Sept 2014, pp. 248-256.

I. S. Haque, V. S. Pande, and W. P. Walters, “Anatomy of
High-Performance 2D Similarity Calculations,” Journal of Chemical
Information and Modeling, vol. 51, no. 9, pp. 2345-2351, 2011.
[Online]. Available: http://dx.doi.org/10.1021/ci200235¢e

S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear
algebra solvers for multicore with GPU accelerators,” in Paral-
lel Distributed Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on, April 2010, pp. 1-8,
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5470941.

J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “Scal A-
PACK: A scalable linear algebra library for distributed memory con-
current computers,” in Frontiers of Massively Parallel Computation,
1992., Fourth Symposium on the. IEEE, 1992, pp. 120-127,
http://ieeexplore.ieee.org/document/234898/.

E. Solomonik, D. Matthews, J. Hammond, and J. Demmel,
“Cyclops Tensor Framework: Reducing communication and
eliminating load imbalance in massively parallel contractions,”
in Parallel Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, 2013, pp. 813-824,
http://ieeexplore.ieee.org/document/6569864/?arnumber=6569864.

V. Anatharaj, F. Foertter, W. Joubert, and J. Wells, “Approaching
Exascale: Application Requirements for OLCF Leadership
Computing,” Oak Ridge National Laboratory, Technical
Report ORNL/TM-2013/186, 2013, https://www.olcf.ornl.gov/wp-
content/uploads/2013/01/OLCF_Requirements_TM_2013_Final1.pdf.

J. Dongarra, “Experiments with Energy Savings and Short Precision,”
in Salishan2018 Proceedings.

W. Joubert, R. K. Archibald, M. A. Berrill, W. M. Brown, M. Eisenbach,
R. Grout, J. Larkin, J. Levesque, B. Messer, M. R. Norman, and et al.,
“Accelerated application development: The ORNL Titan experience,”
Computers and Electrical Engineering, vol. 46, May 2015.

“The Extreme Heterogeneity = Virtual =~ Workshop 2018,”
https://www.orau.gov/ExHeterogeneity2018/agenda.htm.

“PLASMA,” http://icl.cs.utk.edu/plasma/software.

“BLIS,” https://github.com/flame/blis.

“OpenBLAS: An optimized BLAS library,” http://www.openblas.net/.
D. 1. Lyakh, “Portable Heterogeneous High-Performance Comput-
ing via Domain-Specific Virtualization,” 4th ADAC Workshop, 2017,
https://iadac.github.io/events/adac4/liakh.pdf.

Innovative Computing Laboratory, “SLATE,” http://icl.utk.edu/slate/.

APPENDIX I: TENSOR CORE IMPLEMENTATION

As described in [30], the CCC method can be implemented
by representing the input data as vectors containing entries of
two bits and operating on these entries using binary operations
followed by a tally of the results for each vector pair (or triple)
into a small table. This is illustrated in Figures 7 and 8. For all
4 (or 8) paths through the 2 (or 3) 2-bit values, the occurrences
of the associated bit patterns are tallied into the associated
table. After the tally, the results are normalized by single-
vector bit counts and presented as a set of 4 (or 8) floating
point values for each vector pair (triple).

111
/ 00 0
01— 011
>< 0] T
e I S 4 111
\
v, vy 01

Fig. 7: 2-way CCC calculation example. Left: two vectors
of length 1, each entry 2 bits. Center: enumeration of all
pairings of entries. Right: tallying of counts of each pairing
type (see [30])

1

]

00 10

[i

ZIIN

-
-

Fig. 8: 3-way CCC calculation example. Left: three vectors
of length 1, each entry 2 bits. Center: enumeration of all
combinations of entries. Right: tallying of counts of each
combination type (see [30])

This computation can, however, alternatively be represented
as a standard matrix-matrix product operation. To illustrate
we use the example shown in Figure 7. The left and right
matrices for this example each with one vector of one element
are represented in binary as A = [[012]]; B = [[112]]. To adapt
to the Tensor Core method, new matrices are then formed by
doubling the number of columns to represent the number of
0 bits and 1 bits in each entry: A = [[1][1]], B = [[0][2]].
The result is then obtained by forming the product B A. In
the general case, the result is a matrix of 2 x 2 blocks with
each block representing the comparison of two of the original
vectors. See Figure 9.

The full method proceeds as follows:

1) A CUDA kernel copies the original matrix into a new

matrix on the GPU composed of FP16 entries, each entry
either 0, 1 or 2, as illustrated in Figure 9. For the sparse

FP16 vectors
#0s #1s #0s #1s
0Of

0|0
ozl

Fig. 9: 2-way Tensor Core CCC calculation example. Left:
two vectors of length 1, each entry 2 bits. Center: doubling
of columns to represent per-element bit counts. Right: matrix-
matrix product.

Original vectors Result

ol |
N | 1]

1S3
=)

2

case and for the case of the 2-way operation that is used
to support the 3-way method, the counts are adjusted
accordingly. This computation is O(mn).

2) A call to cublasGemmEx is made to calculate the
product. This takes FP16 inputs, calculates in FP32
arithmetic and accumulates the results in FP32. FP32 is
required rather than FP16 in order to maintain sufficient
accuracy. The calculation is exact for vectors up to
length m = 222 — 1, roughly four million, and with
roundoff maintains sufficient accuracy for sizes larger
than this. The computation is O(mn?).

3) The result of the product is adjusted in-place to the data
format required by the host code, using a CUDA kernel
running in O(n?) time.

Implementation measures are required to maximize per-
formance, including: ensuring that matrix dimensions are
divisible by a small power of two by use of padding; setting the
matrix axis order (row major vs. column major) to increase
locality; and requesting the best algorithm selection for the
cublasGemmEx call based on results of empirical testing.

Since the copy of A, B to A, B requires a memory
expansion of 16X, a code option is provided to divide the
process described above into steps, based on decomposing A
and B into block rows and operating on a pair of block rows at
a time, accumulating the result. This reduces memory pressure
from converting the matrices to FP16 all at once.

The copying to new matrices increases the number of entries
of the original matrix pencil [A, B] by a factor of two and
thus the number of effective pairwise vector comparisons by
a factor of four. However, because of the speed the Tensor
Cores (16X faster than double precision performance for the
same operations), the overall impact is a significant speedup
compared to the original bitwise method.

APPENDIX II: SYSTEM EXECUTION CONFIGURATION

Titan is a Cray XK7 system composed of 18,688 compute
nodes, each equipped with an AMD Interlagos 16 core CPU
and an Nvidia Kepler K20X GPU connected via a PCle-2
bus. The K20X GPU has peak single (double) precision flop
rate of 3.935 (1.311) TF and peak memory bandwidth of 250
GB/sec. Each node contains 32 GB main memory and 6 GB
GDDR GPU memory. Titan is equipped with a Gemini 3D
torus interconnect. The Lustre file system Atlas is used for
I/0. The software versions used are Cray OS version 5.2.82,
Cray Programming Environment 2.5.13, GCC 4.9.3, MAGMA

1.6.2 and CUDA toolkit 7.5.18-1.0502.10743.2.1. The en-
vironment variable APRUN_BALANCED_INJECTION and
additionally the variables ARMCI_DMAPP_LOCK_ON_GET
and ARMCI_DMAPP_LOCK_ON_PUT are used in some
cases to improve communication throughput, as well as
MPICH_RANK_REORDER_METHOD with a random ordering.

Summit is composed of 4,608 compute nodes, each with
two 22-core IBM POWERY processors and six Nvidia
Volta V100 GPUs each connected to a POWER9 by
NVLINK-2 with peak performance 100 GB/sec bidirectional.
V100 GPU peak single (double) precision performance
is approximately 14 (7) TF and peak memory bandwidth
900 GB/sec. Each node contains 512 GB main memory,
while each GPU contains 16 GB HBM2 memory. The
nodes are connected with a Mellanox Infiniband fat tree
interconnect. Each node is equipped with a 1.6 TB NVMe
burst buffer device. As of this writing, Summit is connected
to the GPFS file system AlpineTDS while the final Alpine
file system is being prepared for production use. Software
versions used are GCC 6.4.0, MAGMA 1.6.2, Spectrum
MPI 10.2.0.0 and CUDA 9.2.88. The jsrun tool is used
for application launch, with six MPI ranks per node each
with 1 GPU and 7 OpenMP threads mapped to CPU cores.
Environment variables PAMI_IBV_ENABLE_DCT=1
PAMI_ENABLE_STRIPING=1
PAMI_IBV_ADAPTER_AFFINITY=0
PAMI_IBV_QP_SERVICE_LEVEL=S8
PAMI_IBV_ENABLE_OOO_AR=1 are set to use adaptive
routing and to limit per-node storage needed for MPI buffers.

As of this writing, Summit has not fully completed accep-
tance testing; therefore, all results are preliminary, and per-
formance may improve in the future as the system undergoes
more performance tuning.

