
Exceptional service in the national interest

NSF/DOE Community Atmosphere Model (CAM5)

GPU implementations of the CAM-SE advection limiter

U S DEPARTMENT OF ///A • ,C cir44

ENERGY ILYKL,W:',„1

Irina Demeshko, Mark A. Taylor, Matthew R. Norman

2015 Heterogeneous Multi-Core 4 Workshop, 09/17/2015
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

SAND2015-7848C

Outline

■ Introduction

■ HOMME on GPU

■ Advection limiters

■ Limiter 8 algorithms

■ Performance evaluation results

■ Conclusion

Sandia
National
Laboratories

2

CESM

Incoming Solar
Energy

Stratus Clouds

Precipitation
Evaporation

Soil
Moist

Land
Model

CESM is an IPCC-class model
developed by NCAR, National Labs
and Universities

Atmosphere, Land, Ocean
and Sea ice component models

CAM is the atmosphere component
model for the CESM

Outgoing Heat
Energy

Transition from
Solid to Vapor

Evaporative
and Heat Energy

AemsoM Exchange.

Snow Cover

y

Runoff Hurnan influences
and Land Use

Sea
lee

Land Surface
(Topography, and Reflectivity)

Ocean
(Currents, Temperature. and Salinity)

Realistic
Geography

Sumuius
Clouds

Winds
and Waves

Marine Biology

Sandia
National
Laboratories

Includes the Atmosphere,
Land, Oceans. lce, and Biosphere

Cirrus Ce.reis Atmospheric
GC M

Atmosphere
(Temperature, Winds,
and Precipitation)

Evaporation

Heat & Salinity
Exchange

Ocean Vertical
Bottom Overturning
Topography

Mark A. Taylor, DCMIP Summer School, July 30-Aug 10,Boulder

Stratus Clouds

E

Ocean
GCM

Ocean Model
Layers

3

HOMME (High-Order Method Modeling Environwt)

• Dynamical core for atmosphere

• Performance scalable

• Support quasi-uniform and

variable resolution grids on
parallel computers

anthropogenic
emissions

land ice

G-CISM

land

CLM

CAM

l3ncl u$e

natural
emissions

Al/

sea ice
CICE

ocean

P 0 P

Vadlamani, S. ,Xscale Conf., Boulder, CO, Aug. 15&16,2013

• Three options:
Spectral Element (SE) and DG are
available, CSLAM coming soon

• CAM-SE option: advection

operator requires limiter

-o
-o
a)
a)
200

(7)

o_
(,) 1 00
-0

0
C.)

co
50

25

CESM 0.25)0.1'

—e— ATM
- CICE
—0— OCN

4K

*Mark A. Taylor, DCMIP Summer School, July 30-Aug 10,Boulder

8K 16K
NCORES

32K 64K

Sandia
National
Laboratories

4

CAM-SE cost estimate

CESM
(today's configuration)

ATM cost — Coupler/
Other

Physics/
Chem

• Dynamics

• Tracer
Advection

Sandia
National
Laboratories

Proposed DOE configuration
(in few years)

ATM cost (estimated)

- Coupler/
Other

Physics/
Chem

N Dynamics

N Tracer
Advection

5

Advection limiters*

Why we need limiter:

n/2 =

00
n/2 3r/2

EMI
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

(a) Initial time

00
n/2

0 n/2 3n/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

2n

,/2

o

0 ,r/2

IWO
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

(b) Final time, no limiter

2,

7r/2 .

1112

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

(c) Final time, limiter with 1 (d) Final time, limiter with 2
constraint constraints

Sandia
National
Laboratories

Figure: 1.5° resolution, cosine bells, 7 GLL points
*O.Guba, M. Taylor, A. St.-Cyr. Local Extrema Diminishing Advection for High-Order Finite Element Methods, Transport Workshop, NCAR , 2011

6

Advection limiters

Why we need limiter (cont.):

Tr/2

7r/2 37/2 rr/2 3r/2

11 11 11 IWO
0 0.10.20.30.40.506070809 1 11 0 0.10.20.30.40.50.60.70.80.9 1 1.1

(a) Initial time

"11141111

nr2 n 31:/2

11 I
0 0.10.20.30.40.50.60.70.80.9 1 1.1

27,

(b) Final time, no limiter

7/2

11
31r/2

0 0.10.20.30.40.50.60.70.80.9 1 1.1

(c) Final time, Iimiter with 1 (d) Final time, limiter with 2
constraint constraints

Figure: 1.5° resolution, slotted cylinders, 7 GLL points

Sandia
National
Laboratories

7

Advection limiters*

■ CAM_SE: 3 optimization-based limiters for h-p spectral
element method:

■ Optimal (limiter_optim_iter_full): the most expensive one

■ Min/max limiter (limiter2d_minmax)

■ Sign-preserving limiter (limiter2d_zero): the easiest one

Sandia
National
Laboratories

8

Sign-preserving limiter

is identical to min/max limiter, but

Ocili

Sandia
National
Laboratories

 >

9

Min/max limiter

■ Instead of solving a standard quadratic program we find a
non-optimal solution in one iteration, which satisfy all the
constrains but not necessary the best one.

qmax

qmin

Sandia
National
Laboratories

10

Optimal limiter
• The idea here is the following: We need to find a grid

field(q-i) which is closest to the unlimited solution (q)
(in terms of weighted sum), but satisfies the min/max
constraints. So, first we find values which do not
satisfy constraints and bring these values to a closest
constraint. This way we introduce some mass change

min — c02
&ER/ ./1

and qmin qmax

Modification: 0=qmin

 wiPiqi —

• so, we redistribute this mass change in the way that 12
error is smallest. This redistribution might violate
constraints thus, we do a few iterations.

t arget
element

Sandia
National
Laboratories

Figure: Stencil for defining
constraints amin, an.

11

Limiter8 original (indirect addressing)
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

..code ommited

integer, parameter :: maxiter = 5

do k = 1 , nlev
weights(:,k) = sphweights(:) * dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)

enddo

do k = 1 , nlev
c = weights(:,k)
x = ptens(:,kfl
mass = sum(c*x)
if((mass / sum(c)) < minp(k)) then

minp(k) = mass / sum(c)
endif
if((mass / sum(c)) > maxp(k)) then

maxp(k) = mass / sum(c)
endif

addmass = 0.0d0
pos_counter = 0;
neg_counter = 0;

do k1 = 1 , np*np
if ((x(kl) >= maxp(k))) then
addmass = addmass + (x(kl) - maxp(k)) * c(kl)
x(k1) = maxp(k)
whois_pos(kl) = -1

else
pos_counter = pos_counter+1;
whois_pos(pos_counter) = k1;

endif
if ((x(kl) <= minp(k))) then
addmass = addmass - (minp(k) - x(kl)) * c(kl)
x(k1) = minp(k)
whois_neg(kl) = -1

else
neg_counter = neg_counter+1;
whois_neg(neg_counter) = kl;

endif
enddo

weightssum = 0.0d0
if (addmass > 0) then

do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , pos_counter
il = whois_pos(kl)
weightssum = weightssum + c(il)
al_pos(il) = maxp(k) - x(il)

enddo

if((pos_counter > 0) .anc (addmass > tol_limiter * abs(mass))) then
do kl = 1 , pos_counter
il = whois_pos(kl)
howmuch = addmass / weightssum
if (howmuch > al_pos(il)) then

howmuch = al_pos(i1)
whois_pos(kl) = -1

endif

addmass = addmass - howmuch * c(il)
weightssum = weightssum - c(il)
x(il) = x(il) + howmuch

enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do kl = 1 , neg_counter

if (whois_neg(kl) .ne. -1) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)

endif
enddo

else
exit

endif
enddo

else
do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , neg_counter
ii = whois_neg(kl)
weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)

enddo

Sandia
National
Laboratories

if ((neg_counter > 0) .and. ((-addmass) > tol_limiter * abs(mass))) then
do kl = 1 , neg_counter
il = whois_neg(kl)
howmuch = -addmass / weightssum
if (howmuch > al_neg(i1)) then

howmuch = al_neg(il)
whois_neg(kl) = -1

endif
addmass = addmass + howmuch * c(il)
weightssum = weightssum - c(i1)
x(il) = x(il) - howmuch

enddo
!now sort whois_pos and get a new number for pos_counter
!here pos_counter and whois_pos serve as temp vars
pos_counter = neg_counter
whois_pos = whois_neg
whois_neg = -1
neg_counter = 0
do kl = 1 , pos_counter

if (whois_pos(kl) .ne. -1) then
neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos(kl)

endif
enddo

else
exit

endif
enddo

endif

ptens(:,k) = x
enddo

do k = 1 , nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo
end subroutine limiter ootim iter full

Limiter8 original (indirect addressing)
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

..code ommited

integer, parameter :: maxiter = 5

do k = 1 , nlev
weights(:,k) = sphweights(:) * dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)

enddo

do k = 1 , nlev
c = weights(:,k)
x = ptens(:,kfl
mass = sum(c*x)
if((mass / sum(c)) < minp(k)) then

minp(k) = mass / sum(c)
endif
if((mass / sum(c)) > maxp(k)

maxp(k) = mass / sum(c)
endif

addmass = 0.0d0
pos_counter = 0;
neg_c - ,

) then

First, we find values which do not satisfy
Constraints (overshoots and undershoots)
nd store their ID in whois_pos/neg arrays

do k1 = 1 , np*np
if ((x(kl) >= maxp(k))) then
addmass = addmass + (x(kl) - maxp(k)) * c(kl)
x(k1) = maxp(k)
whois_pos(kl) = -1

else
pos_counter = pos_counter+1;
whois_pos(pos_counter) = k1;

endif
if ((x(kl) <= minp(k))) then
addmass = addmass - (minp(k) - x(kl)) * c(kl)
x(k1) = minp(k)
whois_neg(kl) = -1

else
neg_counter = neg_counter+1;
whois_neg(neg_counter) = kl;

endif
eaddo

weightssum = .
if (addmass > 0) then

do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , pos_counter
il = whois_pos(kl)
weightssum = weightssum + c(il)
al_pos(il) = maxp(k) - x(il)

enddo

if((pos_counter > 0) .anc (addmass > tol_limiter * abs(mass))) then
do kl = 1 , pos_counter
il = whois_pos(kl)
howmuch = addmass / weightssum
if (howmuch > al_pos(il)) then

howmuch = al_pos(i1)
whois_pos(kl) = -1

endif

addmass = addmass - howmuch * c(il)
weightssum = weightssum - c(il)
x(il) = x(il) + howmuch

enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do kl = 1 , neg_counter

if (whois_neg(kl) .ne. -1) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)

endif
enddo

else
exit

endif
enddo

else
do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , neg_counter
ii = whois_neg(kl)
weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)

enddo

Sandia
National
Laboratories

if ((neg_counter > 0) .and. ((-addmass) > tol_limiter * abs(mass))) then
do kl = 1 , neg_counter
il = whois_neg(kl)
howmuch = -addmass / weightssum
if (howmuch > al_neg(i1)) then

howmuch = al_neg(il)
whois_neg(kl) = -1

endif
addmass = addmass + howmuch * c(il)
weightssum = weightssum - c(i1)
x(il) = x(il) - howmuch

enddo
!now sort whois_pos and get a new number for pos_counter
!here pos_counter and whois_pos serve as temp vars
pos_counter = neg_counter
whois_pos = whois_neg
whois_neg = -1
neg_counter = 0
do kl = 1 , pos_counter

if (whois_pos(kl) .ne. -1) then
neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos(kl)

endif
enddo

else
exit

endif
enddo

endif

ptens(:,k) = x
enddo

do k = 1 , nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo
end subroutine limiter ootim iter full

Limiter8 original (indirect addressing)
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass) addmass = addmass — howmuch * c(il)

weightssum = weightssum — c(il)
..code ommited x(il) = x(il) + howmuch

enddo
integer, parameter :: maxiter = 5 neg_counter = pos_counter

whois_neg = whois_pos
do k = 1 , nlev whois_pos = —1
weights(:,k) = sphweights(:) * dpmass(:,k) pos_counter = 0
ptens(:,k) = ptens(:,k) / dpmass(:,k) do kl = 1 , neg_counter

enddo if (whois_neg(kl) .ne. —1) then
pos_counter = pos_counter+1

do k = 1 , nlev whois_pos(pos_counter) = whois_neg(kl)

c = weights(:,k) endif

x = ptens(:,kfl enddo
elsemass = sum(c*x)
exitif((mass / sum(c)) < minp(k)) then

endifminp(k) = mass / sum(c)
enddoendif

else
if((mass / sum(c)) > maxp(k)) then do i2 = 1 , maxItermaxp(k) = mass / sum(c) Then we caluilate bring these valLies

weightssum = 0.0d0
if (addmass > 0) then

do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , pos_counter
il = whois_pos(kl)
weightssum = weightssum + c(il)
al_pos(i1) = maxp(k) — x(il)

enddo

kl = 1 , pos_counter
= whois_pos(kl)

howmuch = a mass f weig tssum
if (howmuch > al_pos(il)) then

howmuch = al_pos(i1)
whois_pos(kl) = —1

endif

endif weightssum = 0.0
do kl = 1 , neg_counter

addmass = 0.0d0 to a closest constraint. In purpose to reduce il = whois_neg(kl)
weightssum = weightssum + c(il)

pos_counter = 0; Computations we do this only for the al_neg(il) = x(il) — minp(k)
neg_counter = 0; enddo

do kl = 1 , np*np values from whois __ pos/neg if ((ne counter > 0) .and. ((—addmass) > tol_limiter * abs(mass))) then
if ((x(kl) >= maxp(k))) then o c = , neg_cou
addmass = addmass + (x(kl) — maxp(k)) * c(kl) il = whois_neg(k1)
x(k1) = maxp(k) howmuch = —addmas • tssum
whois_pos(kl) = —1 if howmuch > al_neg(il)) then

else howmuch = al_neg(il)
pos_counter = pos_counter+1; whois_neg(kl) = —1
whois_pos(pos_counter) = k1; endif

endif addmass = addmass + howmuch * c(il)
if ((x(kl) <= minp(k))) then weightssum = weightssum — c(i1)
addmass = addmass — (minp(k) — x(kl)) * c(kl) x(il) = x(i1) — howmuch
x(k1) = minp(k) enddo
whois_neg(kl) = —1 !now sort whois_pos and get a new number for pos_counter

else !here pos_counter and whois_pos serve as temp vars
neg_counter = neg_counter+1; pos_counter = neg_counter
whois_neg(neg_counter) = kl; whois_pos = whois_neg

endif whois_neg = —1
enddo neg_counter = 0

do kl = 1 , pos_counter
if (whois_pos(kl) .ne. —1) then

neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos(k1)

Sandia
National
Laboratories

ass > tol_limiter * abs(mass))) then

endif
enddo

else
exit

endif
enddo

endif

ptens(:,k) = x
enddo

do k = 1 , nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo
end subroutine limiter ootim iter full

Limiter8 original (indirect addressing)
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

..code ommited

integer, parameter :: maxiter = 5

do k = 1 , nlev
weights(:,k) = sphweights(:) * dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)

enddo

do k = 1 , nlev
c = weights(:,k)
x = ptens0,101
mass = sum(c*x)
if((mass / sum(c)) < minp(k)) then

minp(k) = mass / sum(c)
endif
if((mass / sum(c)) > maxp(k)) then This way we introduce some

maxp(k) = mass / sum(c)
endif mass change (addmass), so, we
addmass = 0.0d0 redistribute addmass in the way
pos_counter = 0;
neg_counter = 0; that 12 error is smallest.

addmass = addmass - howmuch c(il
ssum = weightssum -

x(il) = x il) + howmuc
enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do kl = 1 , neg_counter

if (whois_neg(k1) .ne. -1) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)

endif
enddo

else
exit

endif
enddo

else
do i2 = 1 , maxIter
weightssum = 0.0
do k1 = 1 , neg_counter
ii = whois_neg(k1)
weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)

enddo

Sandia
National
Laboratories

do k1 = 1 , np*np if ((neg_counter > 0) .and. ((-addmass) > tol_limiter * abs(mass))) then
if ((x(k1) >= maxp(k))) then do kl = 1 , neg_counter
addmass = addmass + (x(k1) - maxp(k)) * c(k1) il = whois_neg(k1)
x(k1) = maxp(k) howmuch = -addmass / weightssum
whois_pos(k1) = -1 if (howmuch > al_neg(i1)) then

else howmuch = al_neg(il)
pos_counter = pos_counter+1; whois_neg(k1) = -1
whois_pos(pos_counter) = k1; e

endif
if ((x(k1) <= minp(k))) then
addmass = addmass - (minp(k) - x(k1)) * c(k1)
x(k1) = minp(k) enddo
whois_neg(k1) = -1 !now sort whois_pos and get a new number for pos_counter

else !here pos_counter and whois_pos serve as temp vars
neg_counter = neg_counter+1; pos_counter = neg_counter
whois_neg(neg_counter) = kl; whois_pos = whois_neg

endif whois_neg = -1
enddo neg_counter = 0

do kl = 1 , pos_counter
weightssum = 0.0d0 if (whois_pos(k1) .ne. -1) then
if (addmass > 0) then neg_counter = neg_counter+1

do i2 = 1 , maxIter whois_neg(neg_counter) = whois_pos(k1)
weightssum = 0.0 endif
do kl = 1 , pos_counter enddo
il = whois_pos(k1) else
weightssum = weightssum + c(il) exit
al_pos(il) = maxp(k) - x(il) endif

enddo enddo
endif

addmass = addmass + howmuch * c
weightssum = weightssum - c(i1)
(i1) = x(il) - howmuch

if((pos_counter > 0) .anc (addmass > tol_limiter * abs(mass))) then
do kl = 1 , pos_counter
il = whois_pos(k1)
howmuch = addmass / weightssum
if (howmuch > al_pos(il)) then

howmuch = al_pos(i1)
whois_pos(k1) = -1

endif

ptens(:,k) = x
enddo

do k = 1 , nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo
end subroutine limiter ootim iter full

Limiter8 new algorithm
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

integer, parameter :: maxiter = np*np-2

do k = 1 , nlev
c = sphweights(:) * dpmass(:,k)
x = ptens(:,k)/dpmass(:,k)

mass = sum(c*x)
sumc= sum(c)
if (sumc <= 0) CYCLE ! this should never happen, but if it does,

! relax constraints to ensure limiter has a solution:
! This is only needed if runnign with the SSP CFL>1 or
! due to roundoff errors
if(mass < minp(k)*sumc) then

minp(k) = mass / sumc
endif
if(mass > maxp(k)*sumc) then

maxp(k) = mass / sumc
endif

do iter=1,maxiter

addmass=0.0d0

do kl=1,np*np
if((x(k1)>maxp(k))) then
addmass=addmass+(x(k1)—maxp(k))*c(k1)
x(k1)=maxp(k)

endif
if((x(k1)<minp(k))) then
addmass=addmass—(minp(k)—x(k1))*c(k1)
x(k1)=minp(k)

endif
enddo !k1

if(abs(addmass)<=tol_limiter*abs(mass)) exit

weightssum=0.0d0
if(addmass>0)then
do kl=1,np*np

if(x(kl)<maxp(k))then
weightssum=weightssum+c(k1)

endif
enddo !k1
do kl=1,np*np

if(x(kl)<maxp(k))then
x(k1)=x(k1)+addmass/weightssum

endif
doi enddo

else
do kl=1,np*np

if(x(k1)>minp(k))then
weightssum=weightssum+c(k1)

endif
enddo
do kl=1,np*np

if(x(k1)>minp(k))then
x(k1)=x(k1)+addmass/weightssum

endif
enddo

endif

enddo!end of iteration

ptens(:,k)=x(:)
k1=k1+1

enddo

do k=1,nlev
ptens(:,k)=ptens(:,k)*dpmass(:,k)

enddo

end subroutine limiter_optim_iter_full

Sandia
National
Laboratories

16

Limiter8 new algorithm
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

integer, parameter :: maxiter = np*np-2

do k = 1 , nlev
c = sphweights(:) * dpmass(:,k)
x = ptens(:,k)/dpmass(:,k)

mass = sum(c*x)
sumc= sum(c)
if (sumc <= 0) CYCLE ! this should never happen, but if it does,

! relax constraints to ensure limiter has a solution:
! This is only needed if runnign with the SSP CFL>1 or
! due to roundoff errors
if(mass < minp(k)*sumc) then

minp(k) = mass / sumc
endif
if(mass > maxp(k)*sumc) then

maxp(k) = mass / sumc
endif

do iter=1,maxiter

addmass=0.0d0

do kl=1,np*np
if((xtkl) then
addmass=addmass+(x(k1)—maxp(k))*c(k1)
x(k1)=maxp(k)

endif
if((x(k1)<minp(k))) then
addmass=addmass—(minp(k)—x(k1))*c(k1)
x(k1)=minp(k)

endif
enddo !k1

weightssum=0.0d0
if(addmass>0)then
do kl=1,np*np

if(x(kl)<maxp(k))then
weightssum=weightssum+c(k1)

endif
enddo !k1
do kl=1,np*np

if(x(k1)<maxp(k))then
x(k1)=x(k1)+addmass/weightssum

endif
doi enddo

No indirect address:
more computations, but
less memory access

iflabs(addmass)<=tol_limiter*abs(mass)) exit

e
do kl=1,np*np

if x >minp(k) then
weightssum=weightssum+c(k1)

endif
enddo
do kl=1,np*np

if(x(k1)>minp(k))then
x(k1)=x(k1)+addmass/weightssum

endif
enddo

endif

enddo!end of iteration

ptens(:,k)=x(:)
k1=k1+1

enddo

do k=1,nlev
ptens(:,k)=ptens(:,k)*dpmass(:,k)

enddo

end subroutine limiter_optim_iter_full

Sandia
National
Laboratories

17

Limiter 8 optimization
Sandia
National
Laboratories

if (limiter_option == 8) then
do k = 1 , nlev ! Loop index added (AAM)

! UN-DSS'ed dp at timelevel n0+1:
dp_star(:,:,k) = dp(:,:,k) - dt elem(ie)%derived%divdp(:,:,k)
if (nu_p > 0 .and. rhs_viss /= 0) then
! add contribution from UN-DSS'ed PS dissipation
dpdiss(:,:) = (hvcoord96hybi(k+1) - hvcoord96hybi(k)) * elem(ie)%deriveftsdiss_biharmonic(:,:)

dpdiss(:,:) = elem(ie)%derived%dpdiss_biharmonic(:,:,k)
dp_star(:,:,k) = dp_star(:,:,k) - rhs_viss dt nu_q * dpdiss(:,:) / elem(ie)%spheremp(:,:)

endif
enddo
! apply limiter to Q = Qtens / dp_star
call limiter_optim_iter_full(Qtens(:,:,:) , elem(ie)%spheremp(:,:) , qmin(:,q,ie) , &

qmax(:,q,ie) , dp_star(:,:,:))
endif

subroutine limiter_optim_iter_full(ptens,sphweightsminp,maxp,dpmass)

integer, parameter :: maxiter = np*np-2

do k = 1 , nlev
c = sphweights(:) * dpmass(:,k)

18

Limiter8 new algorithm optimized
Sandia
National
Laboratories

if (limiter_option == 8) then
do k = 1 , nlev ! Loop index added (AAM)

! UN—DSS'ed dp at timelevel n0+1:
dp_star(:,:,k) = dp(:,:,k) — dt * elem(ie)%derived%divdp(:,:,k)
if (nu_p > 0 .and. rhs_viss /= 0) then

! add contribution from UN—DSS'ed PS dissipation
dpdiss(:,:) = (hvcoord%hybi(k+1) — hvcoord%hybi(k)) * elem(ie)%derived%psdiss_biharmonic(:,:)

dpdiss(:,:) = elem(ie)%derived%dpdiss_biharmonic(:,:,k)
dp_star(: : k = d• star : : k) — rhs_viss * dt * nu_q * dpdiss(:,:) / elem(ie)%spheremp(:,:)

stari(:,:,k) = 1.0/dp_star(:,
endif

enddo
! apply limiter to Q = Qtens / dp_star
call limiter_optim_iter_full(Qtens(:,:,:) , elem(ie)%spheremp(:,:) , qmin(:,q,ie) , &

qmax(:,q,ie) ,
endif

subroutine limiter_optim_iter_full(ptens,sphweightsminp,maxp,dpmass, dpmassi)

integer, parameter :: maxiter = np*np-2

do k = 1 , nlev
c = sphwei•hts(:) * dpmass(:,k)
= ptens(:,k)*dpmassi(:,

19

Performance evaluation results
t
i
m
e
 p
er
 k
er

ne
l,

 m
s

3.5

2.5

2

1.5

1

Weak scalability

woomesou llowlliiinw

-0-OpenACC original

OpenACC new

OpenACC new
optimized

CUDA new

Sandia
National
Laboratories

20

Performance evaluation results
t
i
m
e
 p
er

 k
er

ne
l,

 m
s

11

9

7

5

3

1

-1

ksf?fi'

6(e\ee'C\

c\oOes

Strong scalability

6es

s

A, ,c,0

eeo '(\'' f?
8e\ e\ee,\q, e

(5°

Sandia
National
Laboratories

 --OpenACC original

-Q-OpenACC new

penACC new optimiz(

CUDA new

•c\oc\es eod s
(?).' (?)'.c\-s.(.\\. 'c\\-s

we.

21

Conclusion
Sandia
National
Laboratories

■ Limiter 8 has been ported to GPU with CUDA and OpenACC ->
tracer advections can be 100% computed on the GPUs

■ Code optimizations are necessary

■ OpenACC gives reasonable performance

■ CUDA is still faster than OpenACC

22

