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HOMME (High-Order Method Modeling Environwt)

• Dynamical core for atmosphere

• Performance scalable

• Support quasi-uniform and

variable resolution grids on
parallel computers
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• Three options:
Spectral Element (SE) and DG are
available, CSLAM coming soon

• CAM-SE option: advection

operator requires limiter
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CAM-SE cost estimate
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Advection limiters*

Why we need limiter:
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Figure: 1.5° resolution, cosine bells, 7 GLL points
*O.Guba, M. Taylor, A. St.-Cyr. Local Extrema Diminishing Advection for High-Order Finite Element Methods, Transport Workshop, NCAR , 2011
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Advection limiters

Why we need limiter (cont.):
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Advection limiters*

■ CAM_SE: 3 optimization-based limiters for h-p spectral
element method:

■ Optimal (limiter_optim_iter_full): the most expensive one

■ Min/max limiter (limiter2d_minmax)

■ Sign-preserving limiter (limiter2d_zero): the easiest one
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Sign-preserving limiter

is identical to min/max limiter, but
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Min/max limiter

■ Instead of solving a standard quadratic program we find a
non-optimal solution in one iteration, which satisfy all the
constrains but not necessary the best one.
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qmin
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Optimal limiter
• The idea here is the following: We need to find a grid

field(q-i) which is closest to the unlimited solution (q)
(in terms of weighted sum), but satisfies the min/max
constraints. So, first we find values which do not
satisfy constraints and bring these values to a closest
constraint. This way we introduce some mass change

min — c02
&ER/ ./1

and qmin qmax

Modification: 0=qmin

  wiPiqi —

• so, we redistribute this mass change in the way that 12
error is smallest. This redistribution might violate
constraints thus, we do a few iterations.

t arget
element
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Figure: Stencil for defining
constraints amin, an.
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Limiter8 original (indirect addressing)
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

..code ommited

integer, parameter :: maxiter = 5

do k = 1 , nlev
weights(:,k) = sphweights(:) * dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)

enddo

do k = 1 , nlev
c = weights(:,k)
x = ptens(:,kfl
mass = sum(c*x)
if( (mass / sum(c)) < minp(k) ) then

minp(k) = mass / sum(c)
endif
if( (mass / sum(c)) > maxp(k) ) then

maxp(k) = mass / sum(c)
endif

addmass = 0.0d0
pos_counter = 0;
neg_counter = 0;

do k1 = 1 , np*np
if ( ( x(kl) >= maxp(k) ) ) then
addmass = addmass + ( x(kl) - maxp(k) ) * c(kl)
x(k1) = maxp(k)
whois_pos(kl) = -1

else
pos_counter = pos_counter+1;
whois_pos(pos_counter) = k1;

endif
if ( ( x(kl) <= minp(k) ) ) then
addmass = addmass - ( minp(k) - x(kl) ) * c(kl)
x(k1) = minp(k)
whois_neg(kl) = -1

else
neg_counter = neg_counter+1;
whois_neg(neg_counter) = kl;

endif
enddo

weightssum = 0.0d0
if ( addmass > 0 ) then

do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , pos_counter
il = whois_pos(kl)
weightssum = weightssum + c(il)
al_pos(il) = maxp(k) - x(il)

enddo

if( ( pos_counter > 0 ) .anc ( addmass > tol_limiter * abs(mass) ) ) then
do kl = 1 , pos_counter
il = whois_pos(kl)
howmuch = addmass / weightssum
if ( howmuch > al_pos(il) ) then

howmuch = al_pos(i1)
whois_pos(kl) = -1

endif

addmass = addmass - howmuch * c(il)
weightssum = weightssum - c(il)
x(il) = x(il) + howmuch

enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do kl = 1 , neg_counter

if ( whois_neg(kl) .ne. -1 ) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)

endif
enddo

else
exit

endif
enddo

else
do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , neg_counter
ii = whois_neg(kl)
weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)

enddo
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if ( ( neg_counter > 0 ) .and. ( (-addmass) > tol_limiter * abs(mass) ) ) then
do kl = 1 , neg_counter
il = whois_neg(kl)
howmuch = -addmass / weightssum
if ( howmuch > al_neg(i1) ) then

howmuch = al_neg(il)
whois_neg(kl) = -1

endif
addmass = addmass + howmuch * c(il)
weightssum = weightssum - c(i1)
x(il) = x(il) - howmuch

enddo
!now sort whois_pos and get a new number for pos_counter
!here pos_counter and whois_pos serve as temp vars
pos_counter = neg_counter
whois_pos = whois_neg
whois_neg = -1
neg_counter = 0
do kl = 1 , pos_counter

if ( whois_pos(kl) .ne. -1 ) then
neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos(kl)

endif
enddo

else
exit

endif
enddo

endif

ptens(:,k) = x
enddo

do k = 1 , nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo
end subroutine limiter ootim iter full



Limiter8 original (indirect addressing)
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

..code ommited

integer, parameter :: maxiter = 5

do k = 1 , nlev
weights(:,k) = sphweights(:) * dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)

enddo

do k = 1 , nlev
c = weights(:,k)
x = ptens(:,kfl
mass = sum(c*x)
if( (mass / sum(c)) < minp(k) ) then

minp(k) = mass / sum(c)
endif
if( (mass / sum(c)) > maxp(k)

maxp(k) = mass / sum(c)
endif

addmass = 0.0d0
pos_counter = 0;
neg_c - ,

) then

First, we find values which do not satisfy
Constraints (overshoots and undershoots )
nd store their ID in whois_pos/neg arrays

do k1 = 1 , np*np
if ( ( x(kl) >= maxp(k) ) ) then
addmass = addmass + ( x(kl) - maxp(k) ) * c(kl)
x(k1) = maxp(k)
whois_pos(kl) = -1

else
pos_counter = pos_counter+1;
whois_pos(pos_counter) = k1;

endif
if ( ( x(kl) <= minp(k) ) ) then
addmass = addmass - ( minp(k) - x(kl) ) * c(kl)
x(k1) = minp(k)
whois_neg(kl) = -1

else
neg_counter = neg_counter+1;
whois_neg(neg_counter) = kl;

endif
eaddo

weightssum = .
if ( addmass > 0 ) then

do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , pos_counter
il = whois_pos(kl)
weightssum = weightssum + c(il)
al_pos(il) = maxp(k) - x(il)

enddo

if( ( pos_counter > 0 ) .anc ( addmass > tol_limiter * abs(mass) ) ) then
do kl = 1 , pos_counter
il = whois_pos(kl)
howmuch = addmass / weightssum
if ( howmuch > al_pos(il) ) then

howmuch = al_pos(i1)
whois_pos(kl) = -1

endif

addmass = addmass - howmuch * c(il)
weightssum = weightssum - c(il)
x(il) = x(il) + howmuch

enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do kl = 1 , neg_counter

if ( whois_neg(kl) .ne. -1 ) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)

endif
enddo

else
exit

endif
enddo

else
do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , neg_counter
ii = whois_neg(kl)
weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)

enddo
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if ( ( neg_counter > 0 ) .and. ( (-addmass) > tol_limiter * abs(mass) ) ) then
do kl = 1 , neg_counter
il = whois_neg(kl)
howmuch = -addmass / weightssum
if ( howmuch > al_neg(i1) ) then

howmuch = al_neg(il)
whois_neg(kl) = -1

endif
addmass = addmass + howmuch * c(il)
weightssum = weightssum - c(i1)
x(il) = x(il) - howmuch

enddo
!now sort whois_pos and get a new number for pos_counter
!here pos_counter and whois_pos serve as temp vars
pos_counter = neg_counter
whois_pos = whois_neg
whois_neg = -1
neg_counter = 0
do kl = 1 , pos_counter

if ( whois_pos(kl) .ne. -1 ) then
neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos(kl)

endif
enddo

else
exit

endif
enddo

endif

ptens(:,k) = x
enddo

do k = 1 , nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo
end subroutine limiter ootim iter full



Limiter8 original (indirect addressing)
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass) addmass = addmass — howmuch * c(il)

weightssum = weightssum — c(il)
..code ommited x(il) = x(il) + howmuch

enddo
integer, parameter :: maxiter = 5 neg_counter = pos_counter

whois_neg = whois_pos
do k = 1 , nlev whois_pos = —1
weights(:,k) = sphweights(:) * dpmass(:,k) pos_counter = 0
ptens(:,k) = ptens(:,k) / dpmass(:,k) do kl = 1 , neg_counter

enddo if ( whois_neg(kl) .ne. —1 ) then
pos_counter = pos_counter+1

do k = 1 , nlev whois_pos(pos_counter) = whois_neg(kl)

c = weights(:,k) endif

x = ptens(:,kfl enddo
elsemass = sum(c*x)
exitif( (mass / sum(c)) < minp(k) ) then

endifminp(k) = mass / sum(c)
enddoendif

else
if( (mass / sum(c)) > maxp(k) ) then do i2 = 1 , maxItermaxp(k) = mass / sum(c) Then we caluilate bring these valLies

weightssum = 0.0d0
if ( addmass > 0 ) then

do i2 = 1 , maxIter
weightssum = 0.0
do kl = 1 , pos_counter
il = whois_pos(kl)
weightssum = weightssum + c(il)
al_pos(i1) = maxp(k) — x(il)

enddo

kl = 1 , pos_counter
= whois_pos(kl) 

howmuch = a mass f weig tssum
if ( howmuch > al_pos(il) ) then

howmuch = al_pos(i1)
whois_pos(kl) = —1

endif

endif weightssum = 0.0
do kl = 1 , neg_counter

addmass = 0.0d0 to a closest constraint. In purpose to reduce il = whois_neg(kl)
weightssum = weightssum + c(il)

pos_counter = 0; Computations we do this only for the al_neg(il) = x(il) — minp(k)
neg_counter = 0; enddo

do kl = 1 , np*np values from whois __ pos/neg if ( ( ne counter >  0 ) .and. ( (—addmass) > tol_limiter * abs(mass) ) ) then
if ( ( x(kl) >= maxp(k) ) ) then o c = , neg_cou
addmass = addmass + ( x(kl) — maxp(k) ) * c(kl) il = whois_neg(k1)
x(k1) = maxp(k) howmuch = —addmas • tssum
whois_pos(kl) = —1 if howmuch > al_neg(il) ) then

else howmuch = al_neg(il)
pos_counter = pos_counter+1; whois_neg(kl) = —1
whois_pos(pos_counter) = k1; endif

endif addmass = addmass + howmuch * c(il)
if ( ( x(kl) <= minp(k) ) ) then weightssum = weightssum — c(i1)
addmass = addmass — ( minp(k) — x(kl) ) * c(kl) x(il) = x(i1) — howmuch
x(k1) = minp(k) enddo
whois_neg(kl) = —1 !now sort whois_pos and get a new number for pos_counter

else !here pos_counter and whois_pos serve as temp vars
neg_counter = neg_counter+1; pos_counter = neg_counter
whois_neg(neg_counter) = kl; whois_pos = whois_neg

endif whois_neg = —1
enddo neg_counter = 0

do kl = 1 , pos_counter
if ( whois_pos(kl) .ne. —1 ) then

neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos(k1)
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ass > tol_limiter * abs(mass) ) ) then

endif
enddo

else
exit

endif
enddo

endif

ptens(:,k) = x
enddo

do k = 1 , nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo
end subroutine limiter ootim iter full



Limiter8 original (indirect addressing)
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

..code ommited

integer, parameter :: maxiter = 5

do k = 1 , nlev
weights(:,k) = sphweights(:) * dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)

enddo

do k = 1 , nlev
c = weights(:,k)
x = ptens0,101
mass = sum(c*x)
if( (mass / sum(c)) < minp(k) ) then

minp(k) = mass / sum(c)
endif
if( (mass / sum(c)) > maxp(k) ) then This way we introduce some

maxp(k) = mass / sum(c)
endif mass change (addmass), so, we
addmass = 0.0d0 redistribute addmass in the way
pos_counter = 0;
neg_counter = 0; that 12 error is smallest.

addmass = addmass - howmuch c(il
ssum = weightssum -

x(il) = x il) + howmuc
enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do kl = 1 , neg_counter

if ( whois_neg(k1) .ne. -1 ) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)

endif
enddo

else
exit

endif
enddo

else
do i2 = 1 , maxIter
weightssum = 0.0
do k1 = 1 , neg_counter
ii = whois_neg(k1)
weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)

enddo
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do k1 = 1 , np*np if ( ( neg_counter > 0 ) .and. ( (-addmass) > tol_limiter * abs(mass) ) ) then
if ( ( x(k1) >= maxp(k) ) ) then do kl = 1 , neg_counter
addmass = addmass + ( x(k1) - maxp(k) ) * c(k1) il = whois_neg(k1)
x(k1) = maxp(k) howmuch = -addmass / weightssum
whois_pos(k1) = -1 if ( howmuch > al_neg(i1) ) then

else howmuch = al_neg(il)
pos_counter = pos_counter+1; whois_neg(k1) = -1
whois_pos(pos_counter) = k1; e

endif
if ( ( x(k1) <= minp(k) ) ) then
addmass = addmass - ( minp(k) - x(k1) ) * c(k1)
x(k1) = minp(k) enddo
whois_neg(k1) = -1 !now sort whois_pos and get a new number for pos_counter

else !here pos_counter and whois_pos serve as temp vars
neg_counter = neg_counter+1; pos_counter = neg_counter
whois_neg(neg_counter) = kl; whois_pos = whois_neg

endif whois_neg = -1
enddo neg_counter = 0

do kl = 1 , pos_counter
weightssum = 0.0d0 if ( whois_pos(k1) .ne. -1 ) then
if ( addmass > 0 ) then neg_counter = neg_counter+1

do i2 = 1 , maxIter whois_neg(neg_counter) = whois_pos(k1)
weightssum = 0.0 endif
do kl = 1 , pos_counter enddo
il = whois_pos(k1) else
weightssum = weightssum + c(il) exit
al_pos(il) = maxp(k) - x(il) endif

enddo enddo
endif

addmass = addmass + howmuch * c
weightssum = weightssum - c(i1)
(i1) = x(il) - howmuch

if( ( pos_counter > 0 ) .anc ( addmass > tol_limiter * abs(mass) ) ) then
do kl = 1 , pos_counter
il = whois_pos(k1)
howmuch = addmass / weightssum
if ( howmuch > al_pos(il) ) then

howmuch = al_pos(i1)
whois_pos(k1) = -1

endif

ptens(:,k) = x
enddo

do k = 1 , nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo
end subroutine limiter ootim iter full



Limiter8 new algorithm
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

integer, parameter :: maxiter = np*np-2

do k = 1 , nlev
c = sphweights(:) * dpmass(:,k)
x = ptens(:,k)/dpmass(:,k)

mass = sum(c*x)
sumc= sum(c)
if (sumc <= 0 ) CYCLE ! this should never happen, but if it does,

! relax constraints to ensure limiter has a solution:
! This is only needed if runnign with the SSP CFL>1 or
! due to roundoff errors
if( mass < minp(k)*sumc ) then

minp(k) = mass / sumc
endif
if( mass > maxp(k)*sumc ) then

maxp(k) = mass / sumc
endif

do iter=1,maxiter

addmass=0.0d0

do kl=1,np*np
if((x(k1)>maxp(k))) then
addmass=addmass+(x(k1)—maxp(k))*c(k1)
x(k1)=maxp(k)

endif
if((x(k1)<minp(k))) then
addmass=addmass—(minp(k)—x(k1))*c(k1)
x(k1)=minp(k)

endif
enddo !k1

if(abs(addmass)<=tol_limiter*abs(mass)) exit

weightssum=0.0d0
if(addmass>0)then
do kl=1,np*np

if(x(kl)<maxp(k))then
weightssum=weightssum+c(k1)

endif
enddo !k1
do kl=1,np*np

if(x(kl)<maxp(k))then
x(k1)=x(k1)+addmass/weightssum

endif
doi enddo

else
do kl=1,np*np

if(x(k1)>minp(k))then
weightssum=weightssum+c(k1)

endif
enddo
do kl=1,np*np

if(x(k1)>minp(k))then
x(k1)=x(k1)+addmass/weightssum

endif
enddo

endif

enddo!end of iteration

ptens(:,k)=x(:)
k1=k1+1

enddo

do k=1,nlev
ptens(:,k)=ptens(:,k)*dpmass(:,k)

enddo

end subroutine limiter_optim_iter_full
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Limiter8 new algorithm
subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

integer, parameter :: maxiter = np*np-2

do k = 1 , nlev
c = sphweights(:) * dpmass(:,k)
x = ptens(:,k)/dpmass(:,k)

mass = sum(c*x)
sumc= sum(c)
if (sumc <= 0 ) CYCLE ! this should never happen, but if it does,

! relax constraints to ensure limiter has a solution:
! This is only needed if runnign with the SSP CFL>1 or
! due to roundoff errors
if( mass < minp(k)*sumc ) then

minp(k) = mass / sumc
endif
if( mass > maxp(k)*sumc ) then

maxp(k) = mass / sumc
endif

do iter=1,maxiter

addmass=0.0d0

do kl=1,np*np
if((xtkl)  then
addmass=addmass+(x(k1)—maxp(k))*c(k1)
x(k1)=maxp(k)

endif
if((x(k1)<minp(k))) then
addmass=addmass—(minp(k)—x(k1))*c(k1)
x(k1)=minp(k)

endif
enddo !k1

weightssum=0.0d0
if(addmass>0)then
do kl=1,np*np

if(x(kl)<maxp(k))then
weightssum=weightssum+c(k1)

endif
enddo !k1
do kl=1,np*np

if(x(k1)<maxp(k))then
x(k1)=x(k1)+addmass/weightssum

endif
doi enddo

No indirect address:
more computations, but
less memory access

iflabs(addmass)<=tol_limiter*abs(mass)) exit

e
do kl=1,np*np

if x >minp(k) then
weightssum=weightssum+c(k1)

endif
enddo
do kl=1,np*np

if(x(k1)>minp(k))then
x(k1)=x(k1)+addmass/weightssum

endif
enddo

endif

enddo!end of iteration

ptens(:,k)=x(:)
k1=k1+1

enddo

do k=1,nlev
ptens(:,k)=ptens(:,k)*dpmass(:,k)

enddo

end subroutine limiter_optim_iter_full
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Limiter 8 optimization
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if ( limiter_option == 8 ) then
do k = 1 , nlev ! Loop index added (AAM)

! UN-DSS'ed dp at timelevel n0+1:
dp_star(:,:,k) = dp(:,:,k) - dt elem(ie)%derived%divdp(:,:,k)
if ( nu_p > 0 .and. rhs_viss /= 0 ) then
! add contribution from UN-DSS'ed PS dissipation
dpdiss(:,:) = ( hvcoord96hybi(k+1) - hvcoord96hybi(k) ) * elem(ie)%deriveftsdiss_biharmonic(:,:)

dpdiss(:,:) = elem(ie)%derived%dpdiss_biharmonic(:,:,k)
dp_star(:,:,k) = dp_star(:,:,k) - rhs_viss dt nu_q * dpdiss(:,:) / elem(ie)%spheremp(:,:)

endif
enddo
! apply limiter to Q = Qtens / dp_star
call limiter_optim_iter_full( Qtens(:,:,:) , elem(ie)%spheremp(:,:) , qmin(:,q,ie) , &

qmax(:,q,ie) , dp_star(:,:,:) )
endif

subroutine limiter_optim_iter_full(ptens,sphweightsminp,maxp,dpmass)

integer, parameter :: maxiter = np*np-2

do k = 1 , nlev
c = sphweights(:) * dpmass(:,k)

18



Limiter8 new algorithm optimized
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if ( limiter_option == 8 ) then
do k = 1 , nlev ! Loop index added (AAM)

! UN—DSS'ed dp at timelevel n0+1:
dp_star(:,:,k) = dp(:,:,k) — dt * elem(ie)%derived%divdp(:,:,k)
if ( nu_p > 0 .and. rhs_viss /= 0 ) then

! add contribution from UN—DSS'ed PS dissipation
dpdiss(:,:) = ( hvcoord%hybi(k+1) — hvcoord%hybi(k) ) * elem(ie)%derived%psdiss_biharmonic(:,:)

dpdiss(:,:) = elem(ie)%derived%dpdiss_biharmonic(:,:,k)
dp_star(: : k = d• star : : k) — rhs_viss * dt * nu_q * dpdiss(:,:) / elem(ie)%spheremp(:,:)

stari(:,:,k) = 1.0/dp_star(:,
endif

enddo
! apply limiter to Q = Qtens / dp_star
call limiter_optim_iter_full( Qtens(:,:,:) , elem(ie)%spheremp(:,:) , qmin(:,q,ie) , &

qmax(:,q,ie) ,
endif

subroutine limiter_optim_iter_full(ptens,sphweightsminp,maxp,dpmass, dpmassi)

integer, parameter :: maxiter = np*np-2

do k = 1 , nlev
c = sphwei•hts(:) * dpmass(:,k)
= ptens(:,k)*dpmassi(:,
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Performance evaluation results
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Conclusion
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■ Limiter 8 has been ported to GPU with CUDA and OpenACC ->
tracer advections can be 100% computed on the GPUs

■ Code optimizations are necessary

■ OpenACC gives reasonable performance

■ CUDA is still faster than OpenACC
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