SAND2015- 7848C

Sandia
Exceptional service in the national interest

National
Laboratories

B
pa%es
ST,

AR

- | -
%
o0

-
'
CLLE LSS

\\

‘t““““‘

TEEL A

AW
N
\\

WY
W
‘}&\

)

GPU implementations of the CAM-SE advection limiter

.S. DEPARTMENT OF

Irina Demeshko, Mark A. Taylor, Matthew R. Norman
2015 Heterogeneous Multi-Core 4 Workshop, 09/17/2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline h) e,

" |ntroduction

= HOMME on GPU

= Advection limiters

= Limiter 8 algorithms

= Performance evaluation results

= Conclusion

CESM) e,

Includes the Atmosphere,
Incoming Solar Land, Oceans, ice, and Biosphere
Energy Outgoing Heat
Energy
Transition from
Solid to Vapor
Evaporative
and Heat Energy
Stratus Clouds Aerosols Exchanges cé‘m"'"' Cirrus Clouds Atmospheric

CESM is an IPCC-class model
developed by NCAR, National Labs
and Universities

>

®’e®

- ®

‘‘‘‘‘‘
- -

Atmosphere, Land, Ocean
and Sea ice component models

-
O" -
-
.
-
.

CAM is the atmosphere component
model for the CESM

Mark A. Taylor, DCMIP Summer School, July 30-Aug 10,Boulder 3

Sandia
m National
Laboratories

= Dynamical core for atmosphere

= Performance scalable

= Support quasi-uniform and | e

— changes

Va riable resolution grids on Vadlamani, S. ,Xscale Conf., Boulder, CO, Aug. 15&16,2013
parallel computers

CESM 0.257/0.1°

= Three options:
Spectral Element (SE) and DG are
available, CSLAM coming soon

200}

100

Seconds per simulated day

50F;

= CAM-SE option: advection bl
operator requires limiter e

NCORES

*Mark A. Taylor, DCMIP Summer School, July 30-Aug 10,Boulder 4

CAM-SE cost estimate h) e,

Proposed DOE configuration
(in few years)

CESM ATM cost (estimated)

(today’s configuration)

ATM cost u Coupler/ W Coupler/

Other Other

“ Physics/ u Physics/
Chem Chem

[| i .
S ® Dynamics

B Tracer
Advection ® Tracer

Advection

Advection limiters™

Why we need limiter:

n/2

o

-mn/2

0 /2 ™ 3m/2 2m 0 /2 L 3m/2 2m
M BEEEN ms BEEEN
0 0.102030405060.70809 1 1.1 0 0.10203040506070809 1 1.1
(a) Initial time (b) Final time, no limiter

0 n/2 L 3n/2 2n 0 n/R T 3m/2 2n

ns NEEEN

0 0.1020.30405060.70809 1 1.1 0 0.102030405060.70809 1 1.1
(c) Final time, limiter with 1 (d) Final time, limiter with 2
constraint constraints

Figure: 1.5° resolution, cosine bells, 7 GLL points

Sandia
National
Laboratories

*0.Guba, M. Taylor, A. St.-Cyr. Local Extrema Diminishing Advection for High-Order Finite Element Methods, Transport Workshop, NCAR , 2011

6

Advection limiters

Why we need limiter (cont.):

0 /2 w 3n/2 2m [/2 ® 3n/2 2n
[NEEEN (BEEEN
0 0.10203040506070.809 1 1.1 0 0.10203040506070809 1 1.1
(a) Initial time (b) Final time, no limiter

PP OO

0 /R ® 3n/2 2m 0o n/2 w 3n/2 2m
N SEEEN ms SEEEN
0 0.1020.30405060.70.809 1 1.1 0 0.10203040506070809 1 1.1
(c) Final time, limiter with 1 (d) Final time, limiter with 2
constraint constraints

Figure: 1.5° resolution, slotted cylinders, 7 GLL points

Sandia
National
Laboratories

Sandia
m National
Laboratories

Advection limiters™

= CAM_SE: 3 optimization-based limiters for h-p spectral
element method:

= Optimal (limiter_optim_iter_full): the most expensive one

= Min/max limiter (limiter2d_minmax)

= Sign-preserving limiter (limiter2d_zero): the easiest one

Sandia
ﬂ] National
Laboratories

Sign-preserving limiter

is identical to min/max limiter, but

0 <q,

WM

Sandia
National

Min/max limiter) .

= |nstead of solving a standard quadratic program we find a
non-optimal solution in one iteration, which satisfy all the
constrains but not necessary the best one.

qmax

AW

WMV

qmin

10

Optimal limiter

= The idea here is the following: We need to find a grid
field(g™;) which is closest to the unlimited solution (q;)
(in terms of weighted sum), but satisfies the min/max

Sandia
National
Laboratories

constraints. So, first we find values which do not
satisfy constraints and bring these values to a closest

constraint. This way we introduce some mass change —_—
arget

element

/ / /
min Y " wipi(di — @)%, Y wipiqi = Y _ wipidi,
=1 =1 i=1

GeR! ‘=

and qmin -3 qNIS qmax

Figure: Stencil for defining

Modification: 0=q,,,, <q"; CONSHFAINtS Gy, Grrae

= 50, we redistribute this mass change in the way that /2
error is smallest. This redistribution might violate
constraints thus, we do a few iterations.

11

Limiter8 original (indirect addressing |

subroutine limiter_optim_iter_full(ptens, sphweights,minp,maxp,dpmass)

..code ommited
integer, parameter :: maxiter = 5

do k =1, nlev
weights(:,k) = sphweights(:) x dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)
enddo

do k=1, nlev

¢ = weights(:,k)

x = ptens(:,k)|

mass = sum(cx)

if((mass / sum(c)) < minp(k)) then
minp(k) = mass / sum(c)

endif

if((mass / sum(c)) > maxp(k)) then
maxp(k) = mass / sum(c)

endif

addmass = 0.0d
pos_counter = 0;
neg_counter = 0;
do k1 = 1, npxnp
if ((x(k1l) >= maxp(k))) then
addmass = addmass + (x(k1) — maxp(k)) % c(kl)
x(k1) = maxp(k)
whois_pos(kl) = -1
else
pos_counter = pos_counter+1;
whois_pos(pos_counter) = k1;
endif
if ((x(k1l) <= minp(k))) then
addmass = addmass - (minp(k) - x(k1)) * c(k1)
x(k1) = minp(k)
whois_neg(kl) = -1
else
neg_counter = neg_counter+1;
whois_neg(neg_counter) = ki1;
endif
enddo

weightssum = 0.0d0
if (addmass > @) then
do i2 = 1 , maxIter

Laboratories

addmass = addmass - howmuch * c(il)
weightssum = weightssum - c(il)
x(i1) = x(i1) + howmuch
enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do k1 = 1 , neg_counter
if (whois_neg(kl) .ne. -1) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)
endif
enddo
else
exit
endif
enddo
else
do i2 = 1 , maxIter
weightssum = 0.0
do k1 = 1 , neg_counter
i1 = whois_neg(k1)

weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)
enddo

if ((neg_counter > @) .and. ((-addmass) > tol_limiter * abs(mass))) then
do k1 = 1 , neg_counter
il = whois_neg(k1)
howmuch = —addmass / weightssum
if (howmuch > al_neg(il)) then
howmuch = al_neg(il)
whois_neg(kl) = -1
endif
addmass = addmass + howmuch * c(il)
weightssum = weightssum - c(il)
x(i1) = x(i1) - howmuch
enddo
'now sort whois_pos and get a new number for pos_counter
'here pos_counter and whois_pos serve as temp vars
pos_counter = neg_counter
whois_pos = whois_neg
whois_neg = -1
neg_counter = 0
do k1 = 1 , pos_counter
if (whois_pos(kl) .ne. -1) then
neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos (k1)

weightssum = 0.0 endif
do k1 = 1 , pos_counter enddo
il = whois_pos(k1) else
weightssum = weightssum + c(il) exit
al_pos(il) = maxp(k) - x(il) endif
enddo enddo
endif
if((pos_counter > @) .and. (addmass > tol_limiter % abs(mass))) then
do k1 = 1 , pos_counter ptens(:,k) = x
i1 = whois_pos (k1) enddo
howmuch = addmass / weightssum
if (howmuch > al_pos(il)) then do k =1, nlev

howmuch = al_pos(il) ptens(:,k) = ptens(:,k) * dpmass(:,k)
whois_pos(kl) = -1 enddo

= endif end subroutine limiter optim iter full

Limiter8 original (indirect addressing |

Laboratories

addmass = addmass - howmuch * c(il)
weightssum = weightssum - c(il)
..code ommited x(il) = x(i1) + howmuch

enddo

subroutine limiter_optim_iter_full(ptens, sphweights,minp,maxp,dpmass)

integer, parameter :: maxiter = 5

do k =1, nlev
weights(:,k) = sphweights(:) x dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)
enddo

do k=1, nlev

neg_counter = pos_counter

whois_neg = whois_pos

whois_pos = -1

pos_counter = 0

do k1 = 1 , neg_counter

if (whois_neg(kl) .ne. -1) then

pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)

c = weights(:,k) endif

x = ptens(:,k)| enddo

mass = sum(c*x) else'

if((mass / sum(c)) < minp(k)) then exit
endif

minp(k) = mass / sum(c)
em(ﬁ{ (c)) (k)) else
if((mass / sum(c)) > maxp(k then ¥ i2i= 1 . HEHTEEF
omexplk) = mass / sum(c) Eirst we find values which do not satisfy weightssum = 0.0
. do k1 = 1 , neg_counter
Constraints (overshoots and undershoots) il = whois_neg (K1)
weightssum = weightssum + c(il)

and store their ID in whois_pos/neg arrays alneg(il) = x(i1) - minp(k)

enddo

addmass = 0.0d
pos_counter =

sdes

neg_counte

do k1 = 1, npxnp
if ((x(k1l) >= maxp(k))) then
addmass = addmass + (x(k1) — maxp(k)) % c(kl)
x(k1) = maxp(k)
whois_pos(kl) = -1
else
pos_counter = pos_counter+1;
whois_pos(pos_counter) = k1;
endif
if ((x(k1l) <= minp(k))) then
addmass = addmass - (minp(k) - x(k1)) * c(k1)
x(k1) = minp(k)
whois_neg(kl) = -1
else
neg_counter = neg_counter+1;
whois_neg(neg_counter) = ki1;

od

weightssum = d
if (addmass > @) then
do i2 = 1 , maxIter

enddo

if ((neg_counter > @) .and. ((-addmass) > tol_limiter * abs(mass))) then
do k1 = 1 , neg_counter
il = whois_neg(k1)
howmuch = —addmass / weightssum
if (howmuch > al_neg(il)) then
howmuch = al_neg(il)
whois_neg(kl) = -1
endif
addmass = addmass + howmuch * c(il)
weightssum = weightssum - c(il)
x(i1) = x(i1) - howmuch
enddo
'now sort whois_pos and get a new number for pos_counter
'here pos_counter and whois_pos serve as temp vars
pos_counter = neg_counter
whois_pos = whois_neg
whois_neg = -1
neg_counter = 0
do k1 = 1 , pos_counter
if (whois_pos(kl) .ne. -1) then
neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos (k1)

weightssum = 0.0 endif
do k1 = 1 , pos_counter enddo
il = whois_pos(k1) else
weightssum = weightssum + c(il) exit
al_pos(il) = maxp(k) - x(il) endif
enddo enddo
endif
if((pos_counter > @) .and. (addmass > tol_limiter % abs(mass))) then
do k1 = 1 , pos_counter ptens(:,k) = x
i1 = whois_pos (k1) enddo
howmuch = addmass / weightssum
if (howmuch > al_pos(il)) then do k =1, nlev
howmuch = al_pos(il) ptens(:,k) = ptens(:,k) * dpmass(:,k)
whois_pos(kl) = -1 enddo . . .
] endif %

Limiter8 original (indirect addressing |

subroutine limiter_optim_iter_full(ptens, sphweights,minp,maxp,dpmass)
..code ommited
integer, parameter :: maxiter = 5

do k =1, nlev
weights(:,k) = sphweights(:) x dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)
enddo

do k=1, nlev
¢ = weights(:,k)
x = ptens(:,k)|
mass = sum(ckx)
if((mass / sum(c)) < minp(k)) then
minp(k) = mass / sum(c)
endif
if((mass / sum(c)) > maxp(k)) then

emaxp(k) = mass / sun(c) Then we calculate bring these values
3 to a closest constraint. In purpose to reduce i1 = whois_neg(k1)
b4 Computations we do this only for the

pos_counter
neg_counter

054 % L . AOHD values from whois_pos/neg

if ((x(k1l) >= maxp(k))) then
addmass = addmass + (x(k1) — maxp(k)) % c(kl)
x(k1) = maxp(k)
whois_pos(kl) = -1

else
pos_counter = pos_counter+1;
whois_pos(pos_counter) = k1;

endif

if ((x(k1l) <= minp(k))) then
addmass = addmass - (minp(k) - x(k1)) * c(k1)
x(k1) = minp(k)
whois_neg(kl) = -1

else
neg_counter = neg_counter+1;
whois_neg(neg_counter) = ki1;

endif

enddo

addmass = 0.0d

weightssum = 0.0d0
if (addmass > @) then
do i2 = 1 , maxIter
weightssum = 0.0
do k1 = 1 , pos_counter
i1l = whois_pos(k1)
weightssum = weightssum + c(il)
al_pos(il) = maxp(k) - x(i1)
enddo

1 , pos_counter
= whois_pos(k1)

dama weig
if (howmuch > al_pos(il)) then
howmuch = al_pos(il)
whois_pos(kl) = -1
] endif

Laboratories

addmass = addmass - howmuch * c(il)
weightssum = weightssum - c(il)
x(i1) = x(i1) + howmuch
enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do k1 = 1 , neg_counter
if (whois_neg(kl) .ne. -1) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)
endif
enddo
else
exit
endif
enddo
else
do i2 = 1 , maxIter
weightssum = 0.0
do k1 = 1 , neg_counter

weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)
enddo
if ((neg_counter > @) .and. ((-addmass) > tol_limiter x abs(mass))) then

il = whois_neg(k1)
howmuch = —addmas eigfitssum
howmuch > al_neg(il)) then
howmuch = al_neg(il)
whois_neg(kl) = -1
endif
addmass = addmass + howmuch * c(il)
weightssum = weightssum - c(il)
x(i1) = x(i1) - howmuch
enddo
'now sort whois_pos and get a new number for pos_counter
'here pos_counter and whois_pos serve as temp vars
pos_counter = neg_counter
whois_pos = whois_neg
whois_neg = -1
neg_counter = 0
do k1 = 1 , pos_counter
if (whois_pos(kl) .ne. -1) then
neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos (k1)
endif
enddo
else
exit
endif
enddo
endif

ptens(:,k) = x
enddo

do k=1, nlev
ptens(:,k) = ptens(:,k) * dpmass(:,k)
enddo

end subroutine limiter oEtim iter full

Limiter8 original (indirect addressing |

subroutine limiter_optim_iter_full(ptens, sphweights,minp,maxp,dpmass)
..code ommited
integer, parameter :: maxiter = 5

do k =1, nlev
weights(:,k) = sphweights(:) x dpmass(:,k)
ptens(:,k) = ptens(:,k) / dpmass(:,k)
enddo

do k=1, nlev
¢ = weights(:,k)
x = ptens(:,k)|
mass = sum(ckx)
if((mass / sum(c)) < minp(k)) then
minp(k) = mass / sum(c)
endif

if((mass / sum(c)) > ma))(p(k)) then Thls Way we |ntroduce some

maxp(k) = mass / sum(c

endif mass change (addmass), so, we
redistribute addmass in the way

pos_counter

addmass = 0.0d
neg_counter =

; that 12 error is smallest.
do k1 = 1 , npxnp
if ((x(k1l) >= maxp(k))) then
addmass = addmass + (x(k1) — maxp(k)) % c(kl)
x(k1) = maxp(k)
whois_pos(kl) = -1
else
pos_counter = pos_counter+1;
whois_pos(pos_counter) = k1;
endif
if ((x(k1l) <= minp(k))) then
addmass = addmass - (minp(k) - x(k1)) * c(k1)
x(k1) = minp(k)
whois_neg(kl) = -1
else
neg_counter = neg_counter+1;
whois_neg(neg_counter) = ki1;
endif
enddo

weightssum = 0.0d0
if (addmass > @) then
do i2 = 1 , maxIter
weightssum = 0.0
do k1 = 1 , pos_counter
i1l = whois_pos(k1)
weightssum = weightssum + c(il)
al_pos(il) = maxp(k) - x(i1)
enddo

if((pos_counter > @) .and. (addmass > tol_limiter % abs(mass))) then

do k1 = 1 , pos_counter
il = whois_pos(k1)
howmuch = addmass / weightssum
if (howmuch > al_pos(il)) then
howmuch = al_pos(il)
whois_pos(kl) = -1
E— endif

Laboratories

addmass = addmass - howmuch * c(il
i ssum = weightssum - c(i
x(1L=
enddo
neg_counter = pos_counter
whois_neg = whois_pos
whois_pos = -1
pos_counter = 0
do k1 = 1 , neg_counter
if (whois_neg(kl) .ne. -1) then
pos_counter = pos_counter+1
whois_pos(pos_counter) = whois_neg(k1)
endif
enddo
else
exit
endif
enddo
else
do i2 = 1 , maxIter
weightssum = 0.0
do k1 = 1 , neg_counter
i1 = whois_neg(k1)

weightssum = weightssum + c(il)
al_neg(il) = x(il) - minp(k)
enddo

if ((neg_counter > @) .and. ((-addmass) > tol_limiter * abs(mass))) then
do k1 = 1 , neg_counter
il = whois_neg(k1)
howmuch = —addmass / weightssum
if (howmuch > al_neg(il)) then
howmuch = al_neg(il)
whois_neg(kl) = -1
end
addmass = addmass + howmuch * ¢
weightssum = weightssum - c(il)
x(i1) = x(i1) - howmuch
enddo
'now sort whois_pos and get a new number for pos_counter
'here pos_counter and whois_pos serve as temp vars
pos_counter = neg_counter
whois_pos = whois_neg
whois_neg = -1
neg_counter = 0
do k1 = 1 , pos_counter
if (whois_pos(kl) .ne. -1) then
neg_counter = neg_counter+1
whois_neg(neg_counter) = whois_pos (k1)
endif
enddo
else
exit
endif
enddo
endif

ptens(:,k) = x

enddo

do k=1, nlev

ptens(:,k) = ptens(:,k) * dpmass(:,k)

enddo

end subroutine limiter oEtim iter full

Limiter8 new algorithm

subroutine limiter_optim_iter_full(ptens, sphweights,minp,maxp,dpmass)

integer, parameter :: maxiter = np*np-2
do k =1, nlev

¢ = sphweights(:) * dpmass(:,k)
x = ptens(:,k)/dpmass(:,k)

mass = sum(cxx)

sumc= sum(c)

weightssum=0.0d0

if(addmass>0)then

do k1=1,np*np
if(x(k1l)<maxp(k))then

weightssum=weightssum+c (k1)

endif

enddo 'kl

do k1=1,np*np
if(x(kl)<maxp(k))then

x(k1)=x(k1l)+addmass/weightssum

endif

if (sumc <= @) CYCLE ! this should never happen, but if it does, doi enddo

! relax constraints to ensure limiter has
! This is only needed if runnign with the
! due to roundoff errors
if(mass < minp(k)xsumc) then
minp(k) = mass / sumc
endif
if(mass > maxp(k)xsumc) then
maxp(k) = mass / sumc
endif

do iter=1,maxiter
addmass=0.0d0

do k1=1,np*xnp
if((x(kl)>maxp(k))) then
addmass=addmass+(x(k1)-maxp(k))*c(kl)
x(k1)=maxp (k)
endif
if((x(k1l)<minp(k))) then
addmass=addmass-(minp(k)-x(k1))*c(k1)
x(k1)=minp(k)
endif
enddo 'kl

if(abs(addmass)<=tol_limiterxabs(mass)) exit

else
do k1=1,np*np
if(x(k1l)>minp(k))then
weightssum=weightssum+c (k1)
endif
enddo
do kl1=1,np*xnp
if(x(k1l)>minp(k))then
x(k1)=x(k1)+addmass/weightssum
endif
enddo
endif

a solution:
SSP CFL>1 or

enddo!end of iteration

ptens(:,k)=x(:)
kl=k1+1

enddo
do k=1,nlev

ptens(:,k)=ptens(:,k)xdpmass(:,k)
enddo

end subroutine limiter_optim_iter_full

Sandia
Nationa
Laboratories

16

Limiter8 new algorithm

subroutine limiter_optim_iter_full(ptens, sphweights,minp,maxp,dpmass)

integer, parameter :: maxiter = np*np-2

do k =1, nlev
¢ = sphweights(:) * dpmass(:,k)

x = ptens(:,k)/dpmass(:,k)

mass = sum(cxx)

sumc= sum(c)

if (sumc <= @) CYCLE ! this should never happen, but if it does, do

! relax constraints to ensure limiter has a solution:

! This is only needed if runnign with the SSP CFL>1 or

! due to roundoff errors

if(mass < minp(k)xsumc) then
minp(k) = mass / sumc

endif

if(mass > maxp(k)xsumc) then
maxp(k) = mass / sumc

endif

No indirect address:

do iter=1,maxiter

less memory access

addmass=0.0d0

do k1=1,np*np
~ : ==

0tk then

addmass=addmass+(x(k1)-maxp(k))*c(kl)
x(k1)=maxp (k)

endif

if((x(k1l)<minp(k))) then
addmass=addmass-(minp(k)-x(k1))*c(k1)
x(k1)=minp(k)

endif

enddo 'kl

if(abs(addmass)<=tol_limiterxabs(mass)) exit

more computations, but

weightssum=0.0d0

if(addmass>0)then

do k1=1,np*np
if(x(kl)<maxp(k))then

weightssum=weightssum+c (k1)

endif

enddo 'kl

do k1=1,np*np
if(x(kl)<maxp(k))then

x(k1)=x(k1l)+addmass/weightssum

endif

enddo

else
do kl1=1,np*np

TTUR Sminp then
weightssum=weightssum+c (k1)
endif
enddo
do kl1=1,np*xnp
if(x(k1l)>minp(k))then
x(k1)=x(k1)+addmass/weightssum
endif
enddo
endif

enddo!end of iteration

ptens(:,k)=x(:)
kl=k1+1

enddo

do k=1,nlev

ptens(:,k)=ptens(:,k)xdpmass(:,k)

enddo

end subroutine limiter_optim_iter_full

Sandia
Nationa
Laboratories

17

Sandia
m National
Laboratories

Limiter 8 optimization

if (limiter_option == 8) then
do k=1, nlev ! Loop index added (AAM)

! UN-DSS'ed dp at timelevel n@+1:

dp_star(:,:,k) = dp(:,:,k) - dt * elem(ie)%derived%sdivdp(:,:,k)

if (nu_p > @ .and. rhs_viss /= @) then
! add contribution from UN-DSS'ed PS dissipation
dpdiss(:,:) = (hvcoord%hybi(k+1l) - hvcoord%hybi(k)) * elem(ie)%derived%psdiss_biharmonic(:,:)
dpdiss(:,:) = elem(ie)%derived%sdpdiss_biharmonic(:,:, k)
dp_star(:,:,k) = dp_star(:,:,k) - rhs_viss * dt *x nu_q * dpdiss(:,:) / elem(ie)%spheremp(:,:)

endif

enddo

! apply limiter to Q = Qtens / dp_star

call limiter_optim_iter_full(Qtens(:,:,:) , elem(ie)%spheremp(:,:) , gmin(:,q,ie) , &
qmax(:,q,ie) , dp_star(:,:,:)

endif

subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass)

integer, parameter :: maxiter = npxnp-2

do k=1, nlev
¢ = sphweights(:) x dpmass(:,k)

<= ptens(:,k)/dpmass{T, ki~

18

Limiter8 new algorithm optimized ®==.

if (limiter_option == 8) then
do k =1, nlev ! Loop index added (AAM)

! UN-DSS'ed dp at timelevel n@+1:

dp_star(:,:,k) = dp(:,:,k) - dt % elem(ie)%derived%divdp(:,:, k)

if (nu_p > @ .and. rhs_viss /= @) then
! add contribution from UN-DSS'ed PS dissipation
dpdiss(:,:) = (hvcoord%hybi(k+1l) - hvcoord%hybi(k)) * elem(ie)%derived%psdiss_biharmonic(:,:)
dpdiss(:,:) = elem(ie)%sderived%dpdiss_biharmonic(:,:,k)

dp_star(:,:,k) = dp_star(:,:,k) - rhs_viss % dt x nu_q * dpdiss(:,:) / elem(ie)%spheremp(:,:)
<dp_stari(:,:,k) = 1.0/dp_star(:,:, Kl >
endif
enddo
! apply limiter to Q = Qtens / dp_star
call limiter_optim_iter_full(Qtens(:,:,:) , elem(ie)%spheremp(:,:) ,
gmax(:,q,ie) , dp_star(:,:,:)

gmin(:,q,ie) , &

endif

subroutine limiter_optim_iter_full(ptens,sphweights,minp,maxp,dpmass, dpmassi)

integer, parameter :: maxiter = npxnp-2

do k=1, nlev

¢ = sphweights(:) * dpmass(:,k)
<::X:§:§féﬁ§Tg,k)*dpmassiEEZEI:::>

19

National

Performance evaluation results) .

Weak scalability

3.5

time per kernel, ms
N w

=>=0OpenACC original

I
&)

<““=OpenACC new

M__A ==0penACC new

1.5 optimized

— <=CUDA new

National

Performance evaluation results) .

Strong scalability

11

7)

==QpenACC original
““=OpenACC new

penACC new optimize
==CUDA new

time per kernel, ms
(&)

Sandia
m National
Laboratories

Conclusion

= Limiter 8 has been ported to GPU with CUDA and OpenACC ->
tracer advections can be 100% computed on the GPUs

= Code optimizations are necessary

= OpenACC gives reasonable performance
= CUDA is still faster than OpenACC

