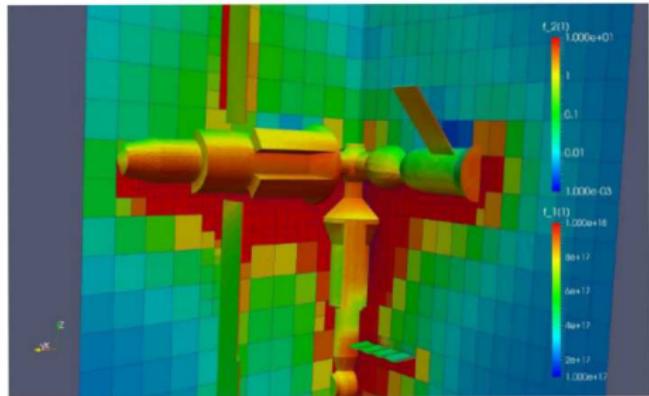
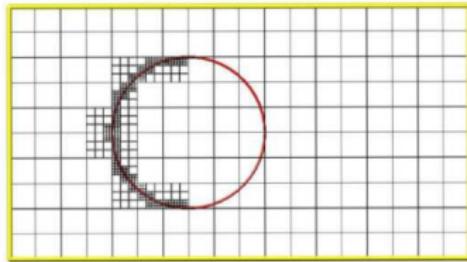


Adaptive Gridding in Parallel with the SPARTA DSMC Code

SAND2015-7763C

Steve Plimpton & Michael Gallis
Sandia National Labs
sjplimp@sandia.gov, magalli@sandia.gov

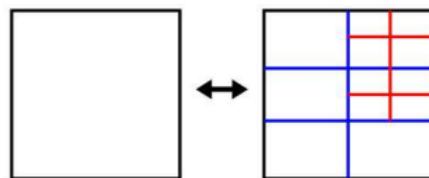
DSMC 2015 Conference
Sept 2015 - Kapaa, Hawaii

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SPARTA

- C++, open source (Jul 2014): <http://sparta.sandia.gov>
- Short course slides: **Tutorials link** on web page
- 2d/3d, **hierarchical Cartesian grid**
- Triangulated surfaces cut/split grid cells
- Runs on large-scale parallel machines

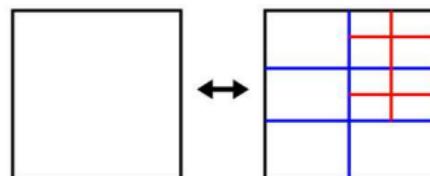


Motivation for adaptive gridding

- Ideal grid:
 - user chooses ρ and Fnum
 - every grid cell: ~ 10 particles and $\Delta x \simeq 2\lambda$
 - good trade-off between **accuracy** and **computational cost**
- Two flavors of adaptivity: **adapt_grid** and **fix adapt**
 - static = adapt between runs; equilibrate, adapt, steady-state
 - dynamic = adapt every N steps during a run
- Why **on-the-fly** adaptivity?
 - accurately track large density variations in flow
 - optimize grid structure or particle/cell counts more quickly
 - balance accuracy/CPU trade-off even for transient flows

Refinement and coarsening criteria

- **Hierarchical** grid
 - top-level is single grid cell = simulation box
 - each parent cell has variable N_x by N_y by N_z child cells
 - recurse as many levels as desired (64-bit cell IDs)
 - oct-tree is $2 \times 2 \times 2$ case, up to 15 levels
- Each child or parent cell considered **independently**



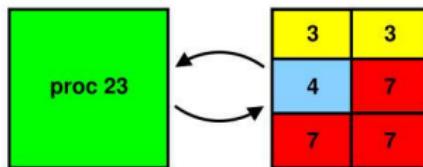
Refinement and coarsening criteria

- **Hierarchical** grid

- top-level is single grid cell = simulation box
- each parent cell has variable Nx by Ny by Nz child cells
- recurse as many levels as desired (64-bit cell IDs)
- oct-tree is 2x2x2 case, up to 15 levels

- Each child or parent cell considered **independently**

- **Allowed criteria**

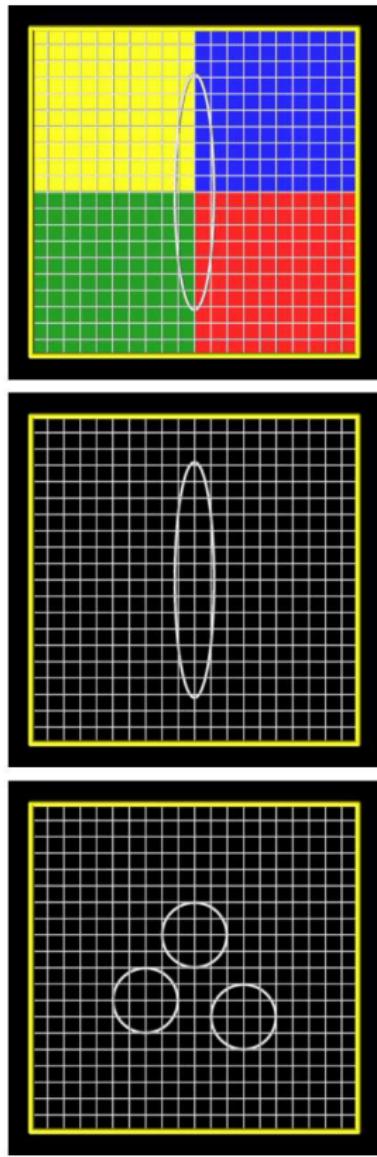

- any per-grid value, current or time-averaged
- geometric: nearness to downwind surface
- flow: number of particles in cell,
$$\text{mean-free-path} = \lambda = \{\sqrt{2\pi} D_{\text{ref}}^2 n (T_{\text{ref}}/T)^{\omega-1/2}\}^{-1}$$

Parallel issues

- **Refinement** is a **local** operation
 - proc that owns a child cell can decide to refine, create new cells
 - all procs can do this without communication
- **Coarsening** may **not be local** operation
 - if one proc owns all children, then local
 - if multiple procs own children, communication needed
- Use **rendezvous** algorithm for non-local coarsening
 - owner of each child may not know who owns other children
 - everyone knows rendezvous proc, send child info to it

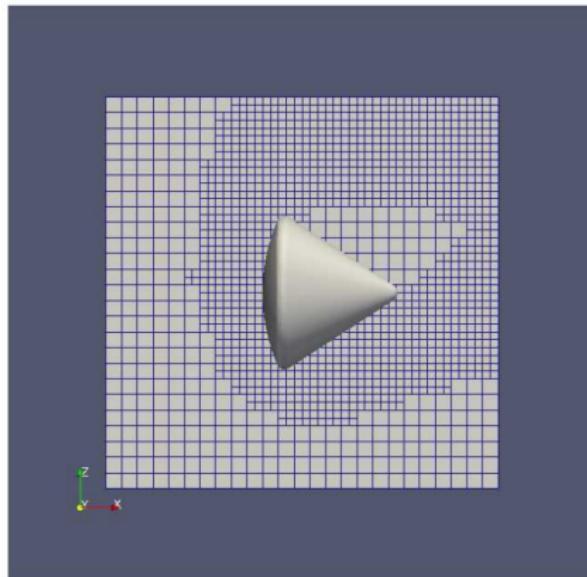
Parallel issues

- **Refinement** is a **local** operation
 - proc that owns a child cell can decide to refine, create new cells
 - all procs can do this without communication
- **Coarsening** may **not be local** operation
 - if one proc owns all children, then local
 - if multiple procs own children, communication needed
- Use **rendezvous** algorithm for non-local coarsening
 - owner of each child may not know who owns other children
 - everyone knows rendezvous proc, send child info to it


- **Rendezvous processor**
 - owner of parent cell, assigned in round-robin fashion
 - gathers info from all children, decide whether to coarsen
 - communicates result to all procs owning child cells

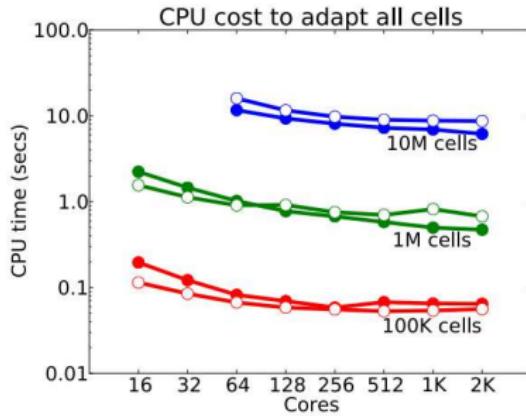
Post-adaptation operations

- **Cut/split** each new child cell with subset of surf elements
 - for refinement, only surfs in parent cell
 - for coarsening, union of child cell surfs
 - fast via Schwartzentuber (3d) and Weiler/Atherton (2d) algs, *Zhang & Schwartzentuber, Comp & Fluids, 2012*
- Re-build grid cell **data structures**
 - re-acquire ghost cells from neighboring processors
 - comm can cost more than adapt
- Reset grid-based **BC** and stats
 - emission of particles from box faces
 - time ave of grid cell quantities
- **Load re-balance** to re-assign grid cells to processors
 - optional (up to user)
 - more communication of grid cells and particles



Simple 2d examples

3d flow around Apollo capsule


- 74 million particles, initial coarse grid = $25^3 = 16K$ cells

- Final 5-level refined grid = 7.2 million child cells
- Uniform grid at fully refined scale = $800^3 = 512M$ cells

CPU cost to adapt

- Linux cluster, node = dual 8-core SB CPUs, Infiniband
- **Stress test**: run, refine all cells, run, coarsen all cells

- Only 3-4x speed-up on 2K cores, due to **communication**
- Timestep cost: ~ 20 steps on 16 to ~ 500 steps on 2K, timestep speed-up is **super-linear** to 2K cores
- **Bottom line**: only a few seconds to adapt large grids

Future work

- More general **refinement rules**:
 - combined criteria: λ with minimum particle count
 - refine multiple levels at once,
- *Gao, Zhang, Schwartzenruber, J Spacecraft & Rockets, 2011*
- **Time average grid stats** across refine/coarsen events
 - requires additional interpolation & summation
- **Distributed storage** of parent cells
 - currently each processor owns copy of all parents
 - fine for few levels, not scalable to many-level oct-tree
 - limits size of fully adapted grid

Thanks and links

- Funding support: DOE/NNSA ASC program
- Management support: **Dan Rader** in particular
- **<http://sparta.sandia.gov>**
- SPARTA short course:
<http://sparta.sandia.gov/tutorials.html>
- SPARTA **papers**:
 - Gallis, et al, *DSMC: The Quest for Speed*,
Proc of 29th RGD Symposium, 2014.
 - Gallis, et al, *DSMC of Richtmyer-Meshkov instability*,
Physics of Fluids, 27, 084105 (2015).