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Motivation

• Sandia has the responsibility
to design and qualify N W
system safety in abnormal
thermal environments
— This is a unique engineering

challenge

• Probabilistic assessments
require a high degree of
confidence in simulation
results

• We must model extremely
challenging environments
with many complicated,
interacting physical
phenomena
— Melting and decomposition are

two important examples

Thermal Pool Fire Test
at Sandia National Laboratories

Placing a package 40 inches above
a pool of burning fuel for 30 minutes
at 800 degrees Celsius or
(1475 degrees Fahrenheit).

Cerrolow-117 metal droplets on incline, C. Brooks (2012)
Sandia National laboratones

SAND2015-7376PE



sauolemqe1 leumieN elPueS 0

ug
qj uo 11 

ung

bj LK) 6=
e
n

u ut f= un.°3-
T = /

IAV(Ief x)n(IX — et. x)P(Vt = (Px)un
dN

uolle301103 lulod



til

u
• . S
tel t
Zotitt

v Al 

0; Novel Convolution-based Approach

• Compare math, meets Q2 milestone, prototype
results, 1D FD consistency, relationship between
filtered and un-filtered, stress points

w(y — x)Vu(y) • n dSy — vyw(y — x) • Vu(y) dy = w(y — x)f(y) dy

Au = f
N

tv(yi — xn)f(yn)AVn
n=1

Aii = Vyw(yi — xn) • Di,ynAVn

u(x) = n=1
Nrt

tv(yn — x)u(y,,)AVn —
n=1

Ou

Ou
tv(3rn — x)AVn(02,i — xi)

axi 
n=1

W(yn x)AVn(y(rii,i xj)(01,j xj) ()(a3)
ax,x3 

n=1 IE Sandia National Laboratones
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, 7. v. r.r Quadrature & Solution Error

• Holistic analysis, solution error terms and conditions

(y — x)g (y)dy = f w(y — x) (g(x) + gi(x)(y — x) + g" 2x() (y x)2 + 0((y — x)3)) dy

= g(x) f w(y x)dy + 9(x)f w(y x)(y x)dy + g" ( 
2
x) f w(y x)(y x)2 dy +

Q

V yw (y — x)u(y)dy = fc2 Vyw(y — x) (11(x) + ull (x)(y — x) + (y — x)2 + ((y — x)3)) dy

=u/(x) Lvyw(y_ x)dy + u"(x) fci Vyw(y — x)(y — x)dy + u (x) f V yw (y — x)(y — x)2 dy + . . .
2 Q

fQ V yw (y — x)dy = w(ymax — x) — — x) = 0

Lvyw(y_ x)(y — x)dy = f w(y — x)dy

fQ V yw (y — x)(y — x)2 dy = f w(y — x)(y — x)dy

0 Sandia National Laboratones
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Interfacial Melting Dynamics

Hot Iiquid

Progress variable
phase changes

LlOFiO

Particle Level-Set
interface tracking

• • Melting solid

Inverse filtering for
boundary treatment

• o •
• CD, •
• 00 •

Sandia National Laboratones
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Key Objectives

• Demonstrate a verifiable mesh-free method
— Quadrature error estimates

— Adaptive quadrature

— Verification demonstration

• Free surface effects
— Nearest neighbor identification

— Error estimates and adaptivity

— Oxidation model

• Solid/Fluid phase change
— Particle level-set method

— Mesh-free solid model

— Progress-variable melting model

— Interfacial kernel adaptivity

SPH Simulation of the
Rayleigh-Taylor Instability

Losasso et al. 2007

wmpacoreacs Sandia National Laboratones
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So What's New Here?

a) Geodesic Voronoi diagram (RKPM) b) Particle representation (SPH)

Flow Direction >

c) Mesh-based stencil (CFD) d) Proposed volume quadrature method

0 Sandia National Laboranxies



Verification & Validatio

• ••••••••

•e•%••••.•••••
•e•••••• •••. •

Increased quadrature
point density

Support of kernel function G

Original

->

Fictitious pressure from Prakash et al.

•
• •
•• • •

••••e•
it•

"Semi-Lagrangian"
Dilation parameter

refinement

P = Po P) — 1 YPo 1 = 1001/2 y = 7, not 1.4 for ideal gas law
Po Po

Our proposed consistent pressure

LP(z) ify(VG(z,y))77 (VG(y,x)) cly) dz = lzv(z) • VG(z,x) dz

cp Sandia National Laboratones



Computational Approaches

• Mesh-based
— Advantages

• Can design mesh to minimize discretization errors
• Clear theories regarding mesh convergence and

numerical errors

— Challenges
• Difficult to account for large topological changes

• Retaining high-quality elements as mesh deforms
• Multiphysics code coupling necessitates cross-

package interaction

• Mesh-free
— Advantages

• Capable of tracking large deformations

• Straightforward to model free-surface effects

— Challenges
Limited error analysis

Difficulty maintaining high-order quadrature through
flow

• Phase transitions relatively unexplored

Lpn
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CDFEM of Laser Weld, D. Noble

SPH of melting ice, Iwasaki et al., 2010

Sandia National laboratones
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Existing Mesh-Free Methods

Motivating problem: Al melt, relocation, & oxidation

Particle methods (SPH,
DPD, etc.) have had more
impact on fluids, but tend
to be less rigorous

Integral-based methods
(RKPM, PD, etc.) are
more rigorous, but have
been more successfully
used for solids

Particle
Penetration
using RKPM,
Chen (2013)

ILP

Cast house molten aluminum flow
and oxidation sing SPH,
Prakash et al. (2009)

Sandia National Laboratones
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Free Surface Effects

Adaptive RKPM for Extraction of the Cortical Surface,
Xu et al. 2006

Cortical surface

ict

Extracted gray-white
matter surface

Sandia National Laboratones
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Verification & Validatio
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Increased quadrature
point density

Support of kernel function G

Original

->

Fictitious pressure from Prakash et al.

•
• •
•• • •

••••e•
it•

"Semi-Lagrangian"
Dilation parameter

refinement

P = Po P) — 1 YPo 1 = 1001/2 y = 7, not 1.4 for ideal gas law
Po Po

Our proposed consistent pressure

LP(z) ify(VG(z,y))77 (VG(y,x)) cly) dz = lzv(z) • VG(z,x) dz

cp Sandia National Laboratones
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L\r<4, 0;/%4/: . .
A

Interfacial Melting Dynamics

Hot Iiquid

Progress variable
phase changes

LlOFiO

Particle Level-Set
interface tracking

• • Melting solid

Inverse filtering for
boundary treatment

• o •
• CD, •
• 00 •

Sandia National Laboratones
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Impact and Future

Welding/Manufacturing

NW safety
assessments

ict

Image # 83
27

30

Pressure [psi] 332

o Degree View

tube 1 35

tube 2 33

tube 3 28

95

190

273

342 392

794  816 805 794 816

Irnage # 83
• 27

30

Pressure [p
0 Degree Vi

tube 1 35

tube 2 33

Foam decomposition

Liquid fuel spray
break-up

•

a 

aft 

Splash modeling

•

Sandia National Laboratones
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Quadrature Error for Kernel Functions

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Cubic Spline Kernel Function

-2.0 -1.0 -0.5 0.0

X

0.5 1.0 1.5 2 0

• Most widely used
smoothing kernel function.

• Resembles a Gaussian
functions while having a
compact support

• Second derivative is a
piecewise linear, which
reduces stability properties

Sandia National Laboratones
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Convergence for 2nd Order PDE

100

10-1

10-2
O
L
L

10
0 _3
— 

1o 4

Cubic Spline

- - - 2nd Order Convergence

/

e
e

♦

10 2 10-1 10°

02u 105 2 15
LOROOP ax2 — 2 x 2 '

log(# of particles)

u(x = 0) = 3 / 8, 35 4 15 2 3

u(x = 1) = 17 / 2 u 8 4 X + 8 Sandia National Laboratones
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2nd Order PDE:
Solution RMS Error
IMMJ111=
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lo4

103

104

105

106

109

104°

1041

1042

lo43

lo44

lo45

• N, CorrFuncOde=2

• N, CorrFuncOde=3

• 2N, CorrFuncOde=2

• 2N, CorrFuncOde=3

•• 
•  •

•

•

•
•

Hat Box Cubic Spline Cosine Epanechnikov Quartic

Kernels
Triweight

ax2
= 2, u(x = 0) = 0, u(x = 1) = 1

•
O Sandia National Laboratones
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Parameters Effects on
PDE Solution RMS Error
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10-1

10-2

lo-3

10-4

10-5

106

lo-7

108

109

10-1°

Hi"

10-12

Hi"

10-14

10-15

O N, CorrFuncOde=2

• N, CorrFuncOde=3

IN 2N, CorrFuncOde=2

• 2N, CorrFuncOde=3

•• 
• •

• •

•

•
•
• •

Hat Box Cubic Spline Cosine Epanechnikov Quartic Triweight

Kernels

ax2
2, u(x = 0) = 0, u(x = 1) = 1

• Lost accuracy for Neumann Boundary Conditions
• Similar behavior for 1st order PDE
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10-4

10-5

106

10-7
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lo-9
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10-12

10-13

10-14

10-15

i

• N, CorrFuncOde=2

• N, CorrFuncOde=3

• 2N, CorrFuncOde=2

• 2N, CorrFuncOde=3

Hat Box Cubic Spline Cosine Epanechnikov Quartic Triweight

Kernels

32u
  = 2, u(x = 0) = 0, —

au
(x = 1) = 1

ax2 ax

(7+ Sandia National Laboratoties_



Adaptive Particle Motion

Fully Random

1.0

0.8

0.6

0.4

0.2

0.S

•
• 4,

• •

••

•

•

•

•

•• l'•

•

• • •

• it • .

• •• •

10 4
•

• I

• • • ••• •
• IN

0 • • • •
:
• 

00 • 
• 4

•
•

• •
• •

4

• • • • 0 • 00 •••

I .. . •
. di

•••••
•

•• r
•.. s o 

••

.••
•

0.2 0.4 0.6 0.8 1 0

1.0

0.8

0.6

0.4

0.2

0.Q
u 0 0.2

Poisson Solution

0.4 0.6 0.8 1 0

0.0009

0.0006

0.0003

0.0000

-0.0003

-0.0006

-0.0009

-0.0012

Fully Ordered

1.0

0.8

0.6

0.4

0 2

'8 0.2 0.4 0.6 0.8 1 0

1.0

0.8

0.6

0.4

0.2

Poisson Solution

0.8 
0 0.2 0.4 0.6 0.8 1 0

0.0008

0.0006

0.0004

0.0002

0.0000

-0.0002

-0.0004

-0.0006

-0.0008

ID Sandia National Laboratories



1.0

0.8

0.6

0.4

0.2

0.0
0 0

IA

••
• • • • • • • •

OD I

0 • 
• • 

• • • • •

•• • •• 60 • •• I

• a ••• 
• 

Ile
• • •

0 

•
• • • 6 I

• 00 •
•
• 

• • I
0 • •

0 • • • de • • Ill
• • •

•
•

••
• • •• •

• er .

r
• • s • • •

•

.
AL AL ALL AliMAILLA

0.2 0.4 0.6 0.8 1 0

1.0

0.8

0.6

0.4

0.2

0.0
0 0

•
•
•

•
• •• •• •• •• • •I 

• 

• I
• •• •• •• •• •• 

•
0 • I
• • • • • • • •

• • • • • • •
• 

•
•

0 
• • ••

• • •• • •
0 •
• •   

I
•

0 • I
•  •

0 • 
• • • • I

•
0

0.2 0.4 0.6 0.8 1 0

LDR

11111111110.

1111110111.

1.0

0.8

0.6

0.4

0.2

0.0
0 0

0 • • • • 
• • • I

• • • • • 

•

• • I
1
• 
• • • 

• 
• 

• • • I

0 • • • • . • • I• • 
• • • • • •

0 
• 

• •
* • •

•
0 

• • • • ••
0 •

• • •
0 • 

• • •

0 . • • 
• • •

• .' • •
• • • •

0 • • • • 
• * • •

AL

• • • •
• -

• 
•

•

• •
•

• • •
•

• • 
•

• •
. •

Au AL AL alk /1111. AL AL AL

0.2 0.4 0.6 0.8 1 0

1.0

0.8

0.6

0.4

0.2

0.0
0 0

0

1 OOOOO • •

I

••

0
• • • • • •

• • I
•

0 • I

0 •
•

I
•
•

• • • • • • • •

• • • • • •
• 

I

0 I
• •

0 • • • • • • • • • 4
•

I

AL AL AL AL AIL /111, 

0.2 0.4 0.6 0.8 1 0

0 Sandia Nati3nal Laboratories



. E N Molecular Dynamics Energy
Minimization
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Similar Behavior for Transient Systems

Heat Equation: Initial Configuration Heat Equation: Minimized Configuration
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frfl) Sandia National Laboranxies
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Particle level set method reduces the
numerical diffusion of the level set method

Level set method + particle correction

• PLS beats traditional level set method when tested on a
single vortex problem
• Limits numerical diffusion

• Resolves thin filaments on the mesh scale
oimpacoreacs Sandia National Laboratones
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Particle Level Set Method Comparison

• Particle Level Set (PLS) Method1
L• Corrected PLS2

• Interpolative PLS3 Most advanced in
literature
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4)original

(1)corrected
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JAPACICRILIF.

1 Enright, Fedkiw, Ferziger, Mitchell, "A hybrid particle level set method for improved interface capturing," J. Comp. Phys.
(2002).
2 Wang, Yang, Stern, "An improved particle correction procedure for the particle level set method," J. Comp. Phys. (2009).

rickson, Morris, Poliakoff, Templeton, "An interpolative particle level set method," in preparation.

FY Sandia National Laboratones
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Interpolation Method
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New Method
0.8

0.75

1 0.7
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Interpolation method outperforms other
methods for 2D circle test

Particle Level Set

0.45 0.5 0.55 0.6

Corrected Method
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New Metho
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d

Interpolation method outperforms other
methods for 2D circle test

Level Set

Interpolation Method

Particle Level Set

Correction Method

Most
advanced in
literature

a National Laboratones



Level set method + particle interpolation

• Comparing numerical diffusion between traditional level set
method and one using our particle interpolation procedure
• Numerical diffusion taken care of
• Errors away from boundary start developing

L Fib S. _1 wi N ,i1 k
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Oriented particle level set approach

• Alternatively, we could use an oriented particle approach1
• Particles lie exactly on interface
• Separate governing equations for normal vector and curvature
• No need for level set equation to evolve the interface

,...6..,11 lanniello, Mascio, "A self-adaptive particles Level-Set method for tracking interfaces," J. Comp. Phys., 2010.

ILDR 0 Sandia National Laboratones
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RKPM: Different Algorithms

• Point Collocation Method
ua(x, y) = 66(x, y,x — s, y — t)co(x — s, y — t)u(s, t)ds dt

• Fixed Point Reproducing Kernel Method
ua= (x , y,s,t)co(x.K — S, yK — t)u(s, t) ds dt

S-2

• Moving Reproducing Kernel Method
ua(x, y) = 66(x, y,s, t)co(x — s, y — t)u(s, t)ds dt

• Multiple Fixed Reproducing Kernel Method
(x, y) = 66(x, y, s, t)cos,t(s — x, t — y)u(s, t)ds dt

Correction Function: 66(x, y, s, t)
Kernel Function:

Unknown Function: u(s, t)
ILDR

6111MGOre
Sandia National Laboratones
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Implemented Kernel Functi

• Kernel Function Properties:

1.2

1.0

0.8

0.6

0.4

0.2

0.0

—2.0 —1.5 —1,0

Kernel Functions

—0.5 0.0

X

0.5 1.0

Box

Hat

Cubic Spline

Cosine

Epanechnikov

Quartic

Triweight

1,5 2 0

— Normalized over its support domain

— Compactly supported

Positive for any point within the
support domain

Kernel value for a particle
monotonically decreases with
increasing distance away from the
particle

— Satisfies the dirac delta function
condition as the smoothing length
approaches zero.

— Even and symmetric function

Smooth function

Sandia National laboratones



Convergence for 2nd Order PDE

10-1
AO— Hat

—M— Box

- Cubic Spline

Cosine

- - - 2nd Order Convergence

io-4
10-2

log(h)
10 1

02u 105 2 15 u(x = 0) = 3 /8,

, ax2 2 x. 2 u(x =1) =17/2
35 4 15 2 3

u=x — Tx —F--
8 Sandia National Laboratones



▪ E " to First order ODE displays/3
anomalous results
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• N, CorrFuncOde=1

• N, CorrFuncOde=2

• N, CorrFuncOde=3

• 2N, CorrFuncOde=1

• 2N, CorrFuncOde=2

• 2N, CorrFuncOde=3

Hat Box Cubic Spline Cosine Epanechnikov Quartic Triweight

Kernels

Ou
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LOR

2x, u(x = 0) = 0, u(x = 1) = 1

C] Sandia National Laboratories
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RKPM: Algorithms Properties

• Point Collocation Method

— Computationally intensive due to additional system solve for moment
matrix and its derivative

• Fixed Point Reproducing Kernel Method

— Reduced computation and algorithm complexity by fixing the kernel
evaluation

— Shape function derivatives are independent of the kernel function

— Requires dealing with multi-valued Shape functions

• Moving Reproducing Kernel Method

— Shape functions are not multi-valued

— Shape function derivatives are kernel function dependent

• Multiple Fixed Reproducing Kernel Method

— Shape functions are not multi-valued they can be computed uniquely

— Shape function derivatives are kernel function dependent

Different kernel functions can be used at each point.
Sandia National Laboratones
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• Solving the heat equation for a solidifying liquid

• The interface is defined at the melt temperature

Cold surface

Solving the Stefan problem for melting
solids

Hot surface

Hot surface

Hot surface

Sandia National Laboratoties


