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Placing a package 40 inches above
a pool of burning fuel for 30 minutes
at 800 degrees Celsius or

(1475 degrees Fahrenheit).

to design and qualify NW
system safety in abnormal
thermal environments

— This is a unique engineering

challenge

 Probabilistic assessments
require a high degree of
confidence in simulation
results

 We must model extremely
challenging environments
with many complicated,
interacting physical
phenomena

— Melting and decomposition are o :

two important examples s ===
.’"9‘ Cerrolow-117 metal droplets on incline, C. Brooks (2012)
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Novel Convolution-based Approach

« Compare math, meets Q2 milestone, prototype
results, 1D FD consistency, relationship between
filtered and un-filtered, stress points
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Quadrature & Solution Error

* Holistic analysis, solution error terms and conditions
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._ e Interfacial Melting Dynamics

Ehoy Particle Level-Set
interface tracking

, . -
Hot liquid @ ® @ (Veiting solid
©9:00

Progress variable Inverse filtering for
phase changes boundary treatment
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 Demonstrate a verifiable mesh-free method
— Quadrature error estimates
— Adaptive quadrature
— Verification demonstration

* Free surface effects
— Nearest neighbor identification
— Error estimates and adaptivity
— Oxidation model

« Solid/Fluid phase change

— Particle level-set method SPH Simulation of the
_ Rayleigh-Taylor Instability
— Mesh-free solid model B o elal 2007
— Progress-variable melting model
—#3_— Interfacial kernel adaptivity
LDRD () Sandia National Laboratories




a) Geodesic Voronoi diagram (RKPM) b) Particle representation (SPH)

Flow Direction a

¢) Mesh-based stencil (CFD) d) Proposed volume quadrature method
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“Semi-Lagrangian”

Increas:ed quad_rature Original Dilation parameter
point density refinement
Fictitious pressure from Prakash et al.
B o\’ ¥Po 2 _ :
P=Py|[— ) —1 — =100V y =1, not 1.4 for ideal gas law
L0 L0

Our proposed consistent pressure
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* Mesh-based
— Advantages

« Can design mesh to minimize discretization errors

» Clear theories regarding mesh convergence and
numerical errors

— Challenges
« Difficult to account for large topological changes

» Retaining high-quality elements as mesh deforms

» Multiphysics code coupling necessitates cross-
package interaction

 Mesh-free
— Advantages
» Capable of tracking large deformations
» Straightforward to model free-surface effects
— Challenges
» Limited error analysis
« Difficulty maintaining high-order quadrature through

CDFEM of Laser Weld, D. Noble

flow Ll
4. Pnhase transitions relatively unexplored — — .
(NS SPH of melting ice, Iwasaki et al., 2010
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Particle methods (SPH,
DPD, etc.) have had more
impact on fluids, but tend
to be less rigorous

Integral-based methods
(RKPM, PD, etc.) are

more rigorous, but have
been more successfully
used for solids

Particle
Penetration
using RKPM,
Chen (2013)

Cast house molten aluminum flow
and oxidation sing SPH,
Prakash et al. (2009)
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Cortical surface Extracted gray-white
matter surface
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“Semi-Lagrangian”

Increas:ed quad_rature Original Dilation parameter
point density refinement
Fictitious pressure from Prakash et al.
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Our proposed consistent pressure
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._ e Interfacial Melting Dynamics

Ehoy Particle Level-Set
interface tracking

, . -
Hot liquid @ ® @ (Veiting solid
©9:00

Progress variable Inverse filtering for
phase changes boundary treatment
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NW safety Liquid fuel spray =L
assessments break-up

Splash modeling




* Most widely used
smoothing kernel function.

« Resembles a Gaussian
functions while having a
compact support

« Second derivative is a
piecewise linear, which
reduces stability properties
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2"d Order PDE:

Solution RMS Error

@® N, CorrFuncOde=2
® N, CorrFuncOde=3
; ; : : B 2N, CorrFuncOde=2]|]
L e s s e e s s ki B 2N, CorrFuncOde=3

RMS Error of Solution

|
Hat Box  Cubic Spline Cosine Epanechnikov Quartic  Triweight
Kernels
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Parameters Effects on

PDE Solution RMS Error
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« Lost accuracy for Neumann Boundary Conditions
 Similar behavior for 15t order PDE
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olecular Dynamics Energy

nimization
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Similar Behavior for Transient Systems

9
.

S \; “ §.
oy a1\

Heat Equation: Initial Configuration  Heat Equation: Minimized Configuration

1.0 Heat Equation Solution 10 Heat Equation Solution
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Particle level set method reduces the

numerical diffusion of the level set method

O 1 O

Level set method Level set method + particle correction

 PLS beats traditional level set method when tested on a
single vortex problem
= Limits numerical diffusion
LDORD * Resolves thin filaments on the mesh scale () S Nt i




Particle Level Set Method Comparison

« Particle Level Set (PLS) Method’
« Corrected PLS?

* Interpolative PLS3Most advanced in
Ereat—= New Method
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"Enright, Fedkiw, Ferziger, Mitchell, “A hybrid particle level set method for improved interface capturing,” J. Comp. Phys.
(2002).
_ 2Wang, Yang, Stern, “An improved particle correction procedure for the particle level set method,” J. Comp. Phys. (2009).
& rickson, Morris, Poliakoff, Templeton, “An interpolative particle level set method,” in preparation.
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Interpolation method outperforms other

methods for 2D circle test

Particle Level Set
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Interpolation method outperforms other

methods for 2D circle test

Particle Level Set

Most
advanced in
literature

New Method

BD/‘%B a National Laboratories
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Level set method h Level set method + particle interpolation j

£ 3

« Comparing numerical diffusion between traditional level set

method and one using our particle interpolation procedure
« Numerical diffusion taken care of
S Errors away from boundary start developing
LORD

() Sandia National Laboratores




Oriented particle level set approach

 Alternatively, we could use an oriented particle approach’
» Particles lie exactly on interface
« Separate governing equations for normal vector and curvature
* No need for level set equation to evolve the interface

5 " lanniello, Mascio, “A self-adaptive particles Level-Set method for tracking interfaces,” J. Comp. Phys., 2010.
hid )




M2 RKPM: Different Algorithms

« Point Collocation Method
u'(x, y)= / C(x, v, x —s,y—t)p(x —s,y — t)u(s,t)dsdt
QO

* Fixed Point Reproducing Kernel Method
u' = / C(x,y,5,t)p(xg — s, yxk — t)u(s,t)ds dt
0

 Moving Reproducing Kernel Method
u(x, y)= / C(x,y,5,t)p(x — s,y — t)u(s,t)dsdt

* Multiple Fixed Reproducing Kernel Method

u'(x, y)= /Q E(x, v,8,1)ps. (s —x,t — y)u(s,t)dsdt

Correction Function: 6 (X, V, 5, )
Kernel Function: gp
‘/—g Unknown Function: M(S, t)




Implemented Kernel Functions

« Kernel Function Properties:

Kernel Functions — Normalized over its support domain

. — —&x || — Compactly supported
— Hat S . o .
i spline — Positive for any point within the
— Cosine | support domain
— Epanechnikov )
— Quartic — Kernel value for a particle
Triweight

monotonically decreases with
increasing distance away from the

particle

"""""""" — Satisfies the dirac delta function
o condition as the smoothing length

\ approaches zero.
- — Even and symmetric function

— Smooth function

() Sandia National Laboratores




—@— Hat
—l— Box
—4— Cubic Spline
%*— Cosine
- - - 2nd Order Convergence

log(error)

log(h)

—H 0w 105 , 15 ulx=0)=3/8, 35, 15, 3
B% =t =5 ya=1)=17/2 “T 8" 47 T8 () seteretm b
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First order ODE displays

%

RMS Error of Solution

anomalous results
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15 RKPM: Algorithms Properties

 Point Collocation Method

— Computationally intensive due to additional system solve for moment
matrix and its derivative

* Fixed Point Reproducing Kernel Method

— Reduced computation and algorithm complexity by fixing the kernel
evaluation

— Shape function derivatives are independent of the kernel function
— Requires dealing with multi-valued Shape functions
* Moving Reproducing Kernel Method
— Shape functions are not multi-valued
— Shape function derivatives are kernel function dependent
* Multiple Fixed Reproducing Kernel Method
— Shape functions are not multi-valued they can be computed uniquely

— Shape function derivatives are kernel function dependent

—&~— Different kernel functions can be used at each point.
LDRD () Sandia National Laboratories




. Solvmg the heat equation for a solidifying liquid
 The interface is defined at the melt temperature

Cold surface

Hot surface Hot surface

—8 Hot surface
LDRIL () Sandia National Laboratories




