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1. Carbon Dioxide Sequestration
• Carbon dioxide will be sequestered by inducing precipitation in

the subsurface.
• But, there is uncertainty in how much precipitation will occur,

where it will occur and how long the reactions will take.
• In storage reservoirs with highly reactive materials precipitation

may be quick (years to decades)
• Precipitation must be timed just right in such reservoirs: too fast,

and precipitation will clog reservoir and limit storage to a
fraction of the estimated capacity

• Key is to maintain permeability during precipitation reaction, a
difficult scenario to ensure in practice as the flow may evolve
over time leading to undesired or unexpected behavior

• Thus, to 1) SUSTAIN LARGE STORAGE RATES, 2) USE
PORE SPACE EFFICIENTLY, and 3) CONTROL EMERGENT
BEHVIOR on the time scale of YEARS TO DECADES, we need
more information about the coupling between reactive transport
and flow in pores (1-100 !Ens)

2. Pore Scale Modeling of Reactive Transport
• Transverse mixing-induced calcium carbonate (CaCO3) precipitation
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• Mixing induced chemical
reactions can alter pore
structure in space

• And over time
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3. Characterization of 3-D flow field using micro-PIV

Laboratory Experiments

Experimental setup

Microfluidic
pore network

Particle image
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Image at multiple depths

3D Laser scanning confocal microscope

• Steady flow with a constant
pore geometry

• 1-vm fluorescent particles
added to the flow for imaging
and analysis
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Results for a constant geometry

Case la: Steady, uniform flow in a channel
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• Each field is time-
averaged over 200
instants

• Observed : 35 vm/s
Calculated: 54 [A,m/s

Steady, uniform flow in a clean pore body
• Each 2D velocity field

shows fast flow in
  narrow throats and slow

flow in wide pore
Z2 bodies

• Flow is uniform with
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patterns at all heights
• 3D effects minimal in

the steady flow and
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3D Flow Profiles Induced by Precipitation
• imaged with steady and uniform flow of particles in water
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Case 2a: Obstacle in a channel
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Case 2b: Obstacle in a pore body
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Case 2c: Obstacles in a pore body
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Simulations
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using Lattice-
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method

Preliminary Conclusions
• Confocal microscopy can be used

to characterize 3D heterogeneous
structures and flow field

• Heterogeneous pore structures
induced by precipitations may
have a significant impact on
estimating reaction rate

Future Work
• Experimental and numerical

validation of 3D velocity fields in
representative precipitation
patterns

• Estimation of reactive surface area
from 3D profiles of precipitates
and reaction rates across scales

• Extend the current workflow to
multiphase flow in heterogeneous
pore structure and mineral
distributions
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