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Objective

Leverage next-generation computing platforms to include microscale information in
continuum scale mechancis simulations.

Key Components

Peridynamic Theory:
Unified mathematical framework from continuum scale to the scale of molecular dynamics,
No spatial derivatives: naturally models material failure,
Nonlocal model.

Multiscale Finite Elements:
Multiscale basis functions computed on independent subdomains,
Finer resolution on subdomains improved solution, same global degrees of freedom,
No communication between subdomain solves suited for NGP systems.

Weak Linear Peridynamic Model

(u, v)p - puv dx, a(u, v) - C(x, q)(u(q) u(x))(v(q) v(x)) dq dx,
D D

V v : EY -" c1 : a(v, v) < oo, v1D, = Of.

find u E H2(0, T; V) : p(x)utt(x, t) = a(u, v) b(x, t),

by c V and a.e. t [0, T].

u displacement field,
p - density,

b ext force density,
C micromodulus function.

Nonlocal Multiscale Finite Element Method

0; jf; - piecewise linear Lagrangian FE basis,
0; - basis function j on element
Multiscale basis function (1); = qiigiven by

find (41,1 c V s.t. a#41,1, v) a1(01,1, v)7, by c V.

Solve global problem with multiscale basis.
Note: resolution of global mesh 7-1}1 and local meshes for multiscale basis function
computations both determine accuracy. MS basis function computations independent,
performed concurrently.

Mixed Locality Multiscale FEM

Use MSFEM framework to couple nonlocal and local mechanics models.
MSFEM basis functions computed using nonlocal model.
Global solution computed with local model.

Local & Nonlocal MS Basis Functions
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Analysis: Ambulant Galerkin Framework

Based on global orthogonal decomposition of Hilbert space operator.

V a Hilbert space, i3 e f(V, V') coercive, f c V', abstract model problem,

find u c V s.t. Bu - f E V°.

VH c V finite dimensional with basis 01}/7".1.
IH : VH an orthogonal projection, Vr = Ker(IH). Reconstruction R : VH V defined
by /3(0) = + Q(0), where Q solves,

given ¢ E VH, find Q(0) E Vr s.t. + Q(0)) - f Wry'.

Ambulant space VA = spanfR(01)1n.

Lemmas 1 & 2

Model problem is equivalent to,

(1) find u E VA s.t. 13u f E V°, (2) find u E VA s.t. Bu - f (1/A)°.

Approximate Reconstruction

Va}a, a c (0, Do) family of Hilberty spaces s.t.
For each a, VH c Va c V.
For each VE V]a sequence {va E Vaf satisfying,

a
lim - v O.
0

For each a, Vr'a = Ker(Ilva). Reconstruction defined by

given o c VH, find Qa(0) E Vr'a s.t. LAO Qa(0))

Particular choices of VH, va give multiscale FEM.
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Local, Nonlocal, and Mixed-Locality Comparison
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